/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "PathOpsTestCommon.h" #include "SkIntersections.h" #include "SkPathOpsCubic.h" #include "SkPathOpsQuad.h" #include "SkRandom.h" #include "SkReduceOrder.h" #include "Test.h" static struct quadCubic { SkDCubic cubic; SkDQuad quad; int answerCount; SkDPoint answers[2]; } quadCubicTests[] = { #if 0 // FIXME : this should not fail (root problem behind skpcarrot_is24 ) {{{{1020.08099,672.161987}, {1020.08002,630.73999}, {986.502014,597.161987}, {945.080994,597.161987}}}, {{{1020,672}, {1020,640.93396}, {998.03302,618.96698}}}, 1, {{1019.421, 662.449}}}, #endif {{{{778, 14089}, {778, 14091.208984375}, {776.20916748046875, 14093}, {774, 14093}}}, {{{778, 14089}, {777.99957275390625, 14090.65625}, {776.82843017578125, 14091.828125}}}, 2, {{778, 14089}, {776.82855609581270,14091.828250841330}}}, {{{{1110, 817}, {1110.55225f, 817}, {1111, 817.447693f}, {1111, 818}}}, {{{1110.70715f, 817.292908f}, {1110.41406f, 817.000122f}, {1110, 817}}}, 2, {{1110, 817}, {1110.70715f, 817.292908f}}}, {{{{1110, 817}, {1110.55225f, 817}, {1111, 817.447693f}, {1111, 818}}}, {{{1111, 818}, {1110.99988f, 817.585876f}, {1110.70715f, 817.292908f}}}, 2, {{1110.70715f, 817.292908f}, {1111, 818}}}, {{{{55, 207}, {52.238574981689453, 207}, {50, 204.76142883300781}, {50, 202}}}, {{{55, 207}, {52.929431915283203, 206.99949645996094}, {51.464466094970703, 205.53553771972656}}}, 2, {{55, 207}, {51.464466094970703, 205.53553771972656}}}, {{{{49, 47}, {49, 74.614250183105469}, {26.614250183105469, 97}, {-1, 97}}}, {{{-8.659739592076221e-015, 96.991401672363281}, {20.065492630004883, 96.645187377929688}, {34.355339050292969, 82.355339050292969}}}, 2, {{34.355339050292969,82.355339050292969}, {34.28654835573549, 82.424006509351585}}}, {{{{10,234}, {10,229.58172607421875}, {13.581720352172852,226}, {18,226}}}, {{{18,226}, {14.686291694641113,226}, {12.342399597167969,228.3424072265625}}}, 1, {{18,226}, {0,0}}}, {{{{10,234}, {10,229.58172607421875}, {13.581720352172852,226}, {18,226}}}, {{{12.342399597167969,228.3424072265625}, {10,230.68629455566406}, {10,234}}}, 1, {{10,234}, {0,0}}}, }; static const int quadCubicTests_count = (int) SK_ARRAY_COUNT(quadCubicTests); static void cubicQuadIntersection(skiatest::Reporter* reporter, int index) { int iIndex = static_cast(index); const SkDCubic& cubic = quadCubicTests[index].cubic; SkASSERT(ValidCubic(cubic)); const SkDQuad& quad = quadCubicTests[index].quad; SkASSERT(ValidQuad(quad)); SkReduceOrder reduce1; SkReduceOrder reduce2; int order1 = reduce1.reduce(cubic, SkReduceOrder::kNo_Quadratics); int order2 = reduce2.reduce(quad); if (order1 != 4) { SkDebugf("[%d] cubic order=%d\n", iIndex, order1); REPORTER_ASSERT(reporter, 0); } if (order2 != 3) { SkDebugf("[%d] quad order=%d\n", iIndex, order2); REPORTER_ASSERT(reporter, 0); } SkIntersections i; int roots = i.intersect(cubic, quad); SkASSERT(roots == quadCubicTests[index].answerCount); for (int pt = 0; pt < roots; ++pt) { double tt1 = i[0][pt]; SkDPoint xy1 = cubic.ptAtT(tt1); double tt2 = i[1][pt]; SkDPoint xy2 = quad.ptAtT(tt2); if (!xy1.approximatelyEqual(xy2)) { SkDebugf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, iIndex, pt, tt1, xy1.fX, xy1.fY, tt2, xy2.fX, xy2.fY); } REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2)); bool found = false; for (int idx2 = 0; idx2 < quadCubicTests[index].answerCount; ++idx2) { found |= quadCubicTests[index].answers[idx2].approximatelyEqual(xy1); } if (!found) { SkDebugf("%s [%d,%d] xy1=(%g,%g) != \n", __FUNCTION__, iIndex, pt, xy1.fX, xy1.fY); } REPORTER_ASSERT(reporter, found); } reporter->bumpTestCount(); } DEF_TEST(PathOpsCubicQuadIntersection, reporter) { for (int index = 0; index < quadCubicTests_count; ++index) { cubicQuadIntersection(reporter, index); reporter->bumpTestCount(); } } DEF_TEST(PathOpsCubicQuadIntersectionOneOff, reporter) { cubicQuadIntersection(reporter, 0); } static bool gPathOpCubicQuadSlopVerbose = false; static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision // determine that slop required after quad/quad finds a candidate intersection // use the cross of the tangents plus the distance from 1 or 0 as knobs DEF_TEST(PathOpsCubicQuadSlop, reporter) { // create a random non-selfintersecting cubic // break it into quadratics // offset the quadratic, measuring the slop required to find the intersection if (!gPathOpCubicQuadSlopVerbose) { // takes a while to run -- so exclude it by default return; } int results[101]; sk_bzero(results, sizeof(results)); double minCross[101]; sk_bzero(minCross, sizeof(minCross)); double maxCross[101]; sk_bzero(maxCross, sizeof(maxCross)); double sumCross[101]; sk_bzero(sumCross, sizeof(sumCross)); int foundOne = 0; int slopCount = 1; SkRandom ran; for (int index = 0; index < 10000000; ++index) { if (index % 1000 == 999) SkDebugf("."); SkDCubic cubic = {{ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)} }}; SkIntersections i; if (i.intersect(cubic)) { continue; } SkSTArray ts; cubic.toQuadraticTs(cubic.calcPrecision(), &ts); double tStart = 0; int tsCount = ts.count(); for (int i1 = 0; i1 <= tsCount; ++i1) { const double tEnd = i1 < tsCount ? ts[i1] : 1; SkDCubic part = cubic.subDivide(tStart, tEnd); SkDQuad quad = part.toQuad(); SkReduceOrder reducer; int order = reducer.reduce(quad); if (order != 3) { continue; } for (int i2 = 0; i2 < 100; ++i2) { SkDPoint endDisplacement = {ran.nextRangeF(-100, 100), ran.nextRangeF(-100, 100)}; SkDQuad nearby = {{ {quad[0].fX + endDisplacement.fX, quad[0].fY + endDisplacement.fY}, {quad[1].fX + ran.nextRangeF(-100, 100), quad[1].fY + ran.nextRangeF(-100, 100)}, {quad[2].fX - endDisplacement.fX, quad[2].fY - endDisplacement.fY} }}; order = reducer.reduce(nearby); if (order != 3) { continue; } SkIntersections locals; locals.allowNear(false); locals.intersect(quad, nearby); if (locals.used() != 1) { continue; } // brute force find actual intersection SkDLine cubicLine = {{ {0, 0}, {cubic[0].fX, cubic[0].fY } }}; SkIntersections liner; int i3; int found = -1; int foundErr = true; for (i3 = 1; i3 <= 1000; ++i3) { cubicLine[0] = cubicLine[1]; cubicLine[1] = cubic.ptAtT(i3 / 1000.); liner.reset(); liner.allowNear(false); liner.intersect(nearby, cubicLine); if (liner.used() == 0) { continue; } if (liner.used() > 1) { foundErr = true; break; } if (found > 0) { foundErr = true; break; } foundErr = false; found = i3; } if (foundErr) { continue; } SkDVector dist = liner.pt(0) - locals.pt(0); SkDVector qV = nearby.dxdyAtT(locals[0][0]); double cubicT = (found - 1 + liner[1][0]) / 1000.; SkDVector cV = cubic.dxdyAtT(cubicT); double qxc = qV.crossCheck(cV); double qvLen = qV.length(); double cvLen = cV.length(); double maxLen = SkTMax(qvLen, cvLen); qxc /= maxLen; double quadT = tStart + (tEnd - tStart) * locals[0][0]; double diffT = fabs(cubicT - quadT); int diffIdx = (int) (diffT * 100); results[diffIdx]++; double absQxc = fabs(qxc); if (sumCross[diffIdx] == 0) { minCross[diffIdx] = maxCross[diffIdx] = sumCross[diffIdx] = absQxc; } else { minCross[diffIdx] = SkTMin(minCross[diffIdx], absQxc); maxCross[diffIdx] = SkTMax(maxCross[diffIdx], absQxc); sumCross[diffIdx] += absQxc; } if (diffIdx >= 20) { #if 01 SkDebugf("cubic={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}" " quad={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}" " {{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}" " qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n", cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY, nearby[2].fX, nearby[2].fY, liner.pt(0).fX, liner.pt(0).fY, locals.pt(0).fX, locals.pt(0).fY, quadT, cubicT, dist.length(), qxc); #else SkDebugf("qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n", quadT, cubicT, dist.length(), qxc); SkDebugf("
\n", ++slopCount); SkDebugf("{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n" "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n" "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n", cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY, nearby[2].fX, nearby[2].fY, liner.pt(0).fX, liner.pt(0).fY, locals.pt(0).fX, locals.pt(0).fY); SkDebugf("
\n\n"); #endif } ++foundOne; } tStart = tEnd; } if (++foundOne >= 100000) { break; } } #if 01 SkDebugf("slopCount=%d\n", slopCount); int max = 100; while (results[max] == 0) { --max; } for (int i = 0; i <= max; ++i) { if (i > 0 && i % 10 == 0) { SkDebugf("\n"); } SkDebugf("%d ", results[i]); } SkDebugf("min\n"); for (int i = 0; i <= max; ++i) { if (i > 0 && i % 10 == 0) { SkDebugf("\n"); } SkDebugf("%1.9g ", minCross[i]); } SkDebugf("max\n"); for (int i = 0; i <= max; ++i) { if (i > 0 && i % 10 == 0) { SkDebugf("\n"); } SkDebugf("%1.9g ", maxCross[i]); } SkDebugf("avg\n"); for (int i = 0; i <= max; ++i) { if (i > 0 && i % 10 == 0) { SkDebugf("\n"); } SkDebugf("%1.9g ", sumCross[i] / results[i]); } #else for (int i = 1; i < slopCount; ++i) { SkDebugf(" slop%d,\n", i); } #endif SkDebugf("\n"); }