/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkBitmapDevice.h" #include "SkBitmapSource.h" #include "SkCanvas.h" #include "SkMallocPixelRef.h" #include "SkOrderedWriteBuffer.h" #include "SkValidatingReadBuffer.h" #include "SkXfermodeImageFilter.h" static const uint32_t kArraySize = 64; template static void TestAlignment(T* testObj, skiatest::Reporter* reporter) { // Test memory read/write functions directly unsigned char dataWritten[1024]; size_t bytesWrittenToMemory = testObj->writeToMemory(dataWritten); REPORTER_ASSERT(reporter, SkAlign4(bytesWrittenToMemory) == bytesWrittenToMemory); size_t bytesReadFromMemory = testObj->readFromMemory(dataWritten, bytesWrittenToMemory); REPORTER_ASSERT(reporter, SkAlign4(bytesReadFromMemory) == bytesReadFromMemory); } template struct SerializationUtils { // Generic case for flattenables static void Write(SkOrderedWriteBuffer& writer, const T* flattenable) { writer.writeFlattenable(flattenable); } static void Read(SkValidatingReadBuffer& reader, T** flattenable) { *flattenable = (T*)reader.readFlattenable(T::GetFlattenableType()); } }; template<> struct SerializationUtils { static void Write(SkOrderedWriteBuffer& writer, const SkMatrix* matrix) { writer.writeMatrix(*matrix); } static void Read(SkValidatingReadBuffer& reader, SkMatrix* matrix) { reader.readMatrix(matrix); } }; template<> struct SerializationUtils { static void Write(SkOrderedWriteBuffer& writer, const SkPath* path) { writer.writePath(*path); } static void Read(SkValidatingReadBuffer& reader, SkPath* path) { reader.readPath(path); } }; template<> struct SerializationUtils { static void Write(SkOrderedWriteBuffer& writer, const SkRegion* region) { writer.writeRegion(*region); } static void Read(SkValidatingReadBuffer& reader, SkRegion* region) { reader.readRegion(region); } }; template<> struct SerializationUtils { static void Write(SkOrderedWriteBuffer& writer, unsigned char* data, uint32_t arraySize) { writer.writeByteArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, unsigned char* data, uint32_t arraySize) { return reader.readByteArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkOrderedWriteBuffer& writer, SkColor* data, uint32_t arraySize) { writer.writeColorArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, SkColor* data, uint32_t arraySize) { return reader.readColorArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkOrderedWriteBuffer& writer, int32_t* data, uint32_t arraySize) { writer.writeIntArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, int32_t* data, uint32_t arraySize) { return reader.readIntArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkOrderedWriteBuffer& writer, SkPoint* data, uint32_t arraySize) { writer.writePointArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, SkPoint* data, uint32_t arraySize) { return reader.readPointArray(data, arraySize); } }; template<> struct SerializationUtils { static void Write(SkOrderedWriteBuffer& writer, SkScalar* data, uint32_t arraySize) { writer.writeScalarArray(data, arraySize); } static bool Read(SkValidatingReadBuffer& reader, SkScalar* data, uint32_t arraySize) { return reader.readScalarArray(data, arraySize); } }; template static void TestObjectSerialization(T* testObj, skiatest::Reporter* reporter) { SkOrderedWriteBuffer writer; writer.setFlags(SkOrderedWriteBuffer::kValidation_Flag); SerializationUtils::Write(writer, testObj); size_t bytesWritten = writer.bytesWritten(); REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten); unsigned char dataWritten[1024]; writer.writeToMemory(dataWritten); // Make sure this fails when it should (test with smaller size, but still multiple of 4) SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4); T obj; SerializationUtils::Read(buffer, &obj); REPORTER_ASSERT(reporter, !buffer.isValid()); // Make sure this succeeds when it should SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); const unsigned char* peekBefore = static_cast(buffer2.skip(0)); T obj2; SerializationUtils::Read(buffer2, &obj2); const unsigned char* peekAfter = static_cast(buffer2.skip(0)); // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, buffer2.isValid()); REPORTER_ASSERT(reporter, static_cast(peekAfter - peekBefore) == bytesWritten); TestAlignment(testObj, reporter); } template static T* TestFlattenableSerialization(T* testObj, bool shouldSucceed, skiatest::Reporter* reporter) { SkOrderedWriteBuffer writer; writer.setFlags(SkOrderedWriteBuffer::kValidation_Flag); SerializationUtils::Write(writer, testObj); size_t bytesWritten = writer.bytesWritten(); REPORTER_ASSERT(reporter, SkAlign4(bytesWritten) == bytesWritten); unsigned char dataWritten[1024]; SkASSERT(bytesWritten <= sizeof(dataWritten)); writer.writeToMemory(dataWritten); // Make sure this fails when it should (test with smaller size, but still multiple of 4) SkValidatingReadBuffer buffer(dataWritten, bytesWritten - 4); T* obj = NULL; SerializationUtils::Read(buffer, &obj); REPORTER_ASSERT(reporter, !buffer.isValid()); REPORTER_ASSERT(reporter, NULL == obj); // Make sure this succeeds when it should SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); const unsigned char* peekBefore = static_cast(buffer2.skip(0)); T* obj2 = NULL; SerializationUtils::Read(buffer2, &obj2); const unsigned char* peekAfter = static_cast(buffer2.skip(0)); if (shouldSucceed) { // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, buffer2.isValid()); REPORTER_ASSERT(reporter, static_cast(peekAfter - peekBefore) == bytesWritten); REPORTER_ASSERT(reporter, NULL != obj2); } else { // If the deserialization was supposed to fail, make sure it did REPORTER_ASSERT(reporter, !buffer.isValid()); REPORTER_ASSERT(reporter, NULL == obj2); } return obj2; // Return object to perform further validity tests on it } template static void TestArraySerialization(T* data, skiatest::Reporter* reporter) { SkOrderedWriteBuffer writer; writer.setFlags(SkOrderedWriteBuffer::kValidation_Flag); SerializationUtils::Write(writer, data, kArraySize); size_t bytesWritten = writer.bytesWritten(); // This should write the length (in 4 bytes) and the array REPORTER_ASSERT(reporter, (4 + kArraySize * sizeof(T)) == bytesWritten); unsigned char dataWritten[1024]; writer.writeToMemory(dataWritten); // Make sure this fails when it should SkValidatingReadBuffer buffer(dataWritten, bytesWritten); T dataRead[kArraySize]; bool success = SerializationUtils::Read(buffer, dataRead, kArraySize / 2); // This should have failed, since the provided size was too small REPORTER_ASSERT(reporter, !success); // Make sure this succeeds when it should SkValidatingReadBuffer buffer2(dataWritten, bytesWritten); success = SerializationUtils::Read(buffer2, dataRead, kArraySize); // This should have succeeded, since there are enough bytes to read this REPORTER_ASSERT(reporter, success); } static void TestBitmapSerialization(const SkBitmap& validBitmap, const SkBitmap& invalidBitmap, bool shouldSucceed, skiatest::Reporter* reporter) { SkBitmapSource validBitmapSource(validBitmap); SkBitmapSource invalidBitmapSource(invalidBitmap); SkAutoTUnref mode(SkXfermode::Create(SkXfermode::kSrcOver_Mode)); SkXfermodeImageFilter xfermodeImageFilter(mode, &invalidBitmapSource, &validBitmapSource); SkAutoTUnref deserializedFilter( TestFlattenableSerialization( &xfermodeImageFilter, shouldSucceed, reporter)); // Try to render a small bitmap using the invalid deserialized filter // to make sure we don't crash while trying to render it if (shouldSucceed) { SkBitmap bitmap; bitmap.setConfig(SkBitmap::kARGB_8888_Config, 24, 24); bitmap.allocPixels(); SkBitmapDevice device(bitmap); SkCanvas canvas(&device); canvas.clear(0x00000000); SkPaint paint; paint.setImageFilter(deserializedFilter); canvas.clipRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(24), SkIntToScalar(24))); canvas.drawBitmap(bitmap, 0, 0, &paint); } } DEF_TEST(Serialization, reporter) { // Test matrix serialization { SkMatrix matrix = SkMatrix::I(); TestObjectSerialization(&matrix, reporter); } // Test path serialization { SkPath path; TestObjectSerialization(&path, reporter); } // Test region serialization { SkRegion region; TestObjectSerialization(®ion, reporter); } // Test rrect serialization { // SkRRect does not initialize anything. // An uninitialized SkRRect can be serialized, // but will branch on uninitialized data when deserialized. SkRRect rrect; SkRect rect = SkRect::MakeXYWH(1, 2, 20, 30); SkVector corners[4] = { {1, 2}, {2, 3}, {3,4}, {4,5} }; rrect.setRectRadii(rect, corners); TestAlignment(&rrect, reporter); } // Test readByteArray { unsigned char data[kArraySize] = { 1, 2, 3 }; TestArraySerialization(data, reporter); } // Test readColorArray { SkColor data[kArraySize] = { SK_ColorBLACK, SK_ColorWHITE, SK_ColorRED }; TestArraySerialization(data, reporter); } // Test readIntArray { int32_t data[kArraySize] = { 1, 2, 4, 8 }; TestArraySerialization(data, reporter); } // Test readPointArray { SkPoint data[kArraySize] = { {6, 7}, {42, 128} }; TestArraySerialization(data, reporter); } // Test readScalarArray { SkScalar data[kArraySize] = { SK_Scalar1, SK_ScalarHalf, SK_ScalarMax }; TestArraySerialization(data, reporter); } // Test invalid deserializations { SkBitmap validBitmap; validBitmap.setConfig(SkBitmap::kARGB_8888_Config, 256, 256); // Create a bitmap with a really large height SkBitmap invalidBitmap; invalidBitmap.setConfig(SkBitmap::kARGB_8888_Config, 256, 1000000000); // The deserialization should succeed, and the rendering shouldn't crash, // even when the device fails to initialize, due to its size TestBitmapSerialization(validBitmap, invalidBitmap, true, reporter); // we assert if the pixelref doesn't agree with the config, so skip this // test (at least for now) #if 0 // Create a bitmap with a pixel ref too small SkImageInfo info; info.fWidth = 256; info.fHeight = 256; info.fColorType = kPMColor_SkColorType; info.fAlphaType = kPremul_SkAlphaType; SkBitmap invalidBitmap2; invalidBitmap2.setConfig(info); // Hack to force invalid, by making the pixelref smaller than its // owning bitmap. info.fWidth = 32; info.fHeight = 1; invalidBitmap2.setPixelRef(SkMallocPixelRef::NewAllocate( info, invalidBitmap2.rowBytes(), NULL))->unref(); // The deserialization should detect the pixel ref being too small and fail TestBitmapSerialization(validBitmap, invalidBitmap2, false, reporter); #endif } }