/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkBitmapDevice.h" #include "SkCanvas.h" #include "SkColorPriv.h" #include "SkData.h" #include "SkError.h" #include "SkPaint.h" #include "SkPicture.h" #include "SkPictureUtils.h" #include "SkRandom.h" #include "SkRRect.h" #include "SkShader.h" #include "SkStream.h" static void make_bm(SkBitmap* bm, int w, int h, SkColor color, bool immutable) { bm->setConfig(SkBitmap::kARGB_8888_Config, w, h); bm->allocPixels(); bm->eraseColor(color); if (immutable) { bm->setImmutable(); } } typedef void (*DrawBitmapProc)(SkCanvas*, const SkBitmap&, const SkPoint&); static void drawbitmap_proc(SkCanvas* canvas, const SkBitmap& bm, const SkPoint& pos) { canvas->drawBitmap(bm, pos.fX, pos.fY, NULL); } static void drawbitmaprect_proc(SkCanvas* canvas, const SkBitmap& bm, const SkPoint& pos) { SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) }; r.offset(pos.fX, pos.fY); canvas->drawBitmapRectToRect(bm, NULL, r, NULL); } static void drawshader_proc(SkCanvas* canvas, const SkBitmap& bm, const SkPoint& pos) { SkRect r = { 0, 0, SkIntToScalar(bm.width()), SkIntToScalar(bm.height()) }; r.offset(pos.fX, pos.fY); SkShader* s = SkShader::CreateBitmapShader(bm, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode); SkPaint paint; paint.setShader(s)->unref(); canvas->drawRect(r, paint); canvas->drawOval(r, paint); SkRRect rr; rr.setRectXY(r, 10, 10); canvas->drawRRect(rr, paint); } // Return a picture with the bitmaps drawn at the specified positions. static SkPicture* record_bitmaps(const SkBitmap bm[], const SkPoint pos[], int count, DrawBitmapProc proc) { SkPicture* pic = new SkPicture; SkCanvas* canvas = pic->beginRecording(1000, 1000); for (int i = 0; i < count; ++i) { proc(canvas, bm[i], pos[i]); } pic->endRecording(); return pic; } static void rand_rect(SkRect* rect, SkRandom& rand, SkScalar W, SkScalar H) { rect->fLeft = rand.nextRangeScalar(-W, 2*W); rect->fTop = rand.nextRangeScalar(-H, 2*H); rect->fRight = rect->fLeft + rand.nextRangeScalar(0, W); rect->fBottom = rect->fTop + rand.nextRangeScalar(0, H); // we integralize rect to make our tests more predictable, since Gather is // a little sloppy. SkIRect ir; rect->round(&ir); rect->set(ir); } // Allocate result to be large enough to hold subset, and then draw the picture // into it, offsetting by subset's top/left corner. static void draw(SkPicture* pic, const SkRect& subset, SkBitmap* result) { SkIRect ir; subset.roundOut(&ir); int w = ir.width(); int h = ir.height(); make_bm(result, w, h, 0, false); SkCanvas canvas(*result); canvas.translate(-SkIntToScalar(ir.left()), -SkIntToScalar(ir.top())); canvas.drawPicture(*pic); } template int find_index(const T* array, T elem, int count) { for (int i = 0; i < count; ++i) { if (array[i] == elem) { return i; } } return -1; } // Return true if 'ref' is found in array[] static bool find(SkPixelRef const * const * array, SkPixelRef const * ref, int count) { return find_index(array, ref, count) >= 0; } // Look at each pixel in bm, and if its color appears in colors[], find the // corresponding value in refs[] and append that ref into array, skipping // duplicates of the same value. static void gather_from_colors(const SkBitmap& bm, SkPixelRef* const refs[], int count, SkTDArray* array) { // Since we only want to return unique values in array, when we scan we just // set a bit for each index'd color found. In practice we only have a few // distinct colors, so we just use an int's bits as our array. Hence the // assert that count <= number-of-bits-in-our-int. SkASSERT((unsigned)count <= 32); uint32_t bitarray = 0; SkAutoLockPixels alp(bm); for (int y = 0; y < bm.height(); ++y) { for (int x = 0; x < bm.width(); ++x) { SkPMColor pmc = *bm.getAddr32(x, y); // the only good case where the color is not found would be if // the color is transparent, meaning no bitmap was drawn in that // pixel. if (pmc) { uint32_t index = SkGetPackedR32(pmc); SkASSERT(SkGetPackedG32(pmc) == index); SkASSERT(SkGetPackedB32(pmc) == index); SkASSERT(static_cast(index) < count); bitarray |= 1 << index; } } } for (int i = 0; i < count; ++i) { if (bitarray & (1 << i)) { *array->append() = refs[i]; } } } static void test_gatherpixelrefs(skiatest::Reporter* reporter) { const int IW = 8; const int IH = IW; const SkScalar W = SkIntToScalar(IW); const SkScalar H = W; static const int N = 4; SkBitmap bm[N]; SkPixelRef* refs[N]; const SkPoint pos[] = { { 0, 0 }, { W, 0 }, { 0, H }, { W, H } }; // Our convention is that the color components contain the index of their // corresponding bitmap/pixelref for (int i = 0; i < N; ++i) { make_bm(&bm[i], IW, IH, SkColorSetARGB(0xFF, i, i, i), true); refs[i] = bm[i].pixelRef(); } static const DrawBitmapProc procs[] = { drawbitmap_proc, drawbitmaprect_proc, drawshader_proc }; SkRandom rand; for (size_t k = 0; k < SK_ARRAY_COUNT(procs); ++k) { SkAutoTUnref pic(record_bitmaps(bm, pos, N, procs[k])); REPORTER_ASSERT(reporter, pic->willPlayBackBitmaps() || N == 0); // quick check for a small piece of each quadrant, which should just // contain 1 bitmap. for (size_t i = 0; i < SK_ARRAY_COUNT(pos); ++i) { SkRect r; r.set(2, 2, W - 2, H - 2); r.offset(pos[i].fX, pos[i].fY); SkAutoDataUnref data(SkPictureUtils::GatherPixelRefs(pic, r)); REPORTER_ASSERT(reporter, data); if (data) { int count = static_cast(data->size() / sizeof(SkPixelRef*)); REPORTER_ASSERT(reporter, 1 == count); REPORTER_ASSERT(reporter, *(SkPixelRef**)data->data() == refs[i]); } } // Test a bunch of random (mostly) rects, and compare the gather results // with a deduced list of refs by looking at the colors drawn. for (int j = 0; j < 100; ++j) { SkRect r; rand_rect(&r, rand, 2*W, 2*H); SkBitmap result; draw(pic, r, &result); SkTDArray array; SkData* data = SkPictureUtils::GatherPixelRefs(pic, r); size_t dataSize = data ? data->size() : 0; int gatherCount = static_cast(dataSize / sizeof(SkPixelRef*)); SkASSERT(gatherCount * sizeof(SkPixelRef*) == dataSize); SkPixelRef** gatherRefs = data ? (SkPixelRef**)(data->data()) : NULL; SkAutoDataUnref adu(data); gather_from_colors(result, refs, N, &array); /* * GatherPixelRefs is conservative, so it can return more bitmaps * that we actually can see (usually because of conservative bounds * inflation for antialiasing). Thus our check here is only that * Gather didn't miss any that we actually saw. Even that isn't * a strict requirement on Gather, which is meant to be quick and * only mostly-correct, but at the moment this test should work. */ for (int i = 0; i < array.count(); ++i) { bool found = find(gatherRefs, array[i], gatherCount); REPORTER_ASSERT(reporter, found); #if 0 // enable this block of code to debug failures, as it will rerun // the case that failed. if (!found) { SkData* data = SkPictureUtils::GatherPixelRefs(pic, r); size_t dataSize = data ? data->size() : 0; } #endif } } } } #ifdef SK_DEBUG // Ensure that deleting SkPicturePlayback does not assert. Asserts only fire in debug mode, so only // run in debug mode. static void test_deleting_empty_playback() { SkPicture picture; // Creates an SkPictureRecord picture.beginRecording(0, 0); // Turns that into an SkPicturePlayback picture.endRecording(); // Deletes the old SkPicturePlayback, and creates a new SkPictureRecord picture.beginRecording(0, 0); } // Ensure that serializing an empty picture does not assert. Likewise only runs in debug mode. static void test_serializing_empty_picture() { SkPicture picture; picture.beginRecording(0, 0); picture.endRecording(); SkDynamicMemoryWStream stream; picture.serialize(&stream); } #endif static void rand_op(SkCanvas* canvas, SkRandom& rand) { SkPaint paint; SkRect rect = SkRect::MakeWH(50, 50); SkScalar unit = rand.nextUScalar1(); if (unit <= 0.3) { // SkDebugf("save\n"); canvas->save(); } else if (unit <= 0.6) { // SkDebugf("restore\n"); canvas->restore(); } else if (unit <= 0.9) { // SkDebugf("clip\n"); canvas->clipRect(rect); } else { // SkDebugf("draw\n"); canvas->drawPaint(paint); } } static void test_peephole() { SkRandom rand; for (int j = 0; j < 100; j++) { SkRandom rand2(rand); // remember the seed SkPicture picture; SkCanvas* canvas = picture.beginRecording(100, 100); for (int i = 0; i < 1000; ++i) { rand_op(canvas, rand); } picture.endRecording(); rand = rand2; } { SkPicture picture; SkCanvas* canvas = picture.beginRecording(100, 100); SkRect rect = SkRect::MakeWH(50, 50); for (int i = 0; i < 100; ++i) { canvas->save(); } while (canvas->getSaveCount() > 1) { canvas->clipRect(rect); canvas->restore(); } picture.endRecording(); } } #ifndef SK_DEBUG // Only test this is in release mode. We deliberately crash in debug mode, since a valid caller // should never do this. static void test_bad_bitmap() { // This bitmap has a width and height but no pixels. As a result, attempting to record it will // fail. SkBitmap bm; bm.setConfig(SkBitmap::kARGB_8888_Config, 100, 100); SkPicture picture; SkCanvas* recordingCanvas = picture.beginRecording(100, 100); recordingCanvas->drawBitmap(bm, 0, 0); picture.endRecording(); SkCanvas canvas; canvas.drawPicture(picture); } #endif #include "SkData.h" #include "SkImageRef_GlobalPool.h" // Class to test SkPixelRef::onRefEncodedData, since there are currently no implementations in skia. class SkDataImageRef : public SkImageRef_GlobalPool { public: SkDataImageRef(SkMemoryStream* stream) : SkImageRef_GlobalPool(stream, SkBitmap::kNo_Config) { SkASSERT(stream != NULL); fData = stream->copyToData(); this->setImmutable(); } ~SkDataImageRef() { fData->unref(); } virtual SkData* onRefEncodedData() SK_OVERRIDE { fData->ref(); return fData; } private: SkData* fData; }; #include "SkImageEncoder.h" static SkData* encode_bitmap_to_data(size_t* offset, const SkBitmap& bm) { *offset = 0; return SkImageEncoder::EncodeData(bm, SkImageEncoder::kPNG_Type, 100); } static SkData* serialized_picture_from_bitmap(const SkBitmap& bitmap) { SkPicture picture; SkCanvas* canvas = picture.beginRecording(bitmap.width(), bitmap.height()); canvas->drawBitmap(bitmap, 0, 0); SkDynamicMemoryWStream wStream; picture.serialize(&wStream, &encode_bitmap_to_data); return wStream.copyToData(); } struct ErrorContext { int fErrors; skiatest::Reporter* fReporter; }; static void assert_one_parse_error_cb(SkError error, void* context) { ErrorContext* errorContext = static_cast(context); errorContext->fErrors++; // This test only expects one error, and that is a kParseError. If there are others, // there is some unknown problem. REPORTER_ASSERT_MESSAGE(errorContext->fReporter, 1 == errorContext->fErrors, "This threw more errors than expected."); REPORTER_ASSERT_MESSAGE(errorContext->fReporter, kParseError_SkError == error, SkGetLastErrorString()); } static void test_bitmap_with_encoded_data(skiatest::Reporter* reporter) { // Create a bitmap that will be encoded. SkBitmap original; make_bm(&original, 100, 100, SK_ColorBLUE, true); SkDynamicMemoryWStream wStream; if (!SkImageEncoder::EncodeStream(&wStream, original, SkImageEncoder::kPNG_Type, 100)) { return; } SkAutoDataUnref data(wStream.copyToData()); SkMemoryStream memStream; memStream.setData(data); // Use the encoded bitmap as the data for an image ref. SkBitmap bm; SkAutoTUnref imageRef(SkNEW_ARGS(SkDataImageRef, (&memStream))); imageRef->getInfo(&bm); bm.setPixelRef(imageRef); // Write both bitmaps to pictures, and ensure that the resulting data streams are the same. // Flattening original will follow the old path of performing an encode, while flattening bm // will use the already encoded data. SkAutoDataUnref picture1(serialized_picture_from_bitmap(original)); SkAutoDataUnref picture2(serialized_picture_from_bitmap(bm)); REPORTER_ASSERT(reporter, picture1->equals(picture2)); // Now test that a parse error was generated when trying to create a new SkPicture without // providing a function to decode the bitmap. ErrorContext context; context.fErrors = 0; context.fReporter = reporter; SkSetErrorCallback(assert_one_parse_error_cb, &context); SkMemoryStream pictureStream(picture1); SkClearLastError(); SkAutoUnref pictureFromStream(SkPicture::CreateFromStream(&pictureStream, NULL)); REPORTER_ASSERT(reporter, pictureFromStream.get() != NULL); SkClearLastError(); SkSetErrorCallback(NULL, NULL); } static void test_clone_empty(skiatest::Reporter* reporter) { // This is a regression test for crbug.com/172062 // Before the fix, we used to crash accessing a null pointer when we // had a picture with no paints. This test passes by not crashing. { SkPicture picture; picture.beginRecording(1, 1); picture.endRecording(); SkPicture* destPicture = picture.clone(); REPORTER_ASSERT(reporter, NULL != destPicture); destPicture->unref(); } { // Test without call to endRecording SkPicture picture; picture.beginRecording(1, 1); SkPicture* destPicture = picture.clone(); REPORTER_ASSERT(reporter, NULL != destPicture); destPicture->unref(); } } static void test_clip_bound_opt(skiatest::Reporter* reporter) { // Test for crbug.com/229011 SkRect rect1 = SkRect::MakeXYWH(SkIntToScalar(4), SkIntToScalar(4), SkIntToScalar(2), SkIntToScalar(2)); SkRect rect2 = SkRect::MakeXYWH(SkIntToScalar(7), SkIntToScalar(7), SkIntToScalar(1), SkIntToScalar(1)); SkRect rect3 = SkRect::MakeXYWH(SkIntToScalar(6), SkIntToScalar(6), SkIntToScalar(1), SkIntToScalar(1)); SkPath invPath; invPath.addOval(rect1); invPath.setFillType(SkPath::kInverseEvenOdd_FillType); SkPath path; path.addOval(rect2); SkPath path2; path2.addOval(rect3); SkIRect clipBounds; // Minimalist test set for 100% code coverage of // SkPictureRecord::updateClipConservativelyUsingBounds { SkPicture picture; SkCanvas* canvas = picture.beginRecording(10, 10, SkPicture::kUsePathBoundsForClip_RecordingFlag); canvas->clipPath(invPath, SkRegion::kIntersect_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 0 == clipBounds.fTop); REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 10 == clipBounds.fRight); } { SkPicture picture; SkCanvas* canvas = picture.beginRecording(10, 10, SkPicture::kUsePathBoundsForClip_RecordingFlag); canvas->clipPath(path, SkRegion::kIntersect_Op); canvas->clipPath(invPath, SkRegion::kIntersect_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 7 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 7 == clipBounds.fTop); REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 8 == clipBounds.fRight); } { SkPicture picture; SkCanvas* canvas = picture.beginRecording(10, 10, SkPicture::kUsePathBoundsForClip_RecordingFlag); canvas->clipPath(path, SkRegion::kIntersect_Op); canvas->clipPath(invPath, SkRegion::kUnion_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 0 == clipBounds.fTop); REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 10 == clipBounds.fRight); } { SkPicture picture; SkCanvas* canvas = picture.beginRecording(10, 10, SkPicture::kUsePathBoundsForClip_RecordingFlag); canvas->clipPath(path, SkRegion::kDifference_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 0 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 0 == clipBounds.fTop); REPORTER_ASSERT(reporter, 10 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 10 == clipBounds.fRight); } { SkPicture picture; SkCanvas* canvas = picture.beginRecording(10, 10, SkPicture::kUsePathBoundsForClip_RecordingFlag); canvas->clipPath(path, SkRegion::kReverseDifference_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); // True clip is actually empty in this case, but the best // determination we can make using only bounds as input is that the // clip is included in the bounds of 'path'. REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 7 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 7 == clipBounds.fTop); REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 8 == clipBounds.fRight); } { SkPicture picture; SkCanvas* canvas = picture.beginRecording(10, 10, SkPicture::kUsePathBoundsForClip_RecordingFlag); canvas->clipPath(path, SkRegion::kIntersect_Op); canvas->clipPath(path2, SkRegion::kXOR_Op); bool nonEmpty = canvas->getClipDeviceBounds(&clipBounds); REPORTER_ASSERT(reporter, true == nonEmpty); REPORTER_ASSERT(reporter, 6 == clipBounds.fLeft); REPORTER_ASSERT(reporter, 6 == clipBounds.fTop); REPORTER_ASSERT(reporter, 8 == clipBounds.fBottom); REPORTER_ASSERT(reporter, 8 == clipBounds.fRight); } } /** * A canvas that records the number of clip commands. */ class ClipCountingCanvas : public SkCanvas { public: explicit ClipCountingCanvas(SkBaseDevice* device) : SkCanvas(device) , fClipCount(0){ } virtual bool clipRect(const SkRect& r, SkRegion::Op op, bool doAA) SK_OVERRIDE { fClipCount += 1; return this->INHERITED::clipRect(r, op, doAA); } virtual bool clipRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) SK_OVERRIDE { fClipCount += 1; return this->INHERITED::clipRRect(rrect, op, doAA); } virtual bool clipPath(const SkPath& path, SkRegion::Op op, bool doAA) SK_OVERRIDE { fClipCount += 1; return this->INHERITED::clipPath(path, op, doAA); } unsigned getClipCount() const { return fClipCount; } private: unsigned fClipCount; typedef SkCanvas INHERITED; }; static void test_clip_expansion(skiatest::Reporter* reporter) { SkPicture picture; SkCanvas* canvas = picture.beginRecording(10, 10, 0); canvas->clipRect(SkRect::MakeEmpty(), SkRegion::kReplace_Op); // The following expanding clip should not be skipped. canvas->clipRect(SkRect::MakeXYWH(4, 4, 3, 3), SkRegion::kUnion_Op); // Draw something so the optimizer doesn't just fold the world. SkPaint p; p.setColor(SK_ColorBLUE); canvas->drawPaint(p); SkBitmapDevice testDevice(SkBitmap::kNo_Config, 10, 10); ClipCountingCanvas testCanvas(&testDevice); picture.draw(&testCanvas); // Both clips should be present on playback. REPORTER_ASSERT(reporter, testCanvas.getClipCount() == 2); } static void test_hierarchical(skiatest::Reporter* reporter) { SkBitmap bm; make_bm(&bm, 10, 10, SK_ColorRED, true); SkCanvas* canvas; SkPicture childPlain; childPlain.beginRecording(10, 10); childPlain.endRecording(); REPORTER_ASSERT(reporter, !childPlain.willPlayBackBitmaps()); // 0 SkPicture childWithBitmap; childWithBitmap.beginRecording(10, 10)->drawBitmap(bm, 0, 0); childWithBitmap.endRecording(); REPORTER_ASSERT(reporter, childWithBitmap.willPlayBackBitmaps()); // 1 SkPicture parentPP; canvas = parentPP.beginRecording(10, 10); canvas->drawPicture(childPlain); parentPP.endRecording(); REPORTER_ASSERT(reporter, !parentPP.willPlayBackBitmaps()); // 0 SkPicture parentPWB; canvas = parentPWB.beginRecording(10, 10); canvas->drawPicture(childWithBitmap); parentPWB.endRecording(); REPORTER_ASSERT(reporter, parentPWB.willPlayBackBitmaps()); // 1 SkPicture parentWBP; canvas = parentWBP.beginRecording(10, 10); canvas->drawBitmap(bm, 0, 0); canvas->drawPicture(childPlain); parentWBP.endRecording(); REPORTER_ASSERT(reporter, parentWBP.willPlayBackBitmaps()); // 1 SkPicture parentWBWB; canvas = parentWBWB.beginRecording(10, 10); canvas->drawBitmap(bm, 0, 0); canvas->drawPicture(childWithBitmap); parentWBWB.endRecording(); REPORTER_ASSERT(reporter, parentWBWB.willPlayBackBitmaps()); // 2 } static void TestPicture(skiatest::Reporter* reporter) { #ifdef SK_DEBUG test_deleting_empty_playback(); test_serializing_empty_picture(); #else test_bad_bitmap(); #endif test_peephole(); test_gatherpixelrefs(reporter); test_bitmap_with_encoded_data(reporter); test_clone_empty(reporter); test_clip_bound_opt(reporter); test_clip_expansion(reporter); test_hierarchical(reporter); } #include "TestClassDef.h" DEFINE_TESTCLASS("Pictures", PictureTestClass, TestPicture)