/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkColorData.h" #include "SkEndian.h" #include "SkFDot6.h" #include "SkFixed.h" #include "SkHalf.h" #include "SkMathPriv.h" #include "SkPoint.h" #include "SkRandom.h" #include "SkTo.h" #include "Test.h" static void test_clz(skiatest::Reporter* reporter) { REPORTER_ASSERT(reporter, 32 == SkCLZ(0)); REPORTER_ASSERT(reporter, 31 == SkCLZ(1)); REPORTER_ASSERT(reporter, 1 == SkCLZ(1 << 30)); REPORTER_ASSERT(reporter, 0 == SkCLZ(~0U)); SkRandom rand; for (int i = 0; i < 1000; ++i) { uint32_t mask = rand.nextU(); // need to get some zeros for testing, but in some obscure way so the // compiler won't "see" that, and work-around calling the functions. mask >>= (mask & 31); int intri = SkCLZ(mask); int porta = SkCLZ_portable(mask); REPORTER_ASSERT(reporter, intri == porta); } } static void test_quick_div(skiatest::Reporter* reporter) { /* The inverse table is generated by turning on SkDebugf in the following test code */ SkFixed storage[kInverseTableSize * 2]; SkFixed* table = storage + kInverseTableSize; // SkDebugf("static const int gFDot6INVERSE[] = {"); for (SkFDot6 i=-kInverseTableSize; i= 0 ? result_ge : result_lt; } static float fast_floor(float x) { // float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23); float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23)); return (float)(x + big) - big; } static float std_floor(float x) { return sk_float_floor(x); } static void test_floor_value(skiatest::Reporter* reporter, float value) { float fast = fast_floor(value); float std = std_floor(value); if (std != fast) { ERRORF(reporter, "fast_floor(%.9g) == %.9g != %.9g == std_floor(%.9g)", value, fast, std, value); } } static void test_floor(skiatest::Reporter* reporter) { static const float gVals[] = { 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f }; for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) { test_floor_value(reporter, gVals[i]); // test_floor_value(reporter, -gVals[i]); } } /////////////////////////////////////////////////////////////////////////////// // test that SkMul16ShiftRound and SkMulDiv255Round return the same result static void test_muldivround(skiatest::Reporter* reporter) { #if 0 // this "complete" test is too slow, so we test a random sampling of it for (int a = 0; a <= 32767; ++a) { for (int b = 0; b <= 32767; ++b) { unsigned prod0 = SkMul16ShiftRound(a, b, 8); unsigned prod1 = SkMulDiv255Round(a, b); SkASSERT(prod0 == prod1); } } #endif SkRandom rand; for (int i = 0; i < 10000; ++i) { unsigned a = rand.nextU() & 0x7FFF; unsigned b = rand.nextU() & 0x7FFF; unsigned prod0 = SkMul16ShiftRound(a, b, 8); unsigned prod1 = SkMulDiv255Round(a, b); REPORTER_ASSERT(reporter, prod0 == prod1); } } static float float_blend(int src, int dst, float unit) { return dst + (src - dst) * unit; } static int blend31(int src, int dst, int a31) { return dst + ((src - dst) * a31 * 2114 >> 16); // return dst + ((src - dst) * a31 * 33 >> 10); } static int blend31_slow(int src, int dst, int a31) { int prod = src * a31 + (31 - a31) * dst + 16; prod = (prod + (prod >> 5)) >> 5; return prod; } static int blend31_round(int src, int dst, int a31) { int prod = (src - dst) * a31 + 16; prod = (prod + (prod >> 5)) >> 5; return dst + prod; } static int blend31_old(int src, int dst, int a31) { a31 += a31 >> 4; return dst + ((src - dst) * a31 >> 5); } // suppress unused code warning static int (*blend_functions[])(int, int, int) = { blend31, blend31_slow, blend31_round, blend31_old }; static void test_blend31() { int failed = 0; int death = 0; if (false) { // avoid bit rot, suppress warning failed = (*blend_functions[0])(0,0,0); } for (int src = 0; src <= 255; src++) { for (int dst = 0; dst <= 255; dst++) { for (int a = 0; a <= 31; a++) { // int r0 = blend31(src, dst, a); // int r0 = blend31_round(src, dst, a); // int r0 = blend31_old(src, dst, a); int r0 = blend31_slow(src, dst, a); float f = float_blend(src, dst, a / 31.f); int r1 = (int)f; int r2 = SkScalarRoundToInt(f); if (r0 != r1 && r0 != r2) { SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n", src, dst, a, r0, f); failed += 1; } if (r0 > 255) { death += 1; SkDebugf("death src:%d dst:%d a:%d result:%d float:%g\n", src, dst, a, r0, f); } } } } SkDebugf("---- failed %d death %d\n", failed, death); } static void test_blend(skiatest::Reporter* reporter) { for (int src = 0; src <= 255; src++) { for (int dst = 0; dst <= 255; dst++) { for (int a = 0; a <= 255; a++) { int r0 = SkAlphaBlend255(src, dst, a); float f1 = float_blend(src, dst, a / 255.f); int r1 = SkScalarRoundToInt(f1); if (r0 != r1) { float diff = sk_float_abs(f1 - r1); diff = sk_float_abs(diff - 0.5f); if (diff > (1 / 255.f)) { ERRORF(reporter, "src:%d dst:%d a:%d " "result:%d float:%g\n", src, dst, a, r0, f1); } } } } } } static void check_length(skiatest::Reporter* reporter, const SkPoint& p, SkScalar targetLen) { float x = SkScalarToFloat(p.fX); float y = SkScalarToFloat(p.fY); float len = sk_float_sqrt(x*x + y*y); len /= SkScalarToFloat(targetLen); REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f); } static void unittest_isfinite(skiatest::Reporter* reporter) { float nan = sk_float_asin(2); float inf = SK_ScalarInfinity; float big = 3.40282e+038f; REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf)); REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf)); REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf)); REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf)); REPORTER_ASSERT(reporter, SkScalarIsNaN(nan)); REPORTER_ASSERT(reporter, !SkScalarIsNaN(big)); REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big)); REPORTER_ASSERT(reporter, !SkScalarIsNaN(0)); REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan)); REPORTER_ASSERT(reporter, SkScalarIsFinite(big)); REPORTER_ASSERT(reporter, SkScalarIsFinite(-big)); REPORTER_ASSERT(reporter, SkScalarIsFinite(0)); } static void unittest_half(skiatest::Reporter* reporter) { static const float gFloats[] = { 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, -0.f, -1.f, -0.5f, -0.499999f, -0.5000001f, -1.f/3 }; for (size_t i = 0; i < SK_ARRAY_COUNT(gFloats); ++i) { SkHalf h = SkFloatToHalf(gFloats[i]); float f = SkHalfToFloat(h); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, gFloats[i])); } // check some special values union FloatUnion { uint32_t fU; float fF; }; static const FloatUnion largestPositiveHalf = { ((142 << 23) | (1023 << 13)) }; SkHalf h = SkFloatToHalf(largestPositiveHalf.fF); float f = SkHalfToFloat(h); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestPositiveHalf.fF)); static const FloatUnion largestNegativeHalf = { (1u << 31) | (142u << 23) | (1023u << 13) }; h = SkFloatToHalf(largestNegativeHalf.fF); f = SkHalfToFloat(h); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, largestNegativeHalf.fF)); static const FloatUnion smallestPositiveHalf = { 102 << 23 }; h = SkFloatToHalf(smallestPositiveHalf.fF); f = SkHalfToFloat(h); REPORTER_ASSERT(reporter, SkScalarNearlyEqual(f, smallestPositiveHalf.fF)); static const FloatUnion overflowHalf = { ((143 << 23) | (1023 << 13)) }; h = SkFloatToHalf(overflowHalf.fF); f = SkHalfToFloat(h); REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) ); static const FloatUnion underflowHalf = { 101 << 23 }; h = SkFloatToHalf(underflowHalf.fF); f = SkHalfToFloat(h); REPORTER_ASSERT(reporter, f == 0.0f ); static const FloatUnion inf32 = { 255 << 23 }; h = SkFloatToHalf(inf32.fF); f = SkHalfToFloat(h); REPORTER_ASSERT(reporter, !SkScalarIsFinite(f) ); static const FloatUnion nan32 = { 255 << 23 | 1 }; h = SkFloatToHalf(nan32.fF); f = SkHalfToFloat(h); REPORTER_ASSERT(reporter, SkScalarIsNaN(f) ); } template static void test_rsqrt(skiatest::Reporter* reporter, RSqrtFn rsqrt) { const float maxRelativeError = 6.50196699e-4f; // test close to 0 up to 1 float input = 0.000001f; for (int i = 0; i < 1000; ++i) { float exact = 1.0f/sk_float_sqrt(input); float estimate = rsqrt(input); float relativeError = sk_float_abs(exact - estimate)/exact; REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); input += 0.001f; } // test 1 to ~100 input = 1.0f; for (int i = 0; i < 1000; ++i) { float exact = 1.0f/sk_float_sqrt(input); float estimate = rsqrt(input); float relativeError = sk_float_abs(exact - estimate)/exact; REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); input += 0.01f; } // test some big numbers input = 1000000.0f; for (int i = 0; i < 100; ++i) { float exact = 1.0f/sk_float_sqrt(input); float estimate = rsqrt(input); float relativeError = sk_float_abs(exact - estimate)/exact; REPORTER_ASSERT(reporter, relativeError <= maxRelativeError); input += 754326.f; } } static void test_muldiv255(skiatest::Reporter* reporter) { for (int a = 0; a <= 255; a++) { for (int b = 0; b <= 255; b++) { int ab = a * b; float s = ab / 255.0f; int round = (int)floorf(s + 0.5f); int trunc = (int)floorf(s); int iround = SkMulDiv255Round(a, b); int itrunc = SkMulDiv255Trunc(a, b); REPORTER_ASSERT(reporter, iround == round); REPORTER_ASSERT(reporter, itrunc == trunc); REPORTER_ASSERT(reporter, itrunc <= iround); REPORTER_ASSERT(reporter, iround <= a); REPORTER_ASSERT(reporter, iround <= b); } } } static void test_muldiv255ceiling(skiatest::Reporter* reporter) { for (int c = 0; c <= 255; c++) { for (int a = 0; a <= 255; a++) { int product = (c * a + 255); int expected_ceiling = (product + (product >> 8)) >> 8; int webkit_ceiling = (c * a + 254) / 255; REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling); int skia_ceiling = SkMulDiv255Ceiling(c, a); REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling); } } } static void test_copysign(skiatest::Reporter* reporter) { static const int32_t gTriples[] = { // x, y, expected result 0, 0, 0, 0, 1, 0, 0, -1, 0, 1, 0, 1, 1, 1, 1, 1, -1, -1, -1, 0, 1, -1, 1, 1, -1, -1, -1, }; for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) { REPORTER_ASSERT(reporter, SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]); float x = (float)gTriples[i]; float y = (float)gTriples[i+1]; float expected = (float)gTriples[i+2]; REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected); } SkRandom rand; for (int j = 0; j < 1000; j++) { int ix = rand.nextS(); REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix); REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix); REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix); REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix); SkScalar sx = rand.nextSScalar1(); REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx); REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx); REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx); REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx); } } static void huge_vector_normalize(skiatest::Reporter* reporter) { // these values should fail (overflow/underflow) trying to normalize const SkVector fail[] = { { 0, 0 }, { SK_ScalarInfinity, 0 }, { 0, SK_ScalarInfinity }, { 0, SK_ScalarNaN }, { SK_ScalarNaN, 0 }, }; for (SkVector v : fail) { SkVector v2 = v; if (v2.setLength(1.0f)) { REPORTER_ASSERT(reporter, !v.setLength(1.0f)); } } } DEF_TEST(Math, reporter) { int i; SkRandom rand; // these should assert #if 0 SkToS8(128); SkToS8(-129); SkToU8(256); SkToU8(-5); SkToS16(32768); SkToS16(-32769); SkToU16(65536); SkToU16(-5); if (sizeof(size_t) > 4) { SkToS32(4*1024*1024); SkToS32(-4*1024*1024); SkToU32(5*1024*1024); SkToU32(-5); } #endif test_muldiv255(reporter); test_muldiv255ceiling(reporter); test_copysign(reporter); { SkScalar x = SK_ScalarNaN; REPORTER_ASSERT(reporter, SkScalarIsNaN(x)); } for (i = 0; i < 1000; i++) { int value = rand.nextS16(); int max = rand.nextU16(); int clamp = SkClampMax(value, max); int clamp2 = value < 0 ? 0 : (value > max ? max : value); REPORTER_ASSERT(reporter, clamp == clamp2); } for (i = 0; i < 10000; i++) { SkPoint p; // These random values are being treated as 32-bit-patterns, not as // ints; calling SkIntToScalar() here produces crashes. p.setLength((SkScalar) rand.nextS(), (SkScalar) rand.nextS(), SK_Scalar1); check_length(reporter, p, SK_Scalar1); p.setLength((SkScalar) (rand.nextS() >> 13), (SkScalar) (rand.nextS() >> 13), SK_Scalar1); check_length(reporter, p, SK_Scalar1); } { SkFixed result = SkFixedDiv(100, 100); REPORTER_ASSERT(reporter, result == SK_Fixed1); result = SkFixedDiv(1, SK_Fixed1); REPORTER_ASSERT(reporter, result == 1); result = SkFixedDiv(10 - 1, SK_Fixed1 * 3); REPORTER_ASSERT(reporter, result == 3); } { REPORTER_ASSERT(reporter, (SkFixedRoundToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); REPORTER_ASSERT(reporter, (SkFixedFloorToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); REPORTER_ASSERT(reporter, (SkFixedCeilToFixed(-SK_Fixed1 * 10) >> 1) == -SK_Fixed1 * 5); } huge_vector_normalize(reporter); unittest_isfinite(reporter); unittest_half(reporter); test_rsqrt(reporter, sk_float_rsqrt); test_rsqrt(reporter, sk_float_rsqrt_portable); for (i = 0; i < 10000; i++) { SkFixed numer = rand.nextS(); SkFixed denom = rand.nextS(); SkFixed result = SkFixedDiv(numer, denom); int64_t check = SkLeftShift((int64_t)numer, 16) / denom; (void)SkCLZ(numer); (void)SkCLZ(denom); REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); if (check > SK_MaxS32) { check = SK_MaxS32; } else if (check < -SK_MaxS32) { check = SK_MinS32; } if (result != (int32_t)check) { ERRORF(reporter, "\nFixed Divide: %8x / %8x -> %8x %8x\n", numer, denom, result, check); } REPORTER_ASSERT(reporter, result == (int32_t)check); } test_blend(reporter); if (false) test_floor(reporter); // disable for now if (false) test_blend31(); // avoid bit rot, suppress warning test_muldivround(reporter); test_clz(reporter); test_quick_div(reporter); } template struct PairRec { T fYin; T fYang; }; DEF_TEST(TestEndian, reporter) { static const PairRec g16[] = { { 0x0, 0x0 }, { 0xFFFF, 0xFFFF }, { 0x1122, 0x2211 }, }; static const PairRec g32[] = { { 0x0, 0x0 }, { 0xFFFFFFFF, 0xFFFFFFFF }, { 0x11223344, 0x44332211 }, }; static const PairRec g64[] = { { 0x0, 0x0 }, { 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL }, { 0x1122334455667788ULL, 0x8877665544332211ULL }, }; REPORTER_ASSERT(reporter, 0x1122 == SkTEndianSwap16<0x2211>::value); REPORTER_ASSERT(reporter, 0x11223344 == SkTEndianSwap32<0x44332211>::value); REPORTER_ASSERT(reporter, 0x1122334455667788ULL == SkTEndianSwap64<0x8877665544332211ULL>::value); for (size_t i = 0; i < SK_ARRAY_COUNT(g16); ++i) { REPORTER_ASSERT(reporter, g16[i].fYang == SkEndianSwap16(g16[i].fYin)); } for (size_t i = 0; i < SK_ARRAY_COUNT(g32); ++i) { REPORTER_ASSERT(reporter, g32[i].fYang == SkEndianSwap32(g32[i].fYin)); } for (size_t i = 0; i < SK_ARRAY_COUNT(g64); ++i) { REPORTER_ASSERT(reporter, g64[i].fYang == SkEndianSwap64(g64[i].fYin)); } } template static void test_divmod(skiatest::Reporter* r) { const struct { T numer; T denom; } kEdgeCases[] = { {(T)17, (T)17}, {(T)17, (T)4}, {(T)0, (T)17}, // For unsigned T these negatives are just some large numbers. Doesn't hurt to test them. {(T)-17, (T)-17}, {(T)-17, (T)4}, {(T)17, (T)-4}, {(T)-17, (T)-4}, }; for (size_t i = 0; i < SK_ARRAY_COUNT(kEdgeCases); i++) { const T numer = kEdgeCases[i].numer; const T denom = kEdgeCases[i].denom; T div, mod; SkTDivMod(numer, denom, &div, &mod); REPORTER_ASSERT(r, numer/denom == div); REPORTER_ASSERT(r, numer%denom == mod); } SkRandom rand; for (size_t i = 0; i < 10000; i++) { const T numer = (T)rand.nextS(); T denom = 0; while (0 == denom) { denom = (T)rand.nextS(); } T div, mod; SkTDivMod(numer, denom, &div, &mod); REPORTER_ASSERT(r, numer/denom == div); REPORTER_ASSERT(r, numer%denom == mod); } } DEF_TEST(divmod_u8, r) { test_divmod(r); } DEF_TEST(divmod_u16, r) { test_divmod(r); } DEF_TEST(divmod_u32, r) { test_divmod(r); } DEF_TEST(divmod_u64, r) { test_divmod(r); } DEF_TEST(divmod_s8, r) { test_divmod(r); } DEF_TEST(divmod_s16, r) { test_divmod(r); } DEF_TEST(divmod_s32, r) { test_divmod(r); } DEF_TEST(divmod_s64, r) { test_divmod(r); } static void test_nextsizepow2(skiatest::Reporter* r, size_t test, size_t expectedAns) { size_t ans = GrNextSizePow2(test); REPORTER_ASSERT(r, ans == expectedAns); //SkDebugf("0x%zx -> 0x%zx (0x%zx)\n", test, ans, expectedAns); } DEF_TEST(GrNextSizePow2, reporter) { constexpr int kNumSizeTBits = 8 * sizeof(size_t); size_t test = 0, expectedAns = 1; test_nextsizepow2(reporter, test, expectedAns); test = 1; expectedAns = 1; for (int i = 1; i < kNumSizeTBits; ++i) { test_nextsizepow2(reporter, test, expectedAns); test++; expectedAns <<= 1; test_nextsizepow2(reporter, test, expectedAns); test = expectedAns; } // For the remaining three tests there is no higher power (of 2) test = 0x1; test <<= kNumSizeTBits-1; test_nextsizepow2(reporter, test, test); test++; test_nextsizepow2(reporter, test, test); test_nextsizepow2(reporter, SIZE_MAX, SIZE_MAX); } DEF_TEST(FloatSaturate32, reporter) { const struct { float fFloat; int fExpectedInt; } recs[] = { { 0, 0 }, { 100.5f, 100 }, { (float)SK_MaxS32, SK_MaxS32FitsInFloat }, { (float)SK_MinS32, SK_MinS32FitsInFloat }, { SK_MaxS32 * 100.0f, SK_MaxS32FitsInFloat }, { SK_MinS32 * 100.0f, SK_MinS32FitsInFloat }, { SK_ScalarInfinity, SK_MaxS32FitsInFloat }, { SK_ScalarNegativeInfinity, SK_MinS32FitsInFloat }, { SK_ScalarNaN, SK_MaxS32FitsInFloat }, }; for (auto r : recs) { int i = sk_float_saturate2int(r.fFloat); REPORTER_ASSERT(reporter, r.fExpectedInt == i); // ensure that these bound even non-finite values (including NaN) SkScalar mx = SkTMax(r.fFloat, 50); REPORTER_ASSERT(reporter, mx >= 50); SkScalar mn = SkTMin(r.fFloat, 50); REPORTER_ASSERT(reporter, mn <= 50); SkScalar p = SkTPin(r.fFloat, 0, 100); REPORTER_ASSERT(reporter, p >= 0 && p <= 100); } } DEF_TEST(FloatSaturate64, reporter) { const struct { float fFloat; int64_t fExpected64; } recs[] = { { 0, 0 }, { 100.5f, 100 }, { (float)SK_MaxS64, SK_MaxS64FitsInFloat }, { (float)SK_MinS64, SK_MinS64FitsInFloat }, { SK_MaxS64 * 100.0f, SK_MaxS64FitsInFloat }, { SK_MinS64 * 100.0f, SK_MinS64FitsInFloat }, { SK_ScalarInfinity, SK_MaxS64FitsInFloat }, { SK_ScalarNegativeInfinity, SK_MinS64FitsInFloat }, { SK_ScalarNaN, SK_MaxS64FitsInFloat }, }; for (auto r : recs) { int64_t i = sk_float_saturate2int64(r.fFloat); REPORTER_ASSERT(reporter, r.fExpected64 == i); } } DEF_TEST(DoubleSaturate32, reporter) { const struct { double fDouble; int fExpectedInt; } recs[] = { { 0, 0 }, { 100.5, 100 }, { SK_MaxS32, SK_MaxS32 }, { SK_MinS32, SK_MinS32 }, { SK_MaxS32 - 1, SK_MaxS32 - 1 }, { SK_MinS32 + 1, SK_MinS32 + 1 }, { SK_MaxS32 * 100.0, SK_MaxS32 }, { SK_MinS32 * 100.0, SK_MinS32 }, { SK_ScalarInfinity, SK_MaxS32 }, { SK_ScalarNegativeInfinity, SK_MinS32 }, { SK_ScalarNaN, SK_MaxS32 }, }; for (auto r : recs) { int i = sk_double_saturate2int(r.fDouble); REPORTER_ASSERT(reporter, r.fExpectedInt == i); } } #if defined(__ARM_NEON) #include DEF_TEST(NeonU16Div255, r) { for (int v = 0; v <= 255*255; v++) { int want = (v + 127)/255; uint16x8_t V = vdupq_n_u16(v); int got = vrshrq_n_u16(vrsraq_n_u16(V, V, 8), 8)[0]; if (got != want) { SkDebugf("%d -> %d, want %d\n", v, got, want); } REPORTER_ASSERT(r, got == want); } } #endif