/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmapProcShader.h" #include "SkColor.h" #include "SkColorMatrixFilter.h" #include "SkGradientShader.h" #include "SkImage.h" #include "SkPM4f.h" #include "SkShader.h" #include "Test.h" #include "SkRandom.h" const float kTolerance = 1.0f / (1 << 20); static bool nearly_equal(float a, float b, float tol = kTolerance) { SkASSERT(tol >= 0); return fabsf(a - b) <= tol; } static bool nearly_equal(const SkPM4f a, const SkPM4f& b, float tol = kTolerance) { for (int i = 0; i < 4; ++i) { if (!nearly_equal(a.fVec[i], b.fVec[i], tol)) { return false; } } return true; } DEF_TEST(SkColor4f_FromColor, reporter) { const struct { SkColor fC; SkColor4f fC4; } recs[] = { { SK_ColorBLACK, { 0, 0, 0, 1 } }, { SK_ColorWHITE, { 1, 1, 1, 1 } }, { SK_ColorRED, { 1, 0, 0, 1 } }, { SK_ColorGREEN, { 0, 1, 0, 1 } }, { SK_ColorBLUE, { 0, 0, 1, 1 } }, { 0, { 0, 0, 0, 0 } }, }; for (const auto& r : recs) { SkColor4f c4 = SkColor4f::FromColor(r.fC); REPORTER_ASSERT(reporter, c4 == r.fC4); } } DEF_TEST(Color4f_premul, reporter) { SkRandom rand; for (int i = 0; i < 1000000; ++i) { // First just test opaque colors, so that the premul should be exact SkColor4f c4 { rand.nextUScalar1(), rand.nextUScalar1(), rand.nextUScalar1(), 1 }; SkPM4f pm4 = c4.premul(); REPORTER_ASSERT(reporter, pm4.a() == c4.fA); REPORTER_ASSERT(reporter, pm4.r() == c4.fA * c4.fR); REPORTER_ASSERT(reporter, pm4.g() == c4.fA * c4.fG); REPORTER_ASSERT(reporter, pm4.b() == c4.fA * c4.fB); // We compare with a tolerance, in case our premul multiply is implemented at slightly // different precision than the test code. c4.fA = rand.nextUScalar1(); pm4 = c4.premul(); REPORTER_ASSERT(reporter, pm4.fVec[SK_A_INDEX] == c4.fA); REPORTER_ASSERT(reporter, nearly_equal(pm4.r(), c4.fA * c4.fR)); REPORTER_ASSERT(reporter, nearly_equal(pm4.g(), c4.fA * c4.fG)); REPORTER_ASSERT(reporter, nearly_equal(pm4.b(), c4.fA * c4.fB)); } } /////////////////////////////////////////////////////////////////////////////////////////////////// typedef SkPM4f (*SkXfermodeProc4f)(const SkPM4f& src, const SkPM4f& dst); static bool compare_procs(SkXfermodeProc proc32, SkXfermodeProc4f proc4f) { const float kTolerance = 1.0f / 255; const SkColor colors[] = { 0, 0xFF000000, 0xFFFFFFFF, 0x80FF0000 }; for (auto s32 : colors) { SkPMColor s_pm32 = SkPreMultiplyColor(s32); SkPM4f s_pm4f = SkColor4f::FromColor(s32).premul(); for (auto d32 : colors) { SkPMColor d_pm32 = SkPreMultiplyColor(d32); SkPM4f d_pm4f = SkColor4f::FromColor(d32).premul(); SkPMColor r32 = proc32(s_pm32, d_pm32); SkPM4f r4f = proc4f(s_pm4f, d_pm4f); SkPM4f r32_4f = SkPM4f::FromPMColor(r32); if (!nearly_equal(r4f, r32_4f, kTolerance)) { return false; } } } return true; } // Check that our Proc and Proc4f return (nearly) the same results // DEF_TEST(Color4f_xfermode_proc4f, reporter) { // TODO: extend xfermodes so that all cases can be tested. // for (int mode = SkXfermode::kClear_Mode; mode <= SkXfermode::kScreen_Mode; ++mode) { SkXfermodeProc proc32 = SkXfermode::GetProc((SkXfermode::Mode)mode); SkXfermodeProc4f proc4f = SkXfermode::GetProc4f((SkXfermode::Mode)mode); REPORTER_ASSERT(reporter, compare_procs(proc32, proc4f)); } }