/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include #include "DMGpuSupport.h" #include "SkAutoPixmapStorage.h" #include "SkBitmap.h" #include "SkCanvas.h" #include "SkData.h" #include "SkDevice.h" #include "SkImageEncoder.h" #include "SkImageGenerator.h" #include "SkImage_Base.h" #include "SkPicture.h" #include "SkPictureRecorder.h" #include "SkPixelSerializer.h" #include "SkRRect.h" #include "SkStream.h" #include "SkSurface.h" #include "SkUtils.h" #include "Test.h" using sk_gpu_test::GrContextFactory; static void assert_equal(skiatest::Reporter* reporter, SkImage* a, const SkIRect* subsetA, SkImage* b) { const int widthA = subsetA ? subsetA->width() : a->width(); const int heightA = subsetA ? subsetA->height() : a->height(); REPORTER_ASSERT(reporter, widthA == b->width()); REPORTER_ASSERT(reporter, heightA == b->height()); // see https://bug.skia.org/3965 //REPORTER_ASSERT(reporter, a->isOpaque() == b->isOpaque()); SkImageInfo info = SkImageInfo::MakeN32(widthA, heightA, a->isOpaque() ? kOpaque_SkAlphaType : kPremul_SkAlphaType); SkAutoPixmapStorage pmapA, pmapB; pmapA.alloc(info); pmapB.alloc(info); const int srcX = subsetA ? subsetA->x() : 0; const int srcY = subsetA ? subsetA->y() : 0; REPORTER_ASSERT(reporter, a->readPixels(pmapA, srcX, srcY)); REPORTER_ASSERT(reporter, b->readPixels(pmapB, 0, 0)); const size_t widthBytes = widthA * info.bytesPerPixel(); for (int y = 0; y < heightA; ++y) { REPORTER_ASSERT(reporter, !memcmp(pmapA.addr32(0, y), pmapB.addr32(0, y), widthBytes)); } } static void draw_image_test_pattern(SkCanvas* canvas) { canvas->clear(SK_ColorWHITE); SkPaint paint; paint.setColor(SK_ColorBLACK); canvas->drawRect(SkRect::MakeXYWH(5, 5, 10, 10), paint); } static sk_sp create_image() { const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRaster(info)); draw_image_test_pattern(surface->getCanvas()); return surface->makeImageSnapshot(); } static sk_sp create_image_565() { const SkImageInfo info = SkImageInfo::Make(20, 20, kRGB_565_SkColorType, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRaster(info)); draw_image_test_pattern(surface->getCanvas()); return surface->makeImageSnapshot(); } static sk_sp create_image_ct() { SkPMColor colors[] = { SkPreMultiplyARGB(0xFF, 0xFF, 0xFF, 0x00), SkPreMultiplyARGB(0x80, 0x00, 0xA0, 0xFF), SkPreMultiplyARGB(0xFF, 0xBB, 0x00, 0xBB) }; SkAutoTUnref colorTable(new SkColorTable(colors, SK_ARRAY_COUNT(colors))); uint8_t data[] = { 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0 }; SkImageInfo info = SkImageInfo::Make(5, 5, kIndex_8_SkColorType, kPremul_SkAlphaType); return SkImage::MakeRasterCopy(SkPixmap(info, data, 5, colorTable)); } static SkData* create_image_data(SkImageInfo* info) { *info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); const size_t rowBytes = info->minRowBytes(); SkAutoTUnref data(SkData::NewUninitialized(rowBytes * info->height())); { SkBitmap bm; bm.installPixels(*info, data->writable_data(), rowBytes); SkCanvas canvas(bm); draw_image_test_pattern(&canvas); } return data.release(); } static sk_sp create_data_image() { SkImageInfo info; sk_sp data(create_image_data(&info)); return SkImage::MakeRasterData(info, data, info.minRowBytes()); } #if SK_SUPPORT_GPU // not gpu-specific but currently only used in GPU tests static sk_sp create_picture_image() { SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(10, 10); canvas->clear(SK_ColorCYAN); return SkImage::MakeFromPicture(recorder.finishRecordingAsPicture(), SkISize::Make(10, 10), nullptr, nullptr); }; #endif // Want to ensure that our Release is called when the owning image is destroyed struct RasterDataHolder { RasterDataHolder() : fReleaseCount(0) {} SkAutoTUnref fData; int fReleaseCount; static void Release(const void* pixels, void* context) { RasterDataHolder* self = static_cast(context); self->fReleaseCount++; self->fData.reset(); } }; static sk_sp create_rasterproc_image(RasterDataHolder* dataHolder) { SkASSERT(dataHolder); SkImageInfo info; SkAutoTUnref data(create_image_data(&info)); dataHolder->fData.reset(SkRef(data.get())); return SkImage::MakeFromRaster(SkPixmap(info, data->data(), info.minRowBytes()), RasterDataHolder::Release, dataHolder); } static sk_sp create_codec_image() { SkImageInfo info; SkAutoTUnref data(create_image_data(&info)); SkBitmap bitmap; bitmap.installPixels(info, data->writable_data(), info.minRowBytes()); sk_sp src( SkImageEncoder::EncodeData(bitmap, SkImageEncoder::kPNG_Type, 100)); return SkImage::MakeFromEncoded(src); } #if SK_SUPPORT_GPU static sk_sp create_gpu_image(GrContext* context) { const SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); auto surface(SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info)); draw_image_test_pattern(surface->getCanvas()); return surface->makeImageSnapshot(); } #endif static void test_encode(skiatest::Reporter* reporter, SkImage* image) { const SkIRect ir = SkIRect::MakeXYWH(5, 5, 10, 10); sk_sp origEncoded(image->encode()); REPORTER_ASSERT(reporter, origEncoded); REPORTER_ASSERT(reporter, origEncoded->size() > 0); sk_sp decoded(SkImage::MakeFromEncoded(origEncoded)); REPORTER_ASSERT(reporter, decoded); assert_equal(reporter, image, nullptr, decoded.get()); // Now see if we can instantiate an image from a subset of the surface/origEncoded decoded = SkImage::MakeFromEncoded(origEncoded, &ir); REPORTER_ASSERT(reporter, decoded); assert_equal(reporter, image, &ir, decoded.get()); } DEF_TEST(ImageEncode, reporter) { test_encode(reporter, create_image().get()); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageEncode_Gpu, reporter, context) { test_encode(reporter, create_gpu_image(context).get()); } #endif namespace { const char* kSerializedData = "serialized"; class MockSerializer : public SkPixelSerializer { public: MockSerializer(SkData* (*func)()) : fFunc(func), fDidEncode(false) { } bool didEncode() const { return fDidEncode; } protected: bool onUseEncodedData(const void*, size_t) override { return false; } SkData* onEncode(const SkPixmap&) override { fDidEncode = true; return fFunc(); } private: SkData* (*fFunc)(); bool fDidEncode; typedef SkPixelSerializer INHERITED; }; } // anonymous namespace // Test that SkImage encoding observes custom pixel serializers. DEF_TEST(Image_Encode_Serializer, reporter) { MockSerializer serializer([]() -> SkData* { return SkData::NewWithCString(kSerializedData); }); sk_sp image(create_image()); SkAutoTUnref encoded(image->encode(&serializer)); SkAutoTUnref reference(SkData::NewWithCString(kSerializedData)); REPORTER_ASSERT(reporter, serializer.didEncode()); REPORTER_ASSERT(reporter, encoded); REPORTER_ASSERT(reporter, encoded->size() > 0); REPORTER_ASSERT(reporter, encoded->equals(reference)); } // Test that image encoding failures do not break picture serialization/deserialization. DEF_TEST(Image_Serialize_Encoding_Failure, reporter) { auto surface(SkSurface::MakeRasterN32Premul(100, 100)); surface->getCanvas()->clear(SK_ColorGREEN); sk_sp image(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image); SkPictureRecorder recorder; SkCanvas* canvas = recorder.beginRecording(100, 100); canvas->drawImage(image, 0, 0); sk_sp picture(recorder.finishRecordingAsPicture()); REPORTER_ASSERT(reporter, picture); REPORTER_ASSERT(reporter, picture->approximateOpCount() > 0); MockSerializer emptySerializer([]() -> SkData* { return SkData::NewEmpty(); }); MockSerializer nullSerializer([]() -> SkData* { return nullptr; }); MockSerializer* serializers[] = { &emptySerializer, &nullSerializer }; for (size_t i = 0; i < SK_ARRAY_COUNT(serializers); ++i) { SkDynamicMemoryWStream wstream; REPORTER_ASSERT(reporter, !serializers[i]->didEncode()); picture->serialize(&wstream, serializers[i]); REPORTER_ASSERT(reporter, serializers[i]->didEncode()); SkAutoTDelete rstream(wstream.detachAsStream()); sk_sp deserialized(SkPicture::MakeFromStream(rstream)); REPORTER_ASSERT(reporter, deserialized); REPORTER_ASSERT(reporter, deserialized->approximateOpCount() > 0); } } DEF_TEST(Image_NewRasterCopy, reporter) { const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0); const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0); const SkPMColor blue = SkPackARGB32(0xFF, 0, 0, 0xFF); SkPMColor colors[] = { red, green, blue, 0 }; SkAutoTUnref ctable(new SkColorTable(colors, SK_ARRAY_COUNT(colors))); // The colortable made a copy, so we can trash the original colors memset(colors, 0xFF, sizeof(colors)); const SkImageInfo srcInfo = SkImageInfo::Make(2, 2, kIndex_8_SkColorType, kPremul_SkAlphaType); const size_t srcRowBytes = 2 * sizeof(uint8_t); uint8_t indices[] = { 0, 1, 2, 3 }; sk_sp image(SkImage::MakeRasterCopy(SkPixmap(srcInfo, indices, srcRowBytes, ctable))); // The image made a copy, so we can trash the original indices memset(indices, 0xFF, sizeof(indices)); const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2); const size_t dstRowBytes = 2 * sizeof(SkPMColor); SkPMColor pixels[4]; memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect image->readPixels(dstInfo, pixels, dstRowBytes, 0, 0); REPORTER_ASSERT(reporter, red == pixels[0]); REPORTER_ASSERT(reporter, green == pixels[1]); REPORTER_ASSERT(reporter, blue == pixels[2]); REPORTER_ASSERT(reporter, 0 == pixels[3]); } // Test that a draw that only partially covers the drawing surface isn't // interpreted as covering the entire drawing surface (i.e., exercise one of the // conditions of SkCanvas::wouldOverwriteEntireSurface()). DEF_TEST(Image_RetainSnapshot, reporter) { const SkPMColor red = SkPackARGB32(0xFF, 0xFF, 0, 0); const SkPMColor green = SkPackARGB32(0xFF, 0, 0xFF, 0); SkImageInfo info = SkImageInfo::MakeN32Premul(2, 2); auto surface(SkSurface::MakeRaster(info)); surface->getCanvas()->clear(0xFF00FF00); SkPMColor pixels[4]; memset(pixels, 0xFF, sizeof(pixels)); // init with values we don't expect const SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(2, 2); const size_t dstRowBytes = 2 * sizeof(SkPMColor); sk_sp image1(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image1->readPixels(dstInfo, pixels, dstRowBytes, 0, 0)); for (size_t i = 0; i < SK_ARRAY_COUNT(pixels); ++i) { REPORTER_ASSERT(reporter, pixels[i] == green); } SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); paint.setColor(SK_ColorRED); surface->getCanvas()->drawRect(SkRect::MakeXYWH(1, 1, 1, 1), paint); sk_sp image2(surface->makeImageSnapshot()); REPORTER_ASSERT(reporter, image2->readPixels(dstInfo, pixels, dstRowBytes, 0, 0)); REPORTER_ASSERT(reporter, pixels[0] == green); REPORTER_ASSERT(reporter, pixels[1] == green); REPORTER_ASSERT(reporter, pixels[2] == green); REPORTER_ASSERT(reporter, pixels[3] == red); } ///////////////////////////////////////////////////////////////////////////////////////////////// static void make_bitmap_mutable(SkBitmap* bm) { bm->allocN32Pixels(10, 10); } static void make_bitmap_immutable(SkBitmap* bm) { bm->allocN32Pixels(10, 10); bm->setImmutable(); } DEF_TEST(image_newfrombitmap, reporter) { const struct { void (*fMakeProc)(SkBitmap*); bool fExpectPeekSuccess; bool fExpectSharedID; bool fExpectLazy; } rec[] = { { make_bitmap_mutable, true, false, false }, { make_bitmap_immutable, true, true, false }, }; for (size_t i = 0; i < SK_ARRAY_COUNT(rec); ++i) { SkBitmap bm; rec[i].fMakeProc(&bm); sk_sp image(SkImage::MakeFromBitmap(bm)); SkPixmap pmap; const bool sharedID = (image->uniqueID() == bm.getGenerationID()); REPORTER_ASSERT(reporter, sharedID == rec[i].fExpectSharedID); const bool peekSuccess = image->peekPixels(&pmap); REPORTER_ASSERT(reporter, peekSuccess == rec[i].fExpectPeekSuccess); const bool lazy = image->isLazyGenerated(); REPORTER_ASSERT(reporter, lazy == rec[i].fExpectLazy); } } /////////////////////////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU #include "SkBitmapCache.h" /* * This tests the caching (and preemptive purge) of the raster equivalent of a gpu-image. * We cache it for performance when drawing into a raster surface. * * A cleaner test would know if each drawImage call triggered a read-back from the gpu, * but we don't have that facility (at the moment) so we use a little internal knowledge * of *how* the raster version is cached, and look for that. */ DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_Gpu2Cpu, reporter, context) { SkImageInfo info = SkImageInfo::MakeN32(20, 20, kOpaque_SkAlphaType); sk_sp image(create_gpu_image(context)); const uint32_t uniqueID = image->uniqueID(); auto surface(SkSurface::MakeRaster(info)); // now we can test drawing a gpu-backed image into a cpu-backed surface { SkBitmap cachedBitmap; REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap)); } surface->getCanvas()->drawImage(image, 0, 0); { SkBitmap cachedBitmap; if (SkBitmapCache::Find(uniqueID, &cachedBitmap)) { REPORTER_ASSERT(reporter, cachedBitmap.getGenerationID() == uniqueID); REPORTER_ASSERT(reporter, cachedBitmap.isImmutable()); REPORTER_ASSERT(reporter, cachedBitmap.getPixels()); } else { // unexpected, but not really a bug, since the cache is global and this test may be // run w/ other threads competing for its budget. SkDebugf("SkImage_Gpu2Cpu : cachedBitmap was already purged\n"); } } image.reset(nullptr); { SkBitmap cachedBitmap; REPORTER_ASSERT(reporter, !SkBitmapCache::Find(uniqueID, &cachedBitmap)); } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_newTextureImage, reporter, context, glContext) { GrContextFactory otherFactory; GrContextFactory::ContextInfo otherContextInfo = otherFactory.getContextInfo(GrContextFactory::kNative_GLContextType); glContext->makeCurrent(); std::function()> imageFactories[] = { create_image, create_codec_image, create_data_image, // Create an image from a picture. create_picture_image, // Create a texture image. [context] { return create_gpu_image(context); }, // Create a texture image in a another GrContext. [glContext, otherContextInfo] { otherContextInfo.fGLContext->makeCurrent(); sk_sp otherContextImage = create_gpu_image(otherContextInfo.fGrContext); glContext->makeCurrent(); return otherContextImage; } }; for (auto factory : imageFactories) { sk_sp image(factory()); if (!image) { ERRORF(reporter, "Error creating image."); continue; } GrTexture* origTexture = as_IB(image)->peekTexture(); sk_sp texImage(image->makeTextureImage(context)); if (!texImage) { // We execpt to fail if image comes from a different GrContext. if (!origTexture || origTexture->getContext() == context) { ERRORF(reporter, "newTextureImage failed."); } continue; } GrTexture* copyTexture = as_IB(texImage)->peekTexture(); if (!copyTexture) { ERRORF(reporter, "newTextureImage returned non-texture image."); continue; } if (origTexture) { if (origTexture != copyTexture) { ERRORF(reporter, "newTextureImage made unnecessary texture copy."); } } if (image->width() != texImage->width() || image->height() != texImage->height()) { ERRORF(reporter, "newTextureImage changed the image size."); } if (image->isOpaque() != texImage->isOpaque()) { ERRORF(reporter, "newTextureImage changed image opaqueness."); } } } #endif // https://bug.skia.org/4390 DEF_TEST(ImageFromIndex8Bitmap, r) { SkPMColor pmColors[1] = {SkPreMultiplyColor(SK_ColorWHITE)}; SkBitmap bm; SkAutoTUnref ctable( new SkColorTable(pmColors, SK_ARRAY_COUNT(pmColors))); SkImageInfo info = SkImageInfo::Make(1, 1, kIndex_8_SkColorType, kPremul_SkAlphaType); bm.allocPixels(info, nullptr, ctable); SkAutoLockPixels autoLockPixels(bm); *bm.getAddr8(0, 0) = 0; sk_sp img(SkImage::MakeFromBitmap(bm)); REPORTER_ASSERT(r, img != nullptr); } class EmptyGenerator : public SkImageGenerator { public: EmptyGenerator() : SkImageGenerator(SkImageInfo::MakeN32Premul(0, 0)) {} }; DEF_TEST(ImageEmpty, reporter) { const SkImageInfo info = SkImageInfo::Make(0, 0, kN32_SkColorType, kPremul_SkAlphaType); SkPixmap pmap(info, nullptr, 0); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterCopy(pmap)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeRasterData(info, nullptr, 0)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromRaster(pmap, nullptr, nullptr)); REPORTER_ASSERT(reporter, nullptr == SkImage::MakeFromGenerator(new EmptyGenerator)); } DEF_TEST(ImageDataRef, reporter) { SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); size_t rowBytes = info.minRowBytes(); size_t size = info.getSafeSize(rowBytes); sk_sp data = SkData::MakeUninitialized(size); REPORTER_ASSERT(reporter, data->unique()); sk_sp image = SkImage::MakeRasterData(info, data, rowBytes); REPORTER_ASSERT(reporter, !data->unique()); image.reset(); REPORTER_ASSERT(reporter, data->unique()); } static bool has_pixels(const SkPMColor pixels[], int count, SkPMColor expected) { for (int i = 0; i < count; ++i) { if (pixels[i] != expected) { return false; } } return true; } static void test_read_pixels(skiatest::Reporter* reporter, SkImage* image) { const SkPMColor expected = SkPreMultiplyColor(SK_ColorWHITE); const SkPMColor notExpected = ~expected; const int w = 2, h = 2; const size_t rowBytes = w * sizeof(SkPMColor); SkPMColor pixels[w*h]; SkImageInfo info; info = SkImageInfo::MakeUnknown(w, h); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, 0)); // out-of-bounds should fail info = SkImageInfo::MakeN32Premul(w, h); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, -w, 0)); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, -h)); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, image->width(), 0)); REPORTER_ASSERT(reporter, !image->readPixels(info, pixels, rowBytes, 0, image->height())); // top-left should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, 0, 0)); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected)); // bottom-right should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, image->width() - w, image->height() - h)); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h, expected)); // partial top-left should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, -1, -1)); REPORTER_ASSERT(reporter, pixels[3] == expected); REPORTER_ASSERT(reporter, has_pixels(pixels, w*h - 1, notExpected)); // partial bottom-right should succeed sk_memset32(pixels, notExpected, w*h); REPORTER_ASSERT(reporter, image->readPixels(info, pixels, rowBytes, image->width() - 1, image->height() - 1)); REPORTER_ASSERT(reporter, pixels[0] == expected); REPORTER_ASSERT(reporter, has_pixels(&pixels[1], w*h - 1, notExpected)); } DEF_TEST(ImageReadPixels, reporter) { sk_sp image(create_image()); test_read_pixels(reporter, image.get()); image = create_data_image(); test_read_pixels(reporter, image.get()); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); test_read_pixels(reporter, image.get()); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); test_read_pixels(reporter, image.get()); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageReadPixels_Gpu, reporter, context) { test_read_pixels(reporter, create_gpu_image(context).get()); } #endif static void check_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, const SkBitmap& bitmap, SkImage::LegacyBitmapMode mode) { REPORTER_ASSERT(reporter, image->width() == bitmap.width()); REPORTER_ASSERT(reporter, image->height() == bitmap.height()); REPORTER_ASSERT(reporter, image->isOpaque() == bitmap.isOpaque()); if (SkImage::kRO_LegacyBitmapMode == mode) { REPORTER_ASSERT(reporter, bitmap.isImmutable()); } SkAutoLockPixels alp(bitmap); REPORTER_ASSERT(reporter, bitmap.getPixels()); const SkImageInfo info = SkImageInfo::MakeN32(1, 1, bitmap.alphaType()); SkPMColor imageColor; REPORTER_ASSERT(reporter, image->readPixels(info, &imageColor, sizeof(SkPMColor), 0, 0)); REPORTER_ASSERT(reporter, imageColor == *bitmap.getAddr32(0, 0)); } static void test_legacy_bitmap(skiatest::Reporter* reporter, const SkImage* image, SkImage::LegacyBitmapMode mode) { SkBitmap bitmap; REPORTER_ASSERT(reporter, image->asLegacyBitmap(&bitmap, mode)); check_legacy_bitmap(reporter, image, bitmap, mode); // Test subsetting to exercise the rowBytes logic. SkBitmap tmp; REPORTER_ASSERT(reporter, bitmap.extractSubset(&tmp, SkIRect::MakeWH(image->width() / 2, image->height() / 2))); sk_sp subsetImage(SkImage::MakeFromBitmap(tmp)); REPORTER_ASSERT(reporter, subsetImage.get()); SkBitmap subsetBitmap; REPORTER_ASSERT(reporter, subsetImage->asLegacyBitmap(&subsetBitmap, mode)); check_legacy_bitmap(reporter, subsetImage.get(), subsetBitmap, mode); } DEF_TEST(ImageLegacyBitmap, reporter) { const SkImage::LegacyBitmapMode modes[] = { SkImage::kRO_LegacyBitmapMode, SkImage::kRW_LegacyBitmapMode, }; for (auto& mode : modes) { sk_sp image(create_image()); test_legacy_bitmap(reporter, image.get(), mode); image = create_data_image(); test_legacy_bitmap(reporter, image.get(), mode); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); test_legacy_bitmap(reporter, image.get(), mode); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); test_legacy_bitmap(reporter, image.get(), mode); } } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageLegacyBitmap_Gpu, reporter, context) { const SkImage::LegacyBitmapMode modes[] = { SkImage::kRO_LegacyBitmapMode, SkImage::kRW_LegacyBitmapMode, }; for (auto& mode : modes) { sk_sp image(create_gpu_image(context)); test_legacy_bitmap(reporter, image.get(), mode); } } #endif static void test_peek(skiatest::Reporter* reporter, SkImage* image, bool expectPeekSuccess) { SkPixmap pm; bool success = image->peekPixels(&pm); REPORTER_ASSERT(reporter, expectPeekSuccess == success); if (success) { const SkImageInfo& info = pm.info(); REPORTER_ASSERT(reporter, 20 == info.width()); REPORTER_ASSERT(reporter, 20 == info.height()); REPORTER_ASSERT(reporter, kN32_SkColorType == info.colorType()); REPORTER_ASSERT(reporter, kPremul_SkAlphaType == info.alphaType() || kOpaque_SkAlphaType == info.alphaType()); REPORTER_ASSERT(reporter, info.minRowBytes() <= pm.rowBytes()); REPORTER_ASSERT(reporter, SkPreMultiplyColor(SK_ColorWHITE) == *pm.addr32(0, 0)); } } DEF_TEST(ImagePeek, reporter) { sk_sp image(create_image()); test_peek(reporter, image.get(), true); image = create_data_image(); test_peek(reporter, image.get(), true); RasterDataHolder dataHolder; image = create_rasterproc_image(&dataHolder); test_peek(reporter, image.get(), true); image.reset(); REPORTER_ASSERT(reporter, 1 == dataHolder.fReleaseCount); image = create_codec_image(); test_peek(reporter, image.get(), false); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImagePeek_Gpu, reporter, context) { sk_sp image(create_gpu_image(context)); test_peek(reporter, image.get(), false); } #endif #if SK_SUPPORT_GPU struct TextureReleaseChecker { TextureReleaseChecker() : fReleaseCount(0) {} int fReleaseCount; static void Release(void* self) { static_cast(self)->fReleaseCount++; } }; static void check_image_color(skiatest::Reporter* reporter, SkImage* image, SkPMColor expected) { const SkImageInfo info = SkImageInfo::MakeN32Premul(1, 1); SkPMColor pixel; REPORTER_ASSERT(reporter, image->readPixels(info, &pixel, sizeof(pixel), 0, 0)); REPORTER_ASSERT(reporter, pixel == expected); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SkImage_NewFromTexture, reporter, context) { GrTextureProvider* provider = context->textureProvider(); const int w = 10; const int h = 10; SkPMColor storage[w * h]; const SkPMColor expected0 = SkPreMultiplyColor(SK_ColorRED); sk_memset32(storage, expected0, w * h); GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; // needs to be a rendertarget for readpixels(); desc.fOrigin = kDefault_GrSurfaceOrigin; desc.fWidth = w; desc.fHeight = h; desc.fConfig = kSkia8888_GrPixelConfig; desc.fSampleCnt = 0; SkAutoTUnref tex(provider->createTexture(desc, SkBudgeted::kNo, storage, w * 4)); if (!tex) { REPORTER_ASSERT(reporter, false); return; } GrBackendTextureDesc backendDesc; backendDesc.fConfig = kSkia8888_GrPixelConfig; backendDesc.fFlags = kRenderTarget_GrBackendTextureFlag; backendDesc.fWidth = w; backendDesc.fHeight = h; backendDesc.fSampleCnt = 0; backendDesc.fTextureHandle = tex->getTextureHandle(); TextureReleaseChecker releaseChecker; sk_sp refImg( SkImage::MakeFromTexture(context, backendDesc, kPremul_SkAlphaType, TextureReleaseChecker::Release, &releaseChecker)); sk_sp cpyImg(SkImage::MakeFromTextureCopy(context, backendDesc, kPremul_SkAlphaType)); check_image_color(reporter, refImg.get(), expected0); check_image_color(reporter, cpyImg.get(), expected0); // Now lets jam new colors into our "external" texture, and see if the images notice const SkPMColor expected1 = SkPreMultiplyColor(SK_ColorBLUE); sk_memset32(storage, expected1, w * h); tex->writePixels(0, 0, w, h, kSkia8888_GrPixelConfig, storage, GrContext::kFlushWrites_PixelOp); // The cpy'd one should still see the old color #if 0 // There is no guarantee that refImg sees the new color. We are free to have made a copy. Our // write pixels call violated the contract with refImg and refImg is now undefined. check_image_color(reporter, refImg, expected1); #endif check_image_color(reporter, cpyImg.get(), expected0); // Now exercise the release proc REPORTER_ASSERT(reporter, 0 == releaseChecker.fReleaseCount); refImg.reset(nullptr); // force a release of the image REPORTER_ASSERT(reporter, 1 == releaseChecker.fReleaseCount); } static void check_images_same(skiatest::Reporter* reporter, const SkImage* a, const SkImage* b) { if (a->width() != b->width() || a->height() != b->height()) { ERRORF(reporter, "Images must have the same size"); return; } if (a->isOpaque() != b->isOpaque()) { ERRORF(reporter, "Images must have the same opaquness"); return; } SkImageInfo info = SkImageInfo::MakeN32Premul(a->width(), a->height()); SkAutoPixmapStorage apm; SkAutoPixmapStorage bpm; apm.alloc(info); bpm.alloc(info); if (!a->readPixels(apm, 0, 0)) { ERRORF(reporter, "Could not read image a's pixels"); return; } if (!b->readPixels(bpm, 0, 0)) { ERRORF(reporter, "Could not read image b's pixels"); return; } for (auto y = 0; y < info.height(); ++y) { for (auto x = 0; x < info.width(); ++x) { uint32_t pixelA = *apm.addr32(x, y); uint32_t pixelB = *bpm.addr32(x, y); if (pixelA != pixelB) { ERRORF(reporter, "Expected image pixels to be the same. At %d,%d 0x%08x != 0x%08x", x, y, pixelA, pixelB); return; } } } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(NewTextureFromPixmap, reporter, context) { for (auto create : {&create_image, &create_image_565, &create_image_ct}) { sk_sp image((*create)()); if (!image) { ERRORF(reporter, "Could not create image"); return; } SkPixmap pixmap; if (!image->peekPixels(&pixmap)) { ERRORF(reporter, "peek failed"); } else { sk_sp texImage(SkImage::MakeTextureFromPixmap(context, pixmap, SkBudgeted::kNo)); if (!texImage) { ERRORF(reporter, "NewTextureFromPixmap failed."); } else { check_images_same(reporter, image.get(), texImage.get()); } } } } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(DeferredTextureImage, reporter, context, glContext) { SkAutoTUnref proxy(context->threadSafeProxy()); GrContextFactory otherFactory; GrContextFactory::ContextInfo otherContextInfo = otherFactory.getContextInfo(GrContextFactory::kNative_GLContextType); glContext->makeCurrent(); REPORTER_ASSERT(reporter, proxy); struct { std::function ()> fImageFactory; bool fExpectation; } testCases[] = { { create_image, true }, { create_codec_image, true }, { create_data_image, true }, { create_picture_image, false }, { [context] { return create_gpu_image(context); }, false }, // Create a texture image in a another GrContext. { [glContext, otherContextInfo] { otherContextInfo.fGLContext->makeCurrent(); sk_sp otherContextImage = create_gpu_image(otherContextInfo.fGrContext); glContext->makeCurrent(); return otherContextImage; }, false }, }; for (auto testCase : testCases) { sk_sp image(testCase.fImageFactory()); // This isn't currently used in the implementation, just set any old values. SkImage::DeferredTextureImageUsageParams params; params.fQuality = kLow_SkFilterQuality; params.fMatrix = SkMatrix::I(); size_t size = image->getDeferredTextureImageData(*proxy, ¶ms, 1, nullptr); static const char *const kFS[] = { "fail", "succeed" }; if (SkToBool(size) != testCase.fExpectation) { ERRORF(reporter, "This image was expected to %s but did not.", kFS[testCase.fExpectation]); } if (size) { void* buffer = sk_malloc_throw(size); void* misaligned = reinterpret_cast(reinterpret_cast(buffer) + 3); if (image->getDeferredTextureImageData(*proxy, ¶ms, 1, misaligned)) { ERRORF(reporter, "Should fail when buffer is misaligned."); } if (!image->getDeferredTextureImageData(*proxy, ¶ms, 1, buffer)) { ERRORF(reporter, "deferred image size succeeded but creation failed."); } else { for (auto budgeted : { SkBudgeted::kNo, SkBudgeted::kYes }) { sk_sp newImage( SkImage::MakeFromDeferredTextureImageData(context, buffer, budgeted)); REPORTER_ASSERT(reporter, newImage != nullptr); if (newImage) { check_images_same(reporter, image.get(), newImage.get()); } // The other context should not be able to create images from texture data // created by the original context. sk_sp newImage2(SkImage::MakeFromDeferredTextureImageData( otherContextInfo.fGrContext, buffer, budgeted)); REPORTER_ASSERT(reporter, !newImage2); glContext->makeCurrent(); } } sk_free(buffer); } } } #endif