/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "PathOpsTestCommon.h" #include "SkPathOpsBounds.h" #include "SkPathOpsCubic.h" #include "SkPathOpsLine.h" #include "SkPathOpsQuad.h" #include "SkPathOpsTriangle.h" void CubicToQuads(const SkDCubic& cubic, double precision, SkTArray& quads) { SkTArray ts; cubic.toQuadraticTs(precision, &ts); if (ts.count() <= 0) { SkDQuad quad = cubic.toQuad(); quads.push_back(quad); return; } double tStart = 0; for (int i1 = 0; i1 <= ts.count(); ++i1) { const double tEnd = i1 < ts.count() ? ts[i1] : 1; SkDCubic part = cubic.subDivide(tStart, tEnd); SkDQuad quad = part.toQuad(); quads.push_back(quad); tStart = tEnd; } } void CubicPathToQuads(const SkPath& cubicPath, SkPath* quadPath) { quadPath->reset(); SkDCubic cubic; SkTArray quads; SkPath::RawIter iter(cubicPath); uint8_t verb; SkPoint pts[4]; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: quadPath->moveTo(pts[0].fX, pts[0].fY); continue; case SkPath::kLine_Verb: quadPath->lineTo(pts[1].fX, pts[1].fY); break; case SkPath::kQuad_Verb: quadPath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); break; case SkPath::kCubic_Verb: quads.reset(); cubic.set(pts); CubicToQuads(cubic, cubic.calcPrecision(), quads); for (int index = 0; index < quads.count(); ++index) { SkPoint qPts[2] = { quads[index][1].asSkPoint(), quads[index][2].asSkPoint() }; quadPath->quadTo(qPts[0].fX, qPts[0].fY, qPts[1].fX, qPts[1].fY); } break; case SkPath::kClose_Verb: quadPath->close(); break; default: SkDEBUGFAIL("bad verb"); return; } } } void CubicPathToSimple(const SkPath& cubicPath, SkPath* simplePath) { simplePath->reset(); SkDCubic cubic; SkPath::RawIter iter(cubicPath); uint8_t verb; SkPoint pts[4]; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: simplePath->moveTo(pts[0].fX, pts[0].fY); continue; case SkPath::kLine_Verb: simplePath->lineTo(pts[1].fX, pts[1].fY); break; case SkPath::kQuad_Verb: simplePath->quadTo(pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY); break; case SkPath::kCubic_Verb: { cubic.set(pts); double tInflects[2]; int inflections = cubic.findInflections(tInflects); if (inflections > 1 && tInflects[0] > tInflects[1]) { SkTSwap(tInflects[0], tInflects[1]); } double lo = 0; for (int index = 0; index <= inflections; ++index) { double hi = index < inflections ? tInflects[index] : 1; SkDCubic part = cubic.subDivide(lo, hi); SkPoint cPts[3]; cPts[0] = part[1].asSkPoint(); cPts[1] = part[2].asSkPoint(); cPts[2] = part[3].asSkPoint(); simplePath->cubicTo(cPts[0].fX, cPts[0].fY, cPts[1].fX, cPts[1].fY, cPts[2].fX, cPts[2].fY); lo = hi; } break; } case SkPath::kClose_Verb: simplePath->close(); break; default: SkDEBUGFAIL("bad verb"); return; } } } static bool SkDoubleIsNaN(double x) { return x != x; } bool ValidBounds(const SkPathOpsBounds& bounds) { if (SkScalarIsNaN(bounds.fLeft)) { return false; } if (SkScalarIsNaN(bounds.fTop)) { return false; } if (SkScalarIsNaN(bounds.fRight)) { return false; } return !SkScalarIsNaN(bounds.fBottom); } bool ValidCubic(const SkDCubic& cubic) { for (int index = 0; index < 4; ++index) { if (!ValidPoint(cubic[index])) { return false; } } return true; } bool ValidLine(const SkDLine& line) { for (int index = 0; index < 2; ++index) { if (!ValidPoint(line[index])) { return false; } } return true; } bool ValidPoint(const SkDPoint& pt) { if (SkDoubleIsNaN(pt.fX)) { return false; } return !SkDoubleIsNaN(pt.fY); } bool ValidPoints(const SkPoint* pts, int count) { for (int index = 0; index < count; ++index) { if (SkScalarIsNaN(pts[index].fX)) { return false; } if (SkScalarIsNaN(pts[index].fY)) { return false; } } return true; } bool ValidQuad(const SkDQuad& quad) { for (int index = 0; index < 3; ++index) { if (!ValidPoint(quad[index])) { return false; } } return true; } bool ValidTriangle(const SkDTriangle& triangle) { for (int index = 0; index < 3; ++index) { if (!ValidPoint(triangle.fPts[index])) { return false; } } return true; } bool ValidVector(const SkDVector& v) { if (SkDoubleIsNaN(v.fX)) { return false; } return !SkDoubleIsNaN(v.fY); }