/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkHalf.h" #include "SkRasterPipeline.h" #include "../src/jumper/SkJumper.h" DEF_TEST(SkRasterPipeline, r) { // Build and run a simple pipeline to exercise SkRasterPipeline, // drawing 50% transparent blue over opaque red in half-floats. uint64_t red = 0x3c00000000003c00ull, blue = 0x3800380000000000ull, result; SkJumper_MemoryCtx load_s_ctx = { &blue, 0 }, load_d_ctx = { &red, 0 }, store_ctx = { &result, 0 }; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f16, &load_s_ctx); p.append(SkRasterPipeline::load_f16_dst, &load_d_ctx); p.append(SkRasterPipeline::srcover); p.append(SkRasterPipeline::store_f16, &store_ctx); p.run(0,0,1,1); // We should see half-intensity magenta. REPORTER_ASSERT(r, ((result >> 0) & 0xffff) == 0x3800); REPORTER_ASSERT(r, ((result >> 16) & 0xffff) == 0x0000); REPORTER_ASSERT(r, ((result >> 32) & 0xffff) == 0x3800); REPORTER_ASSERT(r, ((result >> 48) & 0xffff) == 0x3c00); } DEF_TEST(SkRasterPipeline_empty, r) { // No asserts... just a test that this is safe to run. SkRasterPipeline_<256> p; p.run(0,0,20,1); } DEF_TEST(SkRasterPipeline_nonsense, r) { // No asserts... just a test that this is safe to run and terminates. // srcover() calls st->next(); this makes sure we've always got something there to call. SkRasterPipeline_<256> p; p.append(SkRasterPipeline::srcover); p.run(0,0,20,1); } DEF_TEST(SkRasterPipeline_JIT, r) { // This tests a couple odd corners that a JIT backend can stumble over. uint32_t buf[72] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; SkJumper_MemoryCtx src = { buf + 0, 0 }, dst = { buf + 36, 0 }; // Copy buf[x] to buf[x+36] for x in [15,35). SkRasterPipeline_<256> p; p.append(SkRasterPipeline:: load_8888, &src); p.append(SkRasterPipeline::store_8888, &dst); p.run(15,0, 20,1); for (int i = 0; i < 36; i++) { if (i < 15 || i == 35) { REPORTER_ASSERT(r, buf[i+36] == 0); } else { REPORTER_ASSERT(r, buf[i+36] == (uint32_t)(i - 11)); } } } static uint16_t h(float f) { // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias. uint32_t sem; memcpy(&sem, &f, sizeof(sem)); uint32_t s = sem & 0x80000000, em = sem ^ s; // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero. auto denorm = (int32_t)em < 0x38800000; // I32 comparison is often quicker, and always safe // here. return denorm ? SkTo(0) : SkTo((s>>16) + (em>>13) - ((127-15)<<10)); } static uint16_t n(uint16_t x) { return (x<<8) | (x>>8); } static float a(uint16_t x) { return (1/65535.0f) * x; } DEF_TEST(SkRasterPipeline_tail, r) { { float data[][4] = { {00, 01, 02, 03}, {10, 11, 12, 13}, {20, 21, 22, 23}, {30, 31, 32, 33}, }; float buffer[4][4]; SkJumper_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f32, &src); p.append(SkRasterPipeline::store_f32, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { for (unsigned k = 0; k < 4; k++) { if (buffer[j][k] != data[j][k]) { ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, data[j][k], buffer[j][k]); } } } for (int j = i; j < 4; j++) { for (auto f : buffer[j]) { REPORTER_ASSERT(r, SkScalarIsNaN(f)); } } } } { uint16_t data[][4] = { {h(00), h(01), h(02), h(03)}, {h(10), h(11), h(12), h(13)}, {h(20), h(21), h(22), h(23)}, {h(30), h(31), h(32), h(33)}, }; uint16_t buffer[4][4]; SkJumper_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_f16, &src); p.append(SkRasterPipeline::store_f16, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { REPORTER_ASSERT(r, !memcmp(&data[j][0], &buffer[j][0], sizeof(buffer[j]))); } for (int j = i; j < 4; j++) { for (auto f : buffer[j]) { REPORTER_ASSERT(r, f == 0xffff); } } } } { uint16_t data[][3] = { {n(00), n(01), n(02)}, {n(10), n(11), n(12)}, {n(20), n(21), n(22)}, {n(30), n(31), n(32)} }; float answer[][4] = { {a(00), a(01), a(02), 1.0f}, {a(10), a(11), a(12), 1.0f}, {a(20), a(21), a(22), 1.0f}, {a(30), a(31), a(32), 1.0f} }; float buffer[4][4]; SkJumper_MemoryCtx src = { &data[0][0], 0 }, dst = { &buffer[0][0], 0 }; for (unsigned i = 1; i <= 4; i++) { memset(buffer, 0xff, sizeof(buffer)); SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_rgb_u16_be, &src); p.append(SkRasterPipeline::store_f32, &dst); p.run(0,0, i,1); for (unsigned j = 0; j < i; j++) { for (unsigned k = 0; k < 4; k++) { if (buffer[j][k] != answer[j][k]) { ERRORF(r, "(%u, %u) - a: %g r: %g\n", j, k, answer[j][k], buffer[j][k]); } } } for (int j = i; j < 4; j++) { for (auto f : buffer[j]) { REPORTER_ASSERT(r, SkScalarIsNaN(f)); } } } } } DEF_TEST(SkRasterPipeline_lowp, r) { uint32_t rgba[64]; for (int i = 0; i < 64; i++) { rgba[i] = (4*i+0) << 0 | (4*i+1) << 8 | (4*i+2) << 16 | (4*i+3) << 24; } SkJumper_MemoryCtx ptr = { rgba, 0 }; SkRasterPipeline_<256> p; p.append(SkRasterPipeline::load_bgra, &ptr); p.append(SkRasterPipeline::store_8888, &ptr); p.run(0,0,64,1); for (int i = 0; i < 64; i++) { uint32_t want = (4*i+0) << 16 | (4*i+1) << 8 | (4*i+2) << 0 | (4*i+3) << 24; if (rgba[i] != want) { ERRORF(r, "got %08x, want %08x\n", rgba[i], want); } } } DEF_TEST(SkRasterPipeline_2d, r) { uint32_t rgba[2*2] = {0,0,0,0}; SkSTArenaAlloc<256> alloc; SkRasterPipeline p(&alloc); // Splat out the (2d) dst coordinates: (0.5,0.5), (1.5,0.5), (0.5,1.5), (1.5,1.5). p.append(SkRasterPipeline::seed_shader); // Scale down to [0,1] range to write out as bytes. p.append_matrix(&alloc, SkMatrix::Concat(SkMatrix::MakeScale(0.5f), SkMatrix::MakeTrans(-0.5f, -0.5f))); // Write out to rgba, with row stride = 2 pixels. SkJumper_MemoryCtx ctx = { rgba, 2 }; p.append(SkRasterPipeline::store_8888, &ctx); p.run(0,0, 2,2); REPORTER_ASSERT(r, ((rgba[0] >> 0) & 0xff) == 0); REPORTER_ASSERT(r, ((rgba[1] >> 0) & 0xff) == 128); REPORTER_ASSERT(r, ((rgba[2] >> 0) & 0xff) == 0); REPORTER_ASSERT(r, ((rgba[3] >> 0) & 0xff) == 128); REPORTER_ASSERT(r, ((rgba[0] >> 8) & 0xff) == 0); REPORTER_ASSERT(r, ((rgba[1] >> 8) & 0xff) == 0); REPORTER_ASSERT(r, ((rgba[2] >> 8) & 0xff) == 128); REPORTER_ASSERT(r, ((rgba[3] >> 8) & 0xff) == 128); } DEF_TEST(SkRasterPipeline_repeat_tiling, r) { // Repeat tiling works roughly like // v' = v - floor(v / limit) * limit // // If v = 19133558.0f and limit = 9.0f, that's // // v' = 19133558.0f - floor(19133558.0f / 9.0f) * 9.0f // // The problem comes with that division term. In infinite precision, // that'd be 2125950 + 8/9, but the nearest float is 2125951.0f. // // Then 2125951.0f * 9.0f = 19133559.0f, which is greater than v, // so v' becomes negative. :'( // Here's a regression test to make sure this doesn't happen. float in[4 * SkJumper_kMaxStride]; float out[4 * SkJumper_kMaxStride]; for (float& f : in) { f = 0; } in[0] = 19133558.0f; SkJumper_TileCtx tile = { 9.0f, 1/9.0f }; SkSTArenaAlloc<256> alloc; SkRasterPipeline p(&alloc); p.append(SkRasterPipeline::load_rgba, in); p.append(SkRasterPipeline::repeat_x, &tile); p.append(SkRasterPipeline::store_rgba, out); p.run(0,0,1,1); REPORTER_ASSERT(r, 0.0f <= out[0] && out[0] < 9.0f); }