/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkPaint.h" #include "SkPath.h" #include "SkParse.h" #include "SkReader32.h" #include "SkSize.h" #include "SkWriter32.h" static void stroke_cubic(const SkPoint pts[4]) { SkPath path; path.moveTo(pts[0]); path.cubicTo(pts[1], pts[2], pts[3]); SkPaint paint; paint.setStyle(SkPaint::kStroke_Style); paint.setStrokeWidth(SK_Scalar1 * 2); SkPath fill; paint.getFillPath(path, &fill); } // just ensure this can run w/o any SkASSERTS firing in the debug build // we used to assert due to differences in how we determine a degenerate vector // but that was fixed with the introduction of SkPoint::CanNormalize static void stroke_tiny_cubic() { SkPoint p0[] = { { 372.0f, 92.0f }, { 372.0f, 92.0f }, { 372.0f, 92.0f }, { 372.0f, 92.0f }, }; stroke_cubic(p0); SkPoint p1[] = { { 372.0f, 92.0f }, { 372.0007f, 92.000755f }, { 371.99927f, 92.003922f }, { 371.99826f, 92.003899f }, }; stroke_cubic(p1); } static void check_close(skiatest::Reporter* reporter, const SkPath& path) { for (int i = 0; i < 2; ++i) { SkPath::Iter iter(path, (bool)i); SkPoint mv; SkPoint pts[4]; SkPath::Verb v; int nMT = 0; int nCL = 0; mv.set(0, 0); while (SkPath::kDone_Verb != (v = iter.next(pts))) { switch (v) { case SkPath::kMove_Verb: mv = pts[0]; ++nMT; break; case SkPath::kClose_Verb: REPORTER_ASSERT(reporter, mv == pts[0]); ++nCL; break; default: break; } } // if we force a close on the interator we should have a close // for every moveTo REPORTER_ASSERT(reporter, !i || nMT == nCL); } } static void test_close(skiatest::Reporter* reporter) { SkPath closePt; closePt.moveTo(0, 0); closePt.close(); check_close(reporter, closePt); SkPath openPt; openPt.moveTo(0, 0); check_close(reporter, openPt); SkPath empty; check_close(reporter, empty); empty.close(); check_close(reporter, empty); SkPath rect; rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, rect); rect.close(); check_close(reporter, rect); SkPath quad; quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, quad); quad.close(); check_close(reporter, quad); SkPath cubic; quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1); check_close(reporter, cubic); cubic.close(); check_close(reporter, cubic); SkPath line; line.moveTo(SK_Scalar1, SK_Scalar1); line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, line); line.close(); check_close(reporter, line); SkPath rect2; rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); rect2.close(); rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1); check_close(reporter, rect2); rect2.close(); check_close(reporter, rect2); SkPath oval3; oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100)); oval3.close(); oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200)); check_close(reporter, oval3); oval3.close(); check_close(reporter, oval3); SkPath moves; moves.moveTo(SK_Scalar1, SK_Scalar1); moves.moveTo(5 * SK_Scalar1, SK_Scalar1); moves.moveTo(SK_Scalar1, 10 * SK_Scalar1); moves.moveTo(10 *SK_Scalar1, SK_Scalar1); check_close(reporter, moves); stroke_tiny_cubic(); } static void check_convexity(skiatest::Reporter* reporter, const SkPath& path, SkPath::Convexity expected) { SkPath::Convexity c = SkPath::ComputeConvexity(path); REPORTER_ASSERT(reporter, c == expected); } static void test_convexity2(skiatest::Reporter* reporter) { SkPath pt; pt.moveTo(0, 0); pt.close(); check_convexity(reporter, pt, SkPath::kConvex_Convexity); SkPath line; line.moveTo(12, 20); line.lineTo(-12, -20); line.close(); check_convexity(reporter, pt, SkPath::kConvex_Convexity); SkPath triLeft; triLeft.moveTo(0, 0); triLeft.lineTo(1, 0); triLeft.lineTo(1, 1); triLeft.close(); check_convexity(reporter, triLeft, SkPath::kConvex_Convexity); SkPath triRight; triRight.moveTo(0, 0); triRight.lineTo(-1, 0); triRight.lineTo(1, 1); triRight.close(); check_convexity(reporter, triRight, SkPath::kConvex_Convexity); SkPath square; square.moveTo(0, 0); square.lineTo(1, 0); square.lineTo(1, 1); square.lineTo(0, 1); square.close(); check_convexity(reporter, square, SkPath::kConvex_Convexity); SkPath redundantSquare; redundantSquare.moveTo(0, 0); redundantSquare.lineTo(0, 0); redundantSquare.lineTo(0, 0); redundantSquare.lineTo(1, 0); redundantSquare.lineTo(1, 0); redundantSquare.lineTo(1, 0); redundantSquare.lineTo(1, 1); redundantSquare.lineTo(1, 1); redundantSquare.lineTo(1, 1); redundantSquare.lineTo(0, 1); redundantSquare.lineTo(0, 1); redundantSquare.lineTo(0, 1); redundantSquare.close(); check_convexity(reporter, redundantSquare, SkPath::kConvex_Convexity); SkPath bowTie; bowTie.moveTo(0, 0); bowTie.lineTo(0, 0); bowTie.lineTo(0, 0); bowTie.lineTo(1, 1); bowTie.lineTo(1, 1); bowTie.lineTo(1, 1); bowTie.lineTo(1, 0); bowTie.lineTo(1, 0); bowTie.lineTo(1, 0); bowTie.lineTo(0, 1); bowTie.lineTo(0, 1); bowTie.lineTo(0, 1); bowTie.close(); check_convexity(reporter, bowTie, SkPath::kConcave_Convexity); SkPath spiral; spiral.moveTo(0, 0); spiral.lineTo(100, 0); spiral.lineTo(100, 100); spiral.lineTo(0, 100); spiral.lineTo(0, 50); spiral.lineTo(50, 50); spiral.lineTo(50, 75); spiral.close(); check_convexity(reporter, spiral, SkPath::kConcave_Convexity); SkPath dent; dent.moveTo(SkIntToScalar(0), SkIntToScalar(0)); dent.lineTo(SkIntToScalar(100), SkIntToScalar(100)); dent.lineTo(SkIntToScalar(0), SkIntToScalar(100)); dent.lineTo(SkIntToScalar(-50), SkIntToScalar(200)); dent.lineTo(SkIntToScalar(-200), SkIntToScalar(100)); dent.close(); check_convexity(reporter, dent, SkPath::kConcave_Convexity); } static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p, const SkRect& bounds) { REPORTER_ASSERT(reporter, p.isConvex()); REPORTER_ASSERT(reporter, p.getBounds() == bounds); SkPath p2(p); REPORTER_ASSERT(reporter, p2.isConvex()); REPORTER_ASSERT(reporter, p2.getBounds() == bounds); SkPath other; other.swap(p2); REPORTER_ASSERT(reporter, other.isConvex()); REPORTER_ASSERT(reporter, other.getBounds() == bounds); } static void setFromString(SkPath* path, const char str[]) { bool first = true; while (str) { SkScalar x, y; str = SkParse::FindScalar(str, &x); if (NULL == str) { break; } str = SkParse::FindScalar(str, &y); SkASSERT(str); if (first) { path->moveTo(x, y); first = false; } else { path->lineTo(x, y); } } } static void test_convexity(skiatest::Reporter* reporter) { static const SkPath::Convexity C = SkPath::kConcave_Convexity; static const SkPath::Convexity V = SkPath::kConvex_Convexity; SkPath path; REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); path.addCircle(0, 0, 10); REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); path.addCircle(0, 0, 10); // 2nd circle REPORTER_ASSERT(reporter, C == SkPath::ComputeConvexity(path)); path.reset(); path.addRect(0, 0, 10, 10, SkPath::kCCW_Direction); REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); path.reset(); path.addRect(0, 0, 10, 10, SkPath::kCW_Direction); REPORTER_ASSERT(reporter, V == SkPath::ComputeConvexity(path)); static const struct { const char* fPathStr; SkPath::Convexity fExpectedConvexity; } gRec[] = { { "", SkPath::kConvex_Convexity }, { "0 0", SkPath::kConvex_Convexity }, { "0 0 10 10", SkPath::kConvex_Convexity }, { "0 0 10 10 20 20 0 0 10 10", SkPath::kConcave_Convexity }, { "0 0 10 10 10 20", SkPath::kConvex_Convexity }, { "0 0 10 10 10 0", SkPath::kConvex_Convexity }, { "0 0 10 10 10 0 0 10", SkPath::kConcave_Convexity }, { "0 0 10 0 0 10 -10 -10", SkPath::kConcave_Convexity }, }; for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { SkPath path; setFromString(&path, gRec[i].fPathStr); SkPath::Convexity c = SkPath::ComputeConvexity(path); REPORTER_ASSERT(reporter, c == gRec[i].fExpectedConvexity); } } // Simple isRect test is inline TestPath, below. // test_isRect provides more extensive testing. static void test_isRect(skiatest::Reporter* reporter) { // passing tests (all moveTo / lineTo... SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}}; SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}}; SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}}; SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}}; SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}}; SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // failing tests SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L' // failing, no close SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto size_t testLen[] = { sizeof(r1), sizeof(r2), sizeof(r3), sizeof(r4), sizeof(r5), sizeof(r6), sizeof(r7), sizeof(r8), sizeof(r9), sizeof(ra), sizeof(rb), sizeof(rc), sizeof(rd), sizeof(re), sizeof(f1), sizeof(f2), sizeof(f3), sizeof(f4), sizeof(f5), sizeof(f6), sizeof(f7), sizeof(f8), sizeof(c1), sizeof(c2) }; SkPoint* tests[] = { r1, r2, r3, r4, r5, r6, r7, r8, r9, ra, rb, rc, rd, re, f1, f2, f3, f4, f5, f6, f7, f8, c1, c2 }; SkPoint* lastPass = re; SkPoint* lastClose = f8; bool fail = false; bool close = true; const size_t testCount = sizeof(tests) / sizeof(tests[0]); size_t index; for (size_t testIndex = 0; testIndex < testCount; ++testIndex) { SkPath path; path.moveTo(tests[testIndex][0].fX, tests[testIndex][0].fY); for (index = 1; index < testLen[testIndex] / sizeof(SkPoint); ++index) { path.lineTo(tests[testIndex][index].fX, tests[testIndex][index].fY); } if (close) { path.close(); } REPORTER_ASSERT(reporter, fail ^ path.isRect(0)); if (tests[testIndex] == lastPass) { fail = true; } if (tests[testIndex] == lastClose) { close = false; } } // fail, close then line SkPath path1; path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); path1.lineTo(1, 0); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); // fail, move in the middle path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { if (index == 2) { path1.moveTo(1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); // fail, move on the edge path1.reset(); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { path1.moveTo(r1[index - 1].fX, r1[index - 1].fY); path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); // fail, quad path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { if (index == 2) { path1.quadTo(1, .5f, 1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); // fail, cubic path1.reset(); path1.moveTo(r1[0].fX, r1[0].fY); for (index = 1; index < testLen[0] / sizeof(SkPoint); ++index) { if (index == 2) { path1.cubicTo(1, .5f, 1, .5f, 1, .5f); } path1.lineTo(r1[index].fX, r1[index].fY); } path1.close(); REPORTER_ASSERT(reporter, fail ^ path1.isRect(0)); } static void test_flattening(skiatest::Reporter* reporter) { SkPath p; static const SkPoint pts[] = { { 0, 0 }, { SkIntToScalar(10), SkIntToScalar(10) }, { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } }; p.moveTo(pts[0]); p.lineTo(pts[1]); p.quadTo(pts[2], pts[3]); p.cubicTo(pts[4], pts[5], pts[6]); SkWriter32 writer(100); p.flatten(writer); size_t size = writer.size(); SkAutoMalloc storage(size); writer.flatten(storage.get()); SkReader32 reader(storage.get(), size); SkPath p1; REPORTER_ASSERT(reporter, p1 != p); p1.unflatten(reader); REPORTER_ASSERT(reporter, p1 == p); } static void test_transform(skiatest::Reporter* reporter) { SkPath p, p1; static const SkPoint pts[] = { { 0, 0 }, { SkIntToScalar(10), SkIntToScalar(10) }, { SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, { 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) } }; p.moveTo(pts[0]); p.lineTo(pts[1]); p.quadTo(pts[2], pts[3]); p.cubicTo(pts[4], pts[5], pts[6]); SkMatrix matrix; matrix.reset(); p.transform(matrix, &p1); REPORTER_ASSERT(reporter, p == p1); matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3); p.transform(matrix, &p1); SkPoint pts1[7]; int count = p1.getPoints(pts1, 7); REPORTER_ASSERT(reporter, 7 == count); for (int i = 0; i < count; ++i) { SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3); REPORTER_ASSERT(reporter, newPt == pts1[i]); } } #define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask) void TestPath(skiatest::Reporter* reporter); void TestPath(skiatest::Reporter* reporter) { { SkSize size; size.fWidth = 3.4f; size.width(); size = SkSize::Make(3,4); SkISize isize = SkISize::Make(3,4); } SkTSize::Make(3,4); SkPath p, p2; SkRect bounds, bounds2; REPORTER_ASSERT(reporter, p.isEmpty()); REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); REPORTER_ASSERT(reporter, p.isConvex()); REPORTER_ASSERT(reporter, p.getFillType() == SkPath::kWinding_FillType); REPORTER_ASSERT(reporter, !p.isInverseFillType()); REPORTER_ASSERT(reporter, p == p2); REPORTER_ASSERT(reporter, !(p != p2)); REPORTER_ASSERT(reporter, p.getBounds().isEmpty()); bounds.set(0, 0, SK_Scalar1, SK_Scalar1); p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1); check_convex_bounds(reporter, p, bounds); // we have quads or cubics REPORTER_ASSERT(reporter, p.getSegmentMasks() & kCurveSegmentMask); p.reset(); REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks()); p.addOval(bounds); check_convex_bounds(reporter, p, bounds); p.reset(); p.addRect(bounds); check_convex_bounds(reporter, p, bounds); // we have only lines REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks()); REPORTER_ASSERT(reporter, p != p2); REPORTER_ASSERT(reporter, !(p == p2)); // does getPoints return the right result REPORTER_ASSERT(reporter, p.getPoints(NULL, 5) == 4); SkPoint pts[4]; int count = p.getPoints(pts, 4); REPORTER_ASSERT(reporter, count == 4); bounds2.set(pts, 4); REPORTER_ASSERT(reporter, bounds == bounds2); bounds.offset(SK_Scalar1*3, SK_Scalar1*4); p.offset(SK_Scalar1*3, SK_Scalar1*4); REPORTER_ASSERT(reporter, bounds == p.getBounds()); REPORTER_ASSERT(reporter, p.isRect(NULL)); bounds2.setEmpty(); REPORTER_ASSERT(reporter, p.isRect(&bounds2)); REPORTER_ASSERT(reporter, bounds == bounds2); // now force p to not be a rect bounds.set(0, 0, SK_Scalar1/2, SK_Scalar1/2); p.addRect(bounds); REPORTER_ASSERT(reporter, !p.isRect(NULL)); test_isRect(reporter); SkPoint pt; p.moveTo(SK_Scalar1, 0); p.getLastPt(&pt); REPORTER_ASSERT(reporter, pt.fX == SK_Scalar1); test_convexity(reporter); test_convexity2(reporter); test_close(reporter); p.reset(); p.moveTo(0, 0); p.quadTo(100, 100, 200, 200); REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks()); p.cubicTo(100, 100, 200, 200, 300, 300); REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks()); p.reset(); p.moveTo(0, 0); p.cubicTo(100, 100, 200, 200, 300, 300); REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks()); test_flattening(reporter); test_transform(reporter); } #include "TestClassDef.h" DEFINE_TESTCLASS("Path", PathTestClass, TestPath)