/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkImageInfoPriv.h" #include "SkSwizzle.h" #include "SkSwizzler.h" #include "Test.h" #include "SkOpts.h" // These are the values that we will look for to indicate that the fill was successful static const uint8_t kFillGray = 0x22; static const uint16_t kFill565 = 0x3344; static const uint32_t kFillColor = 0x55667788; static void check_fill(skiatest::Reporter* r, const SkImageInfo& imageInfo, uint32_t startRow, uint32_t endRow, size_t rowBytes, uint32_t offset, uint32_t colorOrIndex) { // Calculate the total size of the image in bytes. Use the smallest possible size. // The offset value tells us to adjust the pointer from the memory we allocate in order // to test on different memory alignments. If offset is nonzero, we need to increase the // size of the memory we allocate in order to make sure that we have enough. We are // still allocating the smallest possible size. const size_t totalBytes = imageInfo.computeByteSize(rowBytes) + offset; // Create fake image data where every byte has a value of 0 std::unique_ptr storage(new uint8_t[totalBytes]); memset(storage.get(), 0, totalBytes); // Adjust the pointer in order to test on different memory alignments uint8_t* imageData = storage.get() + offset; uint8_t* imageStart = imageData + rowBytes * startRow; const SkImageInfo fillInfo = imageInfo.makeWH(imageInfo.width(), endRow - startRow + 1); SkSampler::Fill(fillInfo, imageStart, rowBytes, colorOrIndex, SkCodec::kNo_ZeroInitialized); // Ensure that the pixels are filled properly // The bots should catch any memory corruption uint8_t* indexPtr = imageData + startRow * rowBytes; uint8_t* grayPtr = indexPtr; uint32_t* colorPtr = (uint32_t*) indexPtr; uint16_t* color565Ptr = (uint16_t*) indexPtr; for (uint32_t y = startRow; y <= endRow; y++) { for (int32_t x = 0; x < imageInfo.width(); x++) { switch (imageInfo.colorType()) { case kN32_SkColorType: REPORTER_ASSERT(r, kFillColor == colorPtr[x]); break; case kGray_8_SkColorType: REPORTER_ASSERT(r, kFillGray == grayPtr[x]); break; case kRGB_565_SkColorType: REPORTER_ASSERT(r, kFill565 == color565Ptr[x]); break; default: REPORTER_ASSERT(r, false); break; } } indexPtr += rowBytes; colorPtr = (uint32_t*) indexPtr; } } // Test Fill() with different combinations of dimensions, alignment, and padding DEF_TEST(SwizzlerFill, r) { // Test on an invalid width and representative widths const uint32_t widths[] = { 0, 10, 50 }; // In order to call Fill(), there must be at least one row to fill // Test on the smallest possible height and representative heights const uint32_t heights[] = { 1, 5, 10 }; // Test on interesting possibilities for row padding const uint32_t paddings[] = { 0, 4 }; // Iterate over test dimensions for (uint32_t width : widths) { for (uint32_t height : heights) { // Create image info objects const SkImageInfo colorInfo = SkImageInfo::MakeN32(width, height, kUnknown_SkAlphaType); const SkImageInfo grayInfo = colorInfo.makeColorType(kGray_8_SkColorType); const SkImageInfo color565Info = colorInfo.makeColorType(kRGB_565_SkColorType); for (uint32_t padding : paddings) { // Calculate row bytes const size_t colorRowBytes = SkColorTypeBytesPerPixel(kN32_SkColorType) * width + padding; const size_t indexRowBytes = width + padding; const size_t grayRowBytes = indexRowBytes; const size_t color565RowBytes = SkColorTypeBytesPerPixel(kRGB_565_SkColorType) * width + padding; // If there is padding, we can invent an offset to change the memory alignment for (uint32_t offset = 0; offset <= padding; offset += 4) { // Test all possible start rows with all possible end rows for (uint32_t startRow = 0; startRow < height; startRow++) { for (uint32_t endRow = startRow; endRow < height; endRow++) { // Test fill with each color type check_fill(r, colorInfo, startRow, endRow, colorRowBytes, offset, kFillColor); check_fill(r, grayInfo, startRow, endRow, grayRowBytes, offset, kFillGray); check_fill(r, color565Info, startRow, endRow, color565RowBytes, offset, kFill565); } } } } } } } DEF_TEST(SwizzleOpts, r) { uint32_t dst, src; // forall c, c*255 == c, c*0 == 0 for (int c = 0; c <= 255; c++) { src = (255<<24) | c; SkOpts::RGBA_to_rgbA(&dst, &src, 1); REPORTER_ASSERT(r, dst == src); SkOpts::RGBA_to_bgrA(&dst, &src, 1); REPORTER_ASSERT(r, dst == (uint32_t)((255<<24) | (c<<16))); src = (0<<24) | c; SkOpts::RGBA_to_rgbA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0); SkOpts::RGBA_to_bgrA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0); } // check a totally arbitrary color src = 0xFACEB004; SkOpts::RGBA_to_rgbA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0xFACAAD04); // swap red and blue SkOpts::RGBA_to_BGRA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0xFA04B0CE); // all together now SkOpts::RGBA_to_bgrA(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0xFA04ADCA); } DEF_TEST(PublicSwizzleOpts, r) { uint32_t dst, src; // check a totally arbitrary color src = 0xFACEB004; SkSwapRB(&dst, &src, 1); REPORTER_ASSERT(r, dst == 0xFA04B0CE); }