/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkCanvas.h" #include "SkPaint.h" #include "SkPath.h" #include "SkParse.h" #include "SkParsePath.h" #include "SkPathEffect.h" #include "SkRandom.h" #include "SkReader32.h" #include "SkSize.h" #include "SkWriter32.h" #include "SkSurface.h" static SkSurface* new_surface(int w, int h) { SkImage::Info info = { w, h, SkImage::kPMColor_ColorType, SkImage::kPremul_AlphaType }; return SkSurface::NewRaster(info, NULL); } // Make sure we stay non-finite once we get there (unless we reset or rewind). static void test_addrect_isfinite(skiatest::Reporter* reporter) { SkPath path; path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, path.isFinite()); path.moveTo(0, 0); path.lineTo(SK_ScalarInfinity, 42); REPORTER_ASSERT(reporter, !path.isFinite()); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, !path.isFinite()); path.reset(); REPORTER_ASSERT(reporter, path.isFinite()); path.addRect(SkRect::MakeWH(50, 100)); REPORTER_ASSERT(reporter, path.isFinite()); } // Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/ // which triggered an assert, from a tricky cubic. This test replicates that // example, so we can ensure that we handle it (in SkEdge.cpp), and don't // assert in the SK_DEBUG build. static void test_tricky_cubic(skiatest::Reporter* reporter) { const SkPoint pts[] = { { SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) }, { SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) }, { SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) }, { SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) }, }; SkPath path; path.moveTo(pts[0]); path.cubicTo(pts[1], pts[2], pts[3]); SkPaint paint; paint.setAntiAlias(true); SkSurface* surface = new_surface(19, 130); surface->getCanvas()->drawPath(path, paint); surface->unref(); } // Inspired by http://code.google.com/p/chromium/issues/detail?id=141651 // static void test_isfinite_after_transform(skiatest::Reporter* reporter) { SkPath path; path.quadTo(157, 366, 286, 208); path.arcTo(37, 442, 315, 163, 957494590897113.0f); SkMatrix matrix; matrix.setScale(1000*1000, 1000*1000); // Be sure that path::transform correctly updates isFinite and the bounds // if the transformation overflows. The previous bug was that isFinite was // set to true in this case, but the bounds were not set to empty (which // they should be). while (path.isFinite()) { REPORTER_ASSERT(reporter, path.getBounds().isFinite()); REPORTER_ASSERT(reporter, !path.getBounds().isEmpty()); path.transform(matrix); } REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); matrix.setTranslate(SK_Scalar1, SK_Scalar1); path.transform(matrix); // we need to still be non-finite REPORTER_ASSERT(reporter, !path.isFinite()); REPORTER_ASSERT(reporter, path.getBounds().isEmpty()); } static void add_corner_arc(SkPath* path, const SkRect& rect, SkScalar xIn, SkScalar yIn, int startAngle) { SkScalar rx = SkMinScalar(rect.width(), xIn); SkScalar ry = SkMinScalar(rect.height(), yIn); SkRect arcRect; arcRect.set(-rx, -ry, rx, ry); switch (startAngle) { case 0: arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom); break; case 90: arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom); break; case 180: arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop); break; case 270: arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop); break; default: break; } path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false); } static void make_arb_round_rect(SkPath* path, const SkRect& r, SkScalar xCorner, SkScalar yCorner) { // we are lazy here and use the same x & y for each corner add_corner_arc(path, r, xCorner, yCorner, 270); add_corner_arc(path, r, xCorner, yCorner, 0); add_corner_arc(path, r, xCorner, yCorner, 90); add_corner_arc(path, r, xCorner, yCorner, 180); path->close(); } // Chrome creates its own round rects with each corner possibly being different. // Performance will suffer if they are not convex. // Note: PathBench::ArbRoundRectBench performs almost exactly // the same test (but with drawing) static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) { SkRandom rand; SkRect r; for (int i = 0; i < 5000; ++i) { SkScalar size = rand.nextUScalar1() * 30; if (size < SK_Scalar1) { continue; } r.fLeft = rand.nextUScalar1() * 300; r.fTop = rand.nextUScalar1() * 300; r.fRight = r.fLeft + 2 * size; r.fBottom = r.fTop + 2 * size; SkPath temp; make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15); #ifdef SK_REDEFINE_ROOT2OVER2_TO_MAKE_ARCTOS_CONVEX REPORTER_ASSERT(reporter, temp.isConvex()); #endif } } // Chrome will sometimes create a 0 radius round rect. The degenerate // quads prevent the path from being converted to a rect // Note: PathBench::ArbRoundRectBench performs almost exactly // the same test (but with drawing) static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) { SkRandom rand; SkRect r; for (int i = 0; i < 5000; ++i) { SkScalar size = rand.nextUScalar1() * 30; if (size < SK_Scalar1) { continue; } r.fLeft = rand.nextUScalar1() * 300; r.fTop = rand.nextUScalar1() * 300; r.fRight = r.fLeft + 2 * size; r.fBottom = r.fTop + 2 * size; SkPath temp; make_arb_round_rect(&temp, r, 0, 0); #ifdef SK_REDEFINE_ROOT2OVER2_TO_MAKE_ARCTOS_CONVEX SkRect result; REPORTER_ASSERT(reporter, temp.isRect(&result)); REPORTER_ASSERT(reporter, r == result); #endif } } static void test_rect_isfinite(skiatest::Reporter* reporter) { const SkScalar inf = SK_ScalarInfinity; const SkScalar nan = SK_ScalarNaN; SkRect r; r.setEmpty(); REPORTER_ASSERT(reporter, r.isFinite()); r.set(0, 0, inf, -inf); REPORTER_ASSERT(reporter, !r.isFinite()); r.set(0, 0, nan, 0); REPORTER_ASSERT(reporter, !r.isFinite()); SkPoint pts[] = { { 0, 0 }, { SK_Scalar1, 0 }, { 0, SK_Scalar1 }, }; bool isFine = r.setBoundsCheck(pts, 3); REPORTER_ASSERT(reporter, isFine); REPORTER_ASSERT(reporter, !r.isEmpty()); pts[1].set(inf, 0); isFine = r.setBoundsCheck(pts, 3); REPORTER_ASSERT(reporter, !isFine); REPORTER_ASSERT(reporter, r.isEmpty()); pts[1].set(nan, 0); isFine = r.setBoundsCheck(pts, 3); REPORTER_ASSERT(reporter, !isFine); REPORTER_ASSERT(reporter, r.isEmpty()); } static void test_path_isfinite(skiatest::Reporter* reporter) { const SkScalar inf = SK_ScalarInfinity; const SkScalar nan = SK_ScalarNaN; SkPath path; REPORTER_ASSERT(reporter, path.isFinite()); path.reset(); REPORTER_ASSERT(reporter, path.isFinite()); path.reset(); path.moveTo(SK_Scalar1, 0); REPORTER_ASSERT(reporter, path.isFinite()); path.reset(); path.moveTo(inf, -inf); REPORTER_ASSERT(reporter, !path.isFinite()); path.reset(); path.moveTo(nan, 0); REPORTER_ASSERT(reporter, !path.isFinite()); } static void test_isfinite(skiatest::Reporter* reporter) { test_rect_isfinite(reporter); test_path_isfinite(reporter); } // assert that we always // start with a moveTo // only have 1 moveTo // only have Lines after that // end with a single close // only have (at most) 1 close // static void test_poly(skiatest::Reporter* reporter, const SkPath& path, const SkPoint srcPts[], int count, bool expectClose) { SkPath::RawIter iter(path); SkPoint pts[4]; bool firstTime = true; bool foundClose = false; for (;;) { switch (iter.next(pts)) { case SkPath::kMove_Verb: REPORTER_ASSERT(reporter, firstTime); REPORTER_ASSERT(reporter, pts[0] == srcPts[0]); srcPts++; firstTime = false; break; case SkPath::kLine_Verb: REPORTER_ASSERT(reporter, !firstTime); REPORTER_ASSERT(reporter, pts[1] == srcPts[0]); srcPts++; break; case SkPath::kQuad_Verb: REPORTER_ASSERT(reporter, !"unexpected quad verb"); break; case SkPath::kCubic_Verb: REPORTER_ASSERT(reporter, !"unexpected cubic verb"); break; case SkPath::kClose_Verb: REPORTER_ASSERT(reporter, !firstTime); REPORTER_ASSERT(reporter, !foundClose); REPORTER_ASSERT(reporter, expectClose); foundClose = true; break; case SkPath::kDone_Verb: goto DONE; } } DONE: REPORTER_ASSERT(reporter, foundClose == expectClose); } static void test_addPoly(skiatest::Reporter* reporter) { SkPoint pts[32]; SkRandom rand; for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) { pts[i].fX = rand.nextSScalar1(); pts[i].fY = rand.nextSScalar1(); } for (int doClose = 0; doClose <= 1; ++doClose) { for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) { SkPath path; path.addPoly(pts, count, SkToBool(doClose)); test_poly(reporter, path, pts, count, SkToBool(doClose)); } } } static void test_strokerec(skiatest::Reporter* reporter) { SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); REPORTER_ASSERT(reporter, rec.isFillStyle()); rec.setHairlineStyle(); REPORTER_ASSERT(reporter, rec.isHairlineStyle()); rec.setStrokeStyle(SK_Scalar1, false); REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle()); rec.setStrokeStyle(SK_Scalar1, true); REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle()); rec.setStrokeStyle(0, false); REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle()); rec.setStrokeStyle(0, true); REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle()); } /** * cheapIsDirection can take a shortcut when a path is marked convex. * This function ensures that we always test cheapIsDirection when the path * is flagged with unknown convexity status. */ static void check_direction(SkPath* path, SkPath::Direction expectedDir, skiatest::Reporter* reporter) { if (SkPath::kConvex_Convexity == path->getConvexity()) { REPORTER_ASSERT(reporter, path->cheapIsDirection(expectedDir)); path->setConvexity(SkPath::kUnknown_Convexity); } REPORTER_ASSERT(reporter, path->cheapIsDirection(expectedDir)); } static void test_direction(skiatest::Reporter* reporter) { size_t i; SkPath path; REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL)); REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCW_Direction)); REPORTER_ASSERT(reporter, !path.cheapIsDirection(SkPath::kCCW_Direction)); static const char* gDegen[] = { "M 10 10", "M 10 10 M 20 20", "M 10 10 L 20 20", "M 10 10 L 10 10 L 10 10", "M 10 10 Q 10 10 10 10", "M 10 10 C 10 10 10 10 10 10", }; for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) { path.reset(); bool valid = SkParsePath::FromSVGString(gDegen[i], &path); REPORTER_ASSERT(reporter, valid); REPORTER_ASSERT(reporter, !path.cheapComputeDirection(NULL)); } static const char* gCW[] = { "M 10 10 L 10 10 Q 20 10 20 20", "M 10 10 C 20 10 20 20 20 20", "M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max // rect with top two corners replaced by cubics with identical middle // control points "M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10" }; for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) { path.reset(); bool valid = SkParsePath::FromSVGString(gCW[i], &path); REPORTER_ASSERT(reporter, valid); check_direction(&path, SkPath::kCW_Direction, reporter); } static const char* gCCW[] = { "M 10 10 L 10 10 Q 20 10 20 -20", "M 10 10 C 20 10 20 -20 20 -20", "M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max // rect with top two corners replaced by cubics with identical middle // control points "M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10" }; for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) { path.reset(); bool valid = SkParsePath::FromSVGString(gCCW[i], &path); REPORTER_ASSERT(reporter, valid); check_direction(&path, SkPath::kCCW_Direction, reporter); } // Test two donuts, each wound a different direction. Only the outer contour // determines the cheap direction path.reset(); path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCW_Direction); path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCCW_Direction); check_direction(&path, SkPath::kCW_Direction, reporter); path.reset(); path.addCircle(0, 0, SkIntToScalar(1), SkPath::kCW_Direction); path.addCircle(0, 0, SkIntToScalar(2), SkPath::kCCW_Direction); check_direction(&path, SkPath::kCCW_Direction, reporter); #ifdef SK_SCALAR_IS_FLOAT // triangle with one point really far from the origin. path.reset(); // the first point is roughly 1.05e10, 1.05e10 path.moveTo(SkFloatToScalar(SkBits2Float(0x501c7652)), SkFloatToScalar(SkBits2Float(0x501c7652))); path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1); path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1); check_direction(&path, SkPath::kCCW_Direction, reporter); #endif } static void add_rect(SkPath* path, const SkRect& r) { path->moveTo(r.fLeft, r.fTop); path->lineTo(r.fRight, r.fTop); path->lineTo(r.fRight, r.fBottom); path->lineTo(r.fLeft, r.fBottom); path->close(); } static void test_bounds(skiatest::Reporter* reporter) { static const SkRect rects[] = { { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) }, { SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) }, { SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) }, { SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) }, }; SkPath path0, path1; for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) { path0.addRect(rects[i]); add_rect(&path1, rects[i]); } REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds()); } static void stroke_cubic(const SkPoint pts[4]) { SkPath path; path.moveTo(pts[0]); path.cubicTo(pts[1], pts[2], pts[3]); SkPaint paint; paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(SK_Scalar1 * 2); SkPath fill; paint.getFillPath(path, &fill); } // just ensure this can run w/o any SkASSERTS firing in the debug build // we used to assert due to differences in how we determine a degenerate vector // but that was fixed with the introduction of SkPoint::CanNormalize static void stroke_tiny_cubic() { SkPoint p0[] = { { 372.0f, 92.0f }, { 372.0f, 92.0f }, { 372.0f, 92.0f }, { 372.0f, 92.0f }, }; stroke_cubic(p0); SkPoint p1[] = { { 372.0f, 92.0f }, { 372.0007f, 92.000755f }, { 371.99927f, 92.003922f }, { 371.99826f, 92.003899f }, }; stroke_cubic(p1); } static void check_close(skiatest::Reporter* reporter, const SkPath& path) { for (int i = 0; i < 2; ++i) { SkPath::Iter iter(path, SkToBool(i)); SkPoint mv; SkPoint pts[4]; SkPath::Verb v; int nMT = 0; int nCL = 0; mv.set(0, 0); while (SkPath::kDone_Verb != (v = iter.next(pts))) { switch (v) { case SkPath::kMove_Verb: mv = pts[0]; ++nMT; break; case SkPath::kClose_Verb: REPORTER_ASSERT(reporter, mv == pts[0]); ++nCL; break; default: break; } } // if we force a close on the interator we should have a close // for every moveTo REPORTER_ASSERT(reporter, !i || nMT == nCL); } } static void test_close(skiatest::Reporter* reporter) { SkPath closePt; closePt.moveTo(0, 0); closePt.close(); check_close(reporter, closePt); SkPath openPt; openPt.moveTo(0, 0); check_close(reporter, openPt); SkPath empty; check_close(reporter, empty); empty.close(); check_close(reporter, empty); SkPath rect; rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, rect); rect.close(); check_close(reporter, rect); SkPath quad; quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, quad); quad.close(); check_close(reporter, quad); SkPath cubic; quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1); check_close(reporter, cubic); cubic.close(); check_close(reporter, cubic); SkPath line; line.moveTo(SK_Scalar1, SK_Scalar1); line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, line); line.close(); check_close(reporter, line); SkPath rect2; rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); rect2.close(); rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, rect2); rect2.close(); check_close(reporter, rect2); SkPath oval3; oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100)); oval3.close(); oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200)); check_close(reporter, oval3); oval3.close(); check_close(reporter, oval3); SkPath moves; moves.moveTo(SK_Scalar1, SK_Scalar1); moves.moveTo(5 * SK_Scalar1, SK_Scalar1); moves.moveTo(SK_Scalar1, 10 * SK_Scalar1); moves.moveTo(10 *SK_Scalar1, SK_Scalar1); check_close(reporter, moves); stroke_tiny_cubic(); } static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, SkPath::Convexity expected) { SkPath::Convexity c = SkPath::ComputeConvexity(path); REPORTER_ASSERT(reporter, c == expected); } static void test_convexity2(skiatest::Reporter* reporter) { SkPath pt; pt.moveTo(0, 0); pt.close(); check_convexity(reporter, pt, SkPath::kConvex_Convexity); SkPath line; line.moveTo(12*SK_Scalar1, 20*SK_Scalar1); line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1); line.close(); check_convexity(reporter, pt, SkPath::kConvex_Convexity); SkPath triLeft; triLeft.moveTo(0, 0); triLeft.lineTo(SK_Scalar1, 0); triLeft.lineTo(SK_Scalar1, SK_Scalar1); triLeft.close(); check_convexity(reporter, triLeft, SkPath::kConvex_Convexity); SkPath triRight; triRight.moveTo(0, 0); triRight.lineTo(-SK_Scalar1, 0); triRight.lineTo(SK_Scalar1, SK_Scalar1); triRight.close(); check_convexity(reporter, triRight, SkPath::kConvex_Convexity); SkPath square; square.moveTo(0, 0); square.lineTo(SK_Scalar1, 0); square.lineTo(SK_Scalar1, SK_Scalar1); square.lineTo(0, SK_Scalar1); square.close(); check_convexity(reporter, square, SkPath::kConvex_Convexity); SkPath redundantSquare; redundantSquare.moveTo(0, 0); redundantSquare.lineTo(0, 0); redundantSquare.lineTo(0, 0); redundantSquare.lineTo(SK_Scalar1, 0); redundantSquare.lineTo(SK_Scalar1, 0); redundantSquare.lineTo(SK_Scalar1, 0); redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); redundantSquare.lineTo(SK_Scalar1, SK_Scalar1); redundantSquare.lineTo(0, SK_Scalar1); redundantSquare.lineTo(0, SK_Scalar1); redundantSquare.lineTo(0, SK_Scalar1); redundantSquare.close(); check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity); SkPath bowTie; bowTie.moveTo(0, 0); bowTie.lineTo(0, 0); bowTie.lineTo(0, 0); bowTie.lineTo(SK_Scalar1, SK_Scalar1); bowTie.lineTo(SK_Scalar1, SK_Scalar1); bowTie.lineTo(SK_Scalar1, SK_Scalar1); bowTie.lineTo(SK_Scalar1, 0); bowTie.lineTo(SK_Scalar1, 0); bowTie.lineTo(SK_Scalar1, 0); bowTie.lineTo(0, SK_Scalar1); bowTie.lineTo(0, SK_Scalar1); bowTie.lineTo(0, SK_Scalar1); bowTie.close(); check_convexity(reporter, bowTie, SkPath::kConcave_Convexity); SkPath spiral; spiral.moveTo(0, 0); spiral.lineTo(100*SK_Scalar1, 0); spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1); spiral.lineTo(0, 100*SK_Scalar1); spiral.lineTo(0, 50*SK_Scalar1); spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1); spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1); spiral.close(); check_convexity(reporter, spiral, SkPath::kConcave_Convexity); SkPath dent; dent.moveTo(0, 0); dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1); dent.lineTo(0, 100*SK_Scalar1); dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1); dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1); dent.close(); check_convexity(reporter, dent, SkPath::kConcave_Convexity); } static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, const SkRect& bounds) { REPORTER_ASSERT(reporter, p.isConvex()); REPORTER_ASSERT(reporter, p.getBounds() == bounds); SkPath p2(p); REPORTER_ASSERT(reporter, p2.isConvex()); REPORTER_ASSERT(reporter, p2.getBounds() == bounds); SkPath other; other.swap(p2); REPORTER_ASSERT(reporter, other.isConvex()); REPORTER_ASSERT(reporter, other.getBounds() == bounds); } static void setFromString(SkPath* path, const char str[]) { bool first = true; while (str) { SkScalar x, y; str = SkParse::FindScalar(str, &x); if (NULL == str) { break; } str = SkParse::FindScalar(str, &y); SkASSERT(str); if (first) { path->moveTo(x, y); first = false; } else { path->lineTo(x, y); } } } static void test_convexity(skiatest::Reporter* reporter) { static const SkPath::Convexity C = SkPath::kConcave_Convexity; static const SkPath::Convexity V = SkPath::kConvex_Convexity; SkPath path; REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); path.addCircle(0, 0, SkIntToScalar(10)); REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle REPORTER_ASSERT(reporter, C == SkPath::ComputeConvexity(path)); path.reset(); path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCCW_Direction); REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCCW_Direction)); path.reset(); path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPath::kCW_Direction); REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); REPORTER_ASSERT(reporter, path.cheapIsDirection(SkPath::kCW_Direction)); static const struct { const char* fPathStr; SkPath::Convexity fExpectedConvexity; } gRec[] = { { "", SkPath::kConvex_Convexity }, { "0 0", SkPath::kConvex_Convexity }, { "0 0 10 10", SkPath::kConvex_Convexity }, { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity }, { "0 0 10 10 10 20", SkPath::kConvex_Convexity }, { "0 0 10 10 10 0", SkPath::kConvex_Convexity }, { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity }, { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity }, }; for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { SkPath path; setFromString(&path, gRec[i].fPathStr); SkPath::Convexity c = SkPath::ComputeConvexity(path); REPORTER_ASSERT(reporter, c == gRec[i].fExpectedConvexity); } } static void test_isLine(skiatest::Reporter* reporter) { SkPath path; SkPoint pts[2]; const SkScalar value = SkIntToScalar(5); REPORTER_ASSERT(reporter, !path.isLine(NULL)); // set some non-zero values pts[0].set(value, value); pts[1].set(value, value); REPORTER_ASSERT(reporter, !path.isLine(pts)); // check that pts was untouched REPORTER_ASSERT(reporter, pts[0].equals(value, value)); REPORTER_ASSERT(reporter, pts[1].equals(value, value)); const SkScalar moveX = SkIntToScalar(1); const SkScalar moveY = SkIntToScalar(2); SkASSERT(value != moveX && value != moveY); path.moveTo(moveX, moveY); REPORTER_ASSERT(reporter, !path.isLine(NULL)); REPORTER_ASSERT(reporter, !path.isLine(pts)); // check that pts was untouched REPORTER_ASSERT(reporter, pts[0].equals(value, value)); REPORTER_ASSERT(reporter, pts[1].equals(value, value)); const SkScalar lineX = SkIntToScalar(2); const SkScalar lineY = SkIntToScalar(2); SkASSERT(value != lineX && value != lineY); path.lineTo(lineX, lineY); REPORTER_ASSERT(reporter, path.isLine(NULL)); REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY)); REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY)); REPORTER_ASSERT(reporter, path.isLine(pts)); REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); path.lineTo(0, 0); // too many points/verbs REPORTER_ASSERT(reporter, !path.isLine(NULL)); REPORTER_ASSERT(reporter, !path.isLine(pts)); REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY)); REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY)); } // Simple isRect test is inline TestPath, below. // test_isRect provides more extensive testing. static void test_isRect(skiatest::Reporter* reporter) { // passing tests (all moveTo / lineTo... SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // failing tests SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' // failing, no close SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto size_t testLen[] = { sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6), sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc), sizeof(rd), sizeof(re), sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6), sizeof(f7), sizeof(f8), sizeof(c1), sizeof(c2) }; SkPoint* tests[] = { r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, f1, f2, f3, f4, f5, f6, f7, f8, c1, c2 }; SkPoint* lastPass = re; SkPoint* lastClose = f8; bool fail = false; bool close = true; const size_t testCount = sizeof(tests) / sizeof(tests[0]); size_t index; for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { SkPath path; path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY); for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) { path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY); } if (close) { path.close(); } REPORTER_ASSERT(reporter, fail ^ path.isRect(0)); if (tests[testIndex] == lastPass) { fail = true; } if (tests[testIndex] == lastClose) { close = false; } } // fail, close then line SkPath path1; path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); path1.lineTo(1, 0); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); // fail, move in the middle path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { if (index == 2) { path1.moveTo(1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); // fail, move on the edge path1.reset(); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); // fail, quad path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { if (index == 2) { path1.quadTo(1, .5f, 1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); // fail, cubic path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { if (index == 2) { path1.cubicTo(1, .5f, 1, .5f, 1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); } static void write_and_read_back(skiatest::Reporter* reporter, const SkPath& p) { SkWriter32 writer(100); writer.writePath(p); size_t size = writer.size(); SkAutoMalloc storage(size); writer.flatten(storage.get()); SkReader32 reader(storage.get(), size); SkPath readBack; REPORTER_ASSERT(reporter, readBack != p); reader.readPath(&readBack); REPORTER_ASSERT(reporter, readBack == p); REPORTER_ASSERT(reporter, readBack.getConvexityOrUnknown() == p.getConvexityOrUnknown()); REPORTER_ASSERT(reporter, readBack.isOval(NULL) == p.isOval(NULL)); const SkRect& origBounds = p.getBounds(); const SkRect& readBackBounds = readBack.getBounds(); REPORTER_ASSERT(reporter, origBounds == readBackBounds); } static void test_flattening(skiatest::Reporter* reporter) { SkPath p; static const SkPoint pts[] = { { 0, 0 }, { SkIntToScalar(10), SkIntToScalar(10) }, { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } }; p.moveTo(pts[0]); p.lineTo(pts[1]); p.quadTo(pts[2], pts[3]); p.cubicTo(pts[4], pts[5], pts[6]); write_and_read_back(reporter, p); // create a buffer that should be much larger than the path so we don't // kill our stack if writer goes too far. char buffer[1024]; uint32_t size1 = p.writeToMemory(NULL); uint32_t size2 = p.writeToMemory(buffer); REPORTER_ASSERT(reporter, size1 == size2); SkPath p2; uint32_t size3 = p2.readFromMemory(buffer); REPORTER_ASSERT(reporter, size1 == size3); REPORTER_ASSERT(reporter, p == p2); char buffer2[1024]; size3 = p2.writeToMemory(buffer2); REPORTER_ASSERT(reporter, size1 == size3); REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0); // test persistence of the oval flag & convexity { SkPath oval; SkRect rect = SkRect::MakeWH(10, 10); oval.addOval(rect); write_and_read_back(reporter, oval); } } static void test_transform(skiatest::Reporter* reporter) { SkPath p, p1; static const SkPoint pts[] = { { 0, 0 }, { SkIntToScalar(10), SkIntToScalar(10) }, { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } }; p.moveTo(pts[0]); p.lineTo(pts[1]); p.quadTo(pts[2], pts[3]); p.cubicTo(pts[4], pts[5], pts[6]); SkMatrix matrix; matrix.reset(); p.transform(matrix, &p1); REPORTER_ASSERT(reporter, p == p1); matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3); p.transform(matrix, &p1); SkPoint pts1[7]; int count = p1.getPoints(pts1, 7); REPORTER_ASSERT(reporter, 7 == count); for (int i = 0; i < count; ++i) { SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3); REPORTER_ASSERT(reporter, newPt == pts1[i]); } } static void test_zero_length_paths(skiatest::Reporter* reporter) { SkPath p; uint8_t verbs[32]; struct zeroPathTestData { const char* testPath; const size_t numResultPts; const SkRect resultBound; const SkPath::Verb* resultVerbs; const size_t numResultVerbs; }; static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb }; static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb }; static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb }; static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb }; static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs8[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb }; static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb }; static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs12[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb }; static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb }; static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; static const SkPath::Verb resultVerbs16[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb }; static const struct zeroPathTestData gZeroLengthTests[] = { { "M 1 1", 1, {0, 0, 0, 0}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, { "M 1 1 z", 1, {0, 0, 0, 0}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, { "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, { "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) }, { "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) }, { "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) }, { "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) }, { "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) }, { "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) }, { "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) }, { "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) }, { "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) }, { "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14, SK_ARRAY_COUNT(resultVerbs14) }, { "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) }, { "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16, SK_ARRAY_COUNT(resultVerbs16) } }; for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) { p.reset(); bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p); REPORTER_ASSERT(reporter, valid); REPORTER_ASSERT(reporter, !p.isEmpty()); REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints()); REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds()); REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs))); for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) { REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]); } } } struct SegmentInfo { SkPath fPath; int fPointCount; }; #define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask) static void test_segment_masks(skiatest::Reporter* reporter) { SkPath p, p2; p.moveTo(0, 0); p.quadTo(100, 100, 200, 200); REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks()); REPORTER_ASSERT(reporter, !p.isEmpty()); p2 = p; REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); p.cubicTo(100, 100, 200, 200, 300, 300); REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks()); REPORTER_ASSERT(reporter, !p.isEmpty()); p2 = p; REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); p.reset(); p.moveTo(0, 0); p.cubicTo(100, 100, 200, 200, 300, 300); REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks()); p2 = p; REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks()); REPORTER_ASSERT(reporter, !p.isEmpty()); } static void test_iter(skiatest::Reporter* reporter) { SkPath p; SkPoint pts[4]; // Test an iterator with no path SkPath::Iter noPathIter; REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); // Test that setting an empty path works noPathIter.setPath(p, false); REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); // Test that close path makes no difference for an empty path noPathIter.setPath(p, true); REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); // Test an iterator with an initial empty path SkPath::Iter iter(p, false); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); // Test that close path makes no difference iter.setPath(p, true); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); struct iterTestData { const char* testPath; const bool forceClose; const bool consumeDegenerates; const size_t* numResultPtsPerVerb; const SkPoint* resultPts; const SkPath::Verb* resultVerbs; const size_t numResultVerbs; }; static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb }; static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kDone_Verb }; static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb }; static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb }; static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb }; static const size_t resultPtsSizes1[] = { 0 }; static const size_t resultPtsSizes2[] = { 1, 2, 2, 0 }; static const size_t resultPtsSizes3[] = { 1, 2, 2, 2, 1, 0 }; static const size_t resultPtsSizes4[] = { 1, 2, 1, 1, 0 }; static const size_t resultPtsSizes5[] = { 1, 2, 1, 1, 1, 0 }; static const SkPoint* resultPts1 = 0; static const SkPoint resultPts2[] = { { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 } }; static const SkPoint resultPts3[] = { { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, SK_Scalar1 }, { SK_Scalar1, SK_Scalar1 }, { 0, SK_Scalar1 }, { 0, SK_Scalar1 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 } }; static const SkPoint resultPts4[] = { { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } }; static const SkPoint resultPts5[] = { { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 } }; static const struct iterTestData gIterTests[] = { { "M 1 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "M 1 0 M 2 0 M 3 0 M 4 0 M 5 0", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "M 1 0 M 1 0 M 3 0 M 4 0 M 5 0", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "z M 1 0 z z M 2 0 z M 3 0 M 4 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "M 1 0 L 1 1 L 0 1 M 0 0 z", false, true, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) }, { "M 1 0 L 1 1 L 0 1 M 0 0 z", true, true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }, { "M 1 0 L 1 0 M 0 0 z", false, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "M 1 0 L 1 0 M 0 0 z", true, true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) }, { "M 1 0 L 1 0 M 0 0 z", false, false, resultPtsSizes4, resultPts4, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) }, { "M 1 0 L 1 0 M 0 0 z", true, false, resultPtsSizes5, resultPts5, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) } }; for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) { p.reset(); bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p); REPORTER_ASSERT(reporter, valid); iter.setPath(p, gIterTests[i].forceClose); int j = 0, l = 0; do { REPORTER_ASSERT(reporter, iter.next(pts, gIterTests[i].consumeDegenerates) == gIterTests[i].resultVerbs[j]); for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) { REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]); } } while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb); REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs); } // The GM degeneratesegments.cpp test is more extensive } static void test_raw_iter(skiatest::Reporter* reporter) { SkPath p; SkPoint pts[4]; // Test an iterator with no path SkPath::RawIter noPathIter; REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); // Test that setting an empty path works noPathIter.setPath(p); REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb); // Test an iterator with an initial empty path SkPath::RawIter iter(p); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); // Test that a move-only path returns the move. p.moveTo(SK_Scalar1, 0); iter.setPath(p); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); REPORTER_ASSERT(reporter, pts[0].fY == 0); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); // No matter how many moves we add, we should get them all back p.moveTo(SK_Scalar1*2, SK_Scalar1); p.moveTo(SK_Scalar1*3, SK_Scalar1*2); iter.setPath(p); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); REPORTER_ASSERT(reporter, pts[0].fY == 0); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); // Initial close is never ever stored p.reset(); p.close(); iter.setPath(p); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); // Move/close sequences p.reset(); p.close(); // Not stored, no purpose p.moveTo(SK_Scalar1, 0); p.close(); p.close(); // Not stored, no purpose p.moveTo(SK_Scalar1*2, SK_Scalar1); p.close(); p.moveTo(SK_Scalar1*3, SK_Scalar1*2); p.moveTo(SK_Scalar1*4, SK_Scalar1*3); p.close(); iter.setPath(p); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); REPORTER_ASSERT(reporter, pts[0].fY == 0); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1); REPORTER_ASSERT(reporter, pts[0].fY == 0); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb); REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4); REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3); REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb); // Generate random paths and verify SkPoint randomPts[25]; for (int i = 0; i < 5; ++i) { for (int j = 0; j < 5; ++j) { randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j); } } // Max of 10 segments, max 3 points per segment SkRandom rand(9876543); SkPoint expectedPts[31]; // May have leading moveTo SkPath::Verb expectedVerbs[22]; // May have leading moveTo SkPath::Verb nextVerb; for (int i = 0; i < 500; ++i) { p.reset(); bool lastWasClose = true; bool haveMoveTo = false; SkPoint lastMoveToPt = { 0, 0 }; int numPoints = 0; int numVerbs = (rand.nextU() >> 16) % 10; int numIterVerbs = 0; for (int j = 0; j < numVerbs; ++j) { do { nextVerb = static_cast((rand.nextU() >> 16) % SkPath::kDone_Verb); } while (lastWasClose && nextVerb == SkPath::kClose_Verb); switch (nextVerb) { case SkPath::kMove_Verb: expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; p.moveTo(expectedPts[numPoints]); lastMoveToPt = expectedPts[numPoints]; numPoints += 1; lastWasClose = false; haveMoveTo = true; break; case SkPath::kLine_Verb: if (!haveMoveTo) { expectedPts[numPoints++] = lastMoveToPt; expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; haveMoveTo = true; } expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; p.lineTo(expectedPts[numPoints]); numPoints += 1; lastWasClose = false; break; case SkPath::kQuad_Verb: if (!haveMoveTo) { expectedPts[numPoints++] = lastMoveToPt; expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; haveMoveTo = true; } expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]); numPoints += 2; lastWasClose = false; break; case SkPath::kCubic_Verb: if (!haveMoveTo) { expectedPts[numPoints++] = lastMoveToPt; expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb; haveMoveTo = true; } expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25]; expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25]; expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25]; p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1], expectedPts[numPoints + 2]); numPoints += 3; lastWasClose = false; break; case SkPath::kClose_Verb: p.close(); haveMoveTo = false; lastWasClose = true; break; default:; } expectedVerbs[numIterVerbs++] = nextVerb; } iter.setPath(p); numVerbs = numIterVerbs; numIterVerbs = 0; int numIterPts = 0; SkPoint lastMoveTo; SkPoint lastPt; lastMoveTo.set(0, 0); lastPt.set(0, 0); while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) { REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]); numIterVerbs++; switch (nextVerb) { case SkPath::kMove_Verb: REPORTER_ASSERT(reporter, numIterPts < numPoints); REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]); lastPt = lastMoveTo = pts[0]; numIterPts += 1; break; case SkPath::kLine_Verb: REPORTER_ASSERT(reporter, numIterPts < numPoints + 1); REPORTER_ASSERT(reporter, pts[0] == lastPt); REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); lastPt = pts[1]; numIterPts += 1; break; case SkPath::kQuad_Verb: REPORTER_ASSERT(reporter, numIterPts < numPoints + 2); REPORTER_ASSERT(reporter, pts[0] == lastPt); REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); lastPt = pts[2]; numIterPts += 2; break; case SkPath::kCubic_Verb: REPORTER_ASSERT(reporter, numIterPts < numPoints + 3); REPORTER_ASSERT(reporter, pts[0] == lastPt); REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]); REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]); REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]); lastPt = pts[3]; numIterPts += 3; break; case SkPath::kClose_Verb: REPORTER_ASSERT(reporter, pts[0] == lastMoveTo); lastPt = lastMoveTo; break; default:; } } REPORTER_ASSERT(reporter, numIterPts == numPoints); REPORTER_ASSERT(reporter, numIterVerbs == numVerbs); } } static void check_for_circle(skiatest::Reporter* reporter, const SkPath& path, bool expected) { SkRect rect; REPORTER_ASSERT(reporter, path.isOval(&rect) == expected); if (expected) { REPORTER_ASSERT(reporter, rect.height() == rect.width()); } } static void test_circle_skew(skiatest::Reporter* reporter, const SkPath& path) { SkPath tmp; SkMatrix m; m.setSkew(SkIntToScalar(3), SkIntToScalar(5)); path.transform(m, &tmp); check_for_circle(reporter, tmp, false); } static void test_circle_translate(skiatest::Reporter* reporter, const SkPath& path) { SkPath tmp; // translate at small offset SkMatrix m; m.setTranslate(SkIntToScalar(15), SkIntToScalar(15)); path.transform(m, &tmp); check_for_circle(reporter, tmp, true); tmp.reset(); m.reset(); // translate at a relatively big offset m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000)); path.transform(m, &tmp); check_for_circle(reporter, tmp, true); } static void test_circle_rotate(skiatest::Reporter* reporter, const SkPath& path) { for (int angle = 0; angle < 360; ++angle) { SkPath tmp; SkMatrix m; m.setRotate(SkIntToScalar(angle)); path.transform(m, &tmp); // TODO: a rotated circle whose rotated angle is not a mutiple of 90 // degrees is not an oval anymore, this can be improved. we made this // for the simplicity of our implementation. if (angle % 90 == 0) { check_for_circle(reporter, tmp, true); } else { check_for_circle(reporter, tmp, false); } } } static void test_circle_with_direction(skiatest::Reporter* reporter, SkPath::Direction dir) { SkPath path; // circle at origin path.addCircle(0, 0, SkIntToScalar(20), dir); check_for_circle(reporter, path, true); test_circle_rotate(reporter, path); test_circle_translate(reporter, path); test_circle_skew(reporter, path); // circle at an offset at (10, 10) path.reset(); path.addCircle(SkIntToScalar(10), SkIntToScalar(10), SkIntToScalar(20), dir); check_for_circle(reporter, path, true); test_circle_rotate(reporter, path); test_circle_translate(reporter, path); test_circle_skew(reporter, path); } static void test_circle_with_add_paths(skiatest::Reporter* reporter) { SkPath path; SkPath circle; SkPath rect; SkPath empty; circle.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); rect.addRect(SkIntToScalar(5), SkIntToScalar(5), SkIntToScalar(20), SkIntToScalar(20), SkPath::kCW_Direction); SkMatrix translate; translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12)); // For simplicity, all the path concatenation related operations // would mark it non-circle, though in theory it's still a circle. // empty + circle (translate) path = empty; path.addPath(circle, translate); check_for_circle(reporter, path, false); // circle + empty (translate) path = circle; path.addPath(empty, translate); check_for_circle(reporter, path, false); // test reverseAddPath path = circle; path.reverseAddPath(rect); check_for_circle(reporter, path, false); } static void test_circle(skiatest::Reporter* reporter) { test_circle_with_direction(reporter, SkPath::kCW_Direction); test_circle_with_direction(reporter, SkPath::kCCW_Direction); // multiple addCircle() SkPath path; path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); path.addCircle(0, 0, SkIntToScalar(20), SkPath::kCW_Direction); check_for_circle(reporter, path, false); // some extra lineTo() would make isOval() fail path.reset(); path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); path.lineTo(0, 0); check_for_circle(reporter, path, false); // not back to the original point path.reset(); path.addCircle(0, 0, SkIntToScalar(10), SkPath::kCW_Direction); path.setLastPt(SkIntToScalar(5), SkIntToScalar(5)); check_for_circle(reporter, path, false); test_circle_with_add_paths(reporter); } static void test_oval(skiatest::Reporter* reporter) { SkRect rect; SkMatrix m; SkPath path; rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50)); path.addOval(rect); REPORTER_ASSERT(reporter, path.isOval(NULL)); m.setRotate(SkIntToScalar(90)); SkPath tmp; path.transform(m, &tmp); // an oval rotated 90 degrees is still an oval. REPORTER_ASSERT(reporter, tmp.isOval(NULL)); m.reset(); m.setRotate(SkIntToScalar(30)); tmp.reset(); path.transform(m, &tmp); // an oval rotated 30 degrees is not an oval anymore. REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); // since empty path being transformed. path.reset(); tmp.reset(); m.reset(); path.transform(m, &tmp); REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); // empty path is not an oval tmp.reset(); REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); // only has moveTo()s tmp.reset(); tmp.moveTo(0, 0); tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10)); REPORTER_ASSERT(reporter, !tmp.isOval(NULL)); // mimic WebKit's calling convention, // call moveTo() first and then call addOval() path.reset(); path.moveTo(0, 0); path.addOval(rect); REPORTER_ASSERT(reporter, path.isOval(NULL)); // copy path path.reset(); tmp.reset(); tmp.addOval(rect); path = tmp; REPORTER_ASSERT(reporter, path.isOval(NULL)); } static void TestPath(skiatest::Reporter* reporter) { SkTSize::Make(3,4); SkPath p, p2; SkRect bounds, bounds2; REPORTER_ASSERT(reporter, p.isEmpty()); REPORTER_ASSERT(reporter, 0 == p.countPoints()); REPORTER_ASSERT(reporter, 0 == p.countVerbs()); REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); REPORTER_ASSERT(reporter, p.isConvex()); REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType); REPORTER_ASSERT(reporter, !p.isInverseFillType()); REPORTER_ASSERT(reporter, p == p2); REPORTER_ASSERT(reporter, !(p != p2)); REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); bounds.set(0, 0, SK_Scalar1, SK_Scalar1); p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); check_convex_bounds(reporter, p, bounds); // we have quads or cubics REPORTER_ASSERT(reporter, p.getSegmentMasks() & kCurveSegmentMask); REPORTER_ASSERT(reporter, !p.isEmpty()); p.reset(); REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); REPORTER_ASSERT(reporter, p.isEmpty()); p.addOval(bounds); check_convex_bounds(reporter, p, bounds); REPORTER_ASSERT(reporter, !p.isEmpty()); p.reset(); p.addRect(bounds); check_convex_bounds(reporter, p, bounds); // we have only lines REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks()); REPORTER_ASSERT(reporter, !p.isEmpty()); REPORTER_ASSERT(reporter, p != p2); REPORTER_ASSERT(reporter, !(p == p2)); // do getPoints and getVerbs return the right result REPORTER_ASSERT(reporter, p.getPoints(NULL, 0) == 4); REPORTER_ASSERT(reporter, p.getVerbs(NULL, 0) == 5); SkPoint pts[4]; int count = p.getPoints(pts, 4); REPORTER_ASSERT(reporter, count == 4); uint8_t verbs[6]; verbs[5] = 0xff; p.getVerbs(verbs, 5); REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]); REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]); REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]); REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]); REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]); REPORTER_ASSERT(reporter, 0xff == verbs[5]); bounds2.set(pts, 4); REPORTER_ASSERT(reporter, bounds == bounds2); bounds.offset(SK_Scalar1*3, SK_Scalar1*4); p.offset(SK_Scalar1*3, SK_Scalar1*4); REPORTER_ASSERT(reporter, bounds == p.getBounds()); REPORTER_ASSERT(reporter, p.isRect(NULL)); bounds2.setEmpty(); REPORTER_ASSERT(reporter, p.isRect(&bounds2)); REPORTER_ASSERT(reporter, bounds == bounds2); // now force p to not be a rect bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2); p.addRect(bounds); REPORTER_ASSERT(reporter, !p.isRect(NULL)); test_isLine(reporter); test_isRect(reporter); test_zero_length_paths(reporter); test_direction(reporter); test_convexity(reporter); test_convexity2(reporter); test_close(reporter); test_segment_masks(reporter); test_flattening(reporter); test_transform(reporter); test_bounds(reporter); test_iter(reporter); test_raw_iter(reporter); test_circle(reporter); test_oval(reporter); test_strokerec(reporter); test_addPoly(reporter); test_isfinite(reporter); test_isfinite_after_transform(reporter); test_tricky_cubic(reporter); test_arb_round_rect_is_convex(reporter); test_arb_zero_rad_round_rect_is_rect(reporter); test_addrect_isfinite(reporter); } #include "TestClassDef.h" DEFINE_TESTCLASS("Path", PathTestClass, TestPath)