/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This is a GPU-backend specific test. It relies on static intializers to work #include "SkTypes.h" #if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS #include "GrAutoLocaleSetter.h" #include "GrBatchTest.h" #include "GrContextFactory.h" #include "GrDrawingManager.h" #include "GrInvariantOutput.h" #include "GrPipeline.h" #include "GrResourceProvider.h" #include "GrTest.h" #include "GrXferProcessor.h" #include "SkChecksum.h" #include "SkRandom.h" #include "Test.h" #include "batches/GrDrawBatch.h" #include "effects/GrConfigConversionEffect.h" #include "effects/GrPorterDuffXferProcessor.h" #include "effects/GrXfermodeFragmentProcessor.h" #include "gl/GrGLFragmentProcessor.h" #include "gl/GrGLGpu.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramBuilder.h" /* * A dummy processor which just tries to insert a massive key and verify that it can retrieve the * whole thing correctly */ static const uint32_t kMaxKeySize = 1024; class GLBigKeyProcessor : public GrGLFragmentProcessor { public: GLBigKeyProcessor(const GrProcessor&) {} virtual void emitCode(EmitArgs& args) override { // pass through GrGLSLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder(); if (args.fInputColor) { fsBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor); } else { fsBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor); } } static void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { for (uint32_t i = 0; i < kMaxKeySize; i++) { b->add32(i); } } private: typedef GrGLFragmentProcessor INHERITED; }; class BigKeyProcessor : public GrFragmentProcessor { public: static GrFragmentProcessor* Create() { return new BigKeyProcessor; } const char* name() const override { return "Big Ole Key"; } GrGLFragmentProcessor* onCreateGLInstance() const override { return new GLBigKeyProcessor(*this); } private: BigKeyProcessor() { this->initClassID(); } virtual void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { GLBigKeyProcessor::GenKey(*this, caps, b); } bool onIsEqual(const GrFragmentProcessor&) const override { return true; } void onComputeInvariantOutput(GrInvariantOutput* inout) const override { } GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor); const GrFragmentProcessor* BigKeyProcessor::TestCreate(GrProcessorTestData*) { return BigKeyProcessor::Create(); } ////////////////////////////////////////////////////////////////////////////// class BlockInputFragmentProcessor : public GrFragmentProcessor { public: static GrFragmentProcessor* Create(const GrFragmentProcessor* fp) { return new BlockInputFragmentProcessor(fp); } const char* name() const override { return "Block Input"; } GrGLFragmentProcessor* onCreateGLInstance() const override { return new GLFP; } private: class GLFP : public GrGLFragmentProcessor { public: void emitCode(EmitArgs& args) override { this->emitChild(0, nullptr, args); } private: typedef GrGLFragmentProcessor INHERITED; }; BlockInputFragmentProcessor(const GrFragmentProcessor* child) { this->initClassID(); this->registerChildProcessor(child); } void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {} bool onIsEqual(const GrFragmentProcessor&) const override { return true; } void onComputeInvariantOutput(GrInvariantOutput* inout) const override { inout->setToOther(kRGBA_GrColorComponentFlags, GrColor_WHITE, GrInvariantOutput::kWillNot_ReadInput); this->childProcessor(0).computeInvariantOutput(inout); } typedef GrFragmentProcessor INHERITED; }; ////////////////////////////////////////////////////////////////////////////// /* * Begin test code */ static const int kRenderTargetHeight = 1; static const int kRenderTargetWidth = 1; static GrRenderTarget* random_render_target(GrTextureProvider* textureProvider, SkRandom* random, const GrCaps* caps) { // setup render target GrTextureParams params; GrSurfaceDesc texDesc; texDesc.fWidth = kRenderTargetWidth; texDesc.fHeight = kRenderTargetHeight; texDesc.fFlags = kRenderTarget_GrSurfaceFlag; texDesc.fConfig = kRGBA_8888_GrPixelConfig; texDesc.fOrigin = random->nextBool() == true ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; texDesc.fSampleCnt = random->nextBool() == true ? SkTMin(4, caps->maxSampleCount()) : 0; GrUniqueKey key; static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); GrUniqueKey::Builder builder(&key, kDomain, 2); builder[0] = texDesc.fOrigin; builder[1] = texDesc.fSampleCnt; builder.finish(); GrTexture* texture = textureProvider->findAndRefTextureByUniqueKey(key); if (!texture) { texture = textureProvider->createTexture(texDesc, true); if (texture) { textureProvider->assignUniqueKeyToTexture(key, texture); } } return texture ? texture->asRenderTarget() : nullptr; } static void set_random_xpf(GrPipelineBuilder* pipelineBuilder, GrProcessorTestData* d) { SkAutoTUnref xpf(GrProcessorTestFactory::Create(d)); SkASSERT(xpf); pipelineBuilder->setXPFactory(xpf.get()); } static const GrFragmentProcessor* create_random_proc_tree(GrProcessorTestData* d, int minLevels, int maxLevels) { SkASSERT(1 <= minLevels); SkASSERT(minLevels <= maxLevels); // Return a leaf node if maxLevels is 1 or if we randomly chose to terminate. // If returning a leaf node, make sure that it doesn't have children (e.g. another // GrComposeEffect) const float terminateProbability = 0.3f; if (1 == minLevels) { bool terminate = (1 == maxLevels) || (d->fRandom->nextF() < terminateProbability); if (terminate) { const GrFragmentProcessor* fp; while (true) { fp = GrProcessorTestFactory::Create(d); SkASSERT(fp); if (0 == fp->numChildProcessors()) { break; } fp->unref(); } return fp; } } // If we didn't terminate, choose either the left or right subtree to fulfill // the minLevels requirement of this tree; the other child can have as few levels as it wants. // Also choose a random xfer mode that's supported by CreateFrom2Procs(). if (minLevels > 1) { --minLevels; } SkAutoTUnref minLevelsChild(create_random_proc_tree(d, minLevels, maxLevels - 1)); SkAutoTUnref otherChild(create_random_proc_tree(d, 1, maxLevels - 1)); SkXfermode::Mode mode = static_cast(d->fRandom->nextRangeU(0, SkXfermode::kLastCoeffMode)); const GrFragmentProcessor* fp; if (d->fRandom->nextF() < 0.5f) { fp = GrXfermodeFragmentProcessor::CreateFromTwoProcessors(minLevelsChild, otherChild, mode); SkASSERT(fp); } else { fp = GrXfermodeFragmentProcessor::CreateFromTwoProcessors(otherChild, minLevelsChild, mode); SkASSERT(fp); } return fp; } static void set_random_color_coverage_stages(GrPipelineBuilder* pipelineBuilder, GrProcessorTestData* d, int maxStages) { // Randomly choose to either create a linear pipeline of procs or create one proc tree const float procTreeProbability = 0.5f; if (d->fRandom->nextF() < procTreeProbability) { // A full tree with 5 levels (31 nodes) may exceed the max allowed length of the gl // processor key; maxTreeLevels should be a number from 1 to 4 inclusive. const int maxTreeLevels = 4; SkAutoTUnref fp( create_random_proc_tree(d, 2, maxTreeLevels)); pipelineBuilder->addColorFragmentProcessor(fp); } else { int numProcs = d->fRandom->nextULessThan(maxStages + 1); int numColorProcs = d->fRandom->nextULessThan(numProcs + 1); for (int s = 0; s < numProcs;) { SkAutoTUnref fp( GrProcessorTestFactory::Create(d)); SkASSERT(fp); // finally add the stage to the correct pipeline in the drawstate if (s < numColorProcs) { pipelineBuilder->addColorFragmentProcessor(fp); } else { pipelineBuilder->addCoverageFragmentProcessor(fp); } ++s; } } } static void set_random_state(GrPipelineBuilder* pipelineBuilder, SkRandom* random) { int state = 0; for (int i = 1; i <= GrPipelineBuilder::kLast_Flag; i <<= 1) { state |= random->nextBool() * i; } // If we don't have an MSAA rendertarget then we have to disable useHWAA if ((state | GrPipelineBuilder::kHWAntialias_Flag) && !pipelineBuilder->getRenderTarget()->isUnifiedMultisampled()) { state &= ~GrPipelineBuilder::kHWAntialias_Flag; } pipelineBuilder->enableState(state); } // right now, the only thing we seem to care about in drawState's stencil is 'doesWrite()' static void set_random_stencil(GrPipelineBuilder* pipelineBuilder, SkRandom* random) { GR_STATIC_CONST_SAME_STENCIL(kDoesWriteStencil, kReplace_StencilOp, kReplace_StencilOp, kAlways_StencilFunc, 0xffff, 0xffff, 0xffff); GR_STATIC_CONST_SAME_STENCIL(kDoesNotWriteStencil, kKeep_StencilOp, kKeep_StencilOp, kNever_StencilFunc, 0xffff, 0xffff, 0xffff); if (random->nextBool()) { pipelineBuilder->setStencil(kDoesWriteStencil); } else { pipelineBuilder->setStencil(kDoesNotWriteStencil); } } bool GrDrawingManager::ProgramUnitTest(GrContext* context, GrDrawTarget* drawTarget, int maxStages) { GrDrawingManager* drawingManager = context->drawingManager(); // setup dummy textures GrSurfaceDesc dummyDesc; dummyDesc.fFlags = kRenderTarget_GrSurfaceFlag; dummyDesc.fConfig = kSkia8888_GrPixelConfig; dummyDesc.fWidth = 34; dummyDesc.fHeight = 18; SkAutoTUnref dummyTexture1( context->textureProvider()->createTexture(dummyDesc, false, nullptr, 0)); dummyDesc.fFlags = kNone_GrSurfaceFlags; dummyDesc.fConfig = kAlpha_8_GrPixelConfig; dummyDesc.fWidth = 16; dummyDesc.fHeight = 22; SkAutoTUnref dummyTexture2( context->textureProvider()->createTexture(dummyDesc, false, nullptr, 0)); if (!dummyTexture1 || ! dummyTexture2) { SkDebugf("Could not allocate dummy textures"); return false; } GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()}; // dummy scissor state GrScissorState scissor; // wide open clip GrClip clip; SkRandom random; static const int NUM_TESTS = 2048; for (int t = 0; t < NUM_TESTS; t++) { // setup random render target(can fail) SkAutoTUnref rt(random_render_target( context->textureProvider(), &random, context->caps())); if (!rt.get()) { SkDebugf("Could not allocate render target"); return false; } GrPipelineBuilder pipelineBuilder; pipelineBuilder.setRenderTarget(rt.get()); pipelineBuilder.setClip(clip); SkAutoTUnref batch(GrRandomDrawBatch(&random, context)); SkASSERT(batch); GrProcessorTestData ptd(&random, context, context->caps(), dummyTextures); set_random_color_coverage_stages(&pipelineBuilder, &ptd, maxStages); set_random_xpf(&pipelineBuilder, &ptd); set_random_state(&pipelineBuilder, &random); set_random_stencil(&pipelineBuilder, &random); drawTarget->drawBatch(pipelineBuilder, batch); } // Flush everything, test passes if flush is successful(ie, no asserts are hit, no crashes) drawingManager->flush(); // Validate that GrFPs work correctly without an input. GrSurfaceDesc rtDesc; rtDesc.fWidth = kRenderTargetWidth; rtDesc.fHeight = kRenderTargetHeight; rtDesc.fFlags = kRenderTarget_GrSurfaceFlag; rtDesc.fConfig = kRGBA_8888_GrPixelConfig; SkAutoTUnref rt( context->textureProvider()->createTexture(rtDesc, false)->asRenderTarget()); int fpFactoryCnt = GrProcessorTestFactory::Count(); for (int i = 0; i < fpFactoryCnt; ++i) { // Since FP factories internally randomize, call each 10 times. for (int j = 0; j < 10; ++j) { SkAutoTUnref batch(GrRandomDrawBatch(&random, context)); SkASSERT(batch); GrProcessorTestData ptd(&random, context, context->caps(), dummyTextures); GrPipelineBuilder builder; builder.setXPFactory(GrPorterDuffXPFactory::Create(SkXfermode::kSrc_Mode))->unref(); builder.setRenderTarget(rt); builder.setClip(clip); SkAutoTUnref fp( GrProcessorTestFactory::CreateIdx(i, &ptd)); SkAutoTUnref blockFP( BlockInputFragmentProcessor::Create(fp)); builder.addColorFragmentProcessor(blockFP); drawTarget->drawBatch(builder, batch); drawingManager->flush(); } } return true; } DEF_GPUTEST(GLPrograms, reporter, factory) { // Set a locale that would cause shader compilation to fail because of , as decimal separator. // skbug 3330 #ifdef SK_BUILD_FOR_WIN GrAutoLocaleSetter als("sv-SE"); #else GrAutoLocaleSetter als("sv_SE.UTF-8"); #endif // We suppress prints to avoid spew GrContextOptions opts; opts.fSuppressPrints = true; GrContextFactory debugFactory(opts); for (int type = 0; type < GrContextFactory::kLastGLContextType; ++type) { GrContext* context = debugFactory.get(static_cast(type)); if (context) { GrGLGpu* gpu = static_cast(context->getGpu()); /* * For the time being, we only support the test with desktop GL or for android on * ARM platforms * TODO When we run ES 3.00 GLSL in more places, test again */ int maxStages; if (kGL_GrGLStandard == gpu->glStandard() || kARM_GrGLVendor == gpu->ctxInfo().vendor()) { maxStages = 6; } else if (kTegra3_GrGLRenderer == gpu->ctxInfo().renderer() || kOther_GrGLRenderer == gpu->ctxInfo().renderer()) { maxStages = 1; } else { return; } #if SK_ANGLE // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. if (type == GrContextFactory::kANGLE_GLContextType) { maxStages = 2; } #endif #if SK_COMMAND_BUFFER // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. // TODO(hendrikw): This only needs to happen with the ANGLE comand buffer backend. if (type == GrContextFactory::kCommandBuffer_GLContextType) { maxStages = 2; } #endif GrTestTarget testTarget; context->getTestTarget(&testTarget); REPORTER_ASSERT(reporter, GrDrawingManager::ProgramUnitTest( context, testTarget.target(), maxStages)); } } } #endif