/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ // This is a GPU-backend specific test. It relies on static intializers to work #include "SkTypes.h" #if SK_SUPPORT_GPU && SK_ALLOW_STATIC_GLOBAL_INITIALIZERS #include "GrTBackendProcessorFactory.h" #include "GrContextFactory.h" #include "GrOptDrawState.h" #include "effects/GrConfigConversionEffect.h" #include "gl/builders/GrGLProgramBuilder.h" #include "gl/GrGLPathRendering.h" #include "gl/GrGpuGL.h" #include "SkChecksum.h" #include "SkRandom.h" #include "Test.h" /* * A dummy effect which just tries to insert a massive key and verify that it can retrieve the * whole thing correctly */ static const uint32_t kMaxKeySize = 1024; class GLBigKeyProcessor; class BigKeyProcessor : public GrFragmentProcessor { public: static GrFragmentProcessor* Create() { GR_CREATE_STATIC_FRAGMENT_PROCESSOR(gBigKeyProcessor, BigKeyProcessor, ()) return SkRef(gBigKeyProcessor); } static const char* Name() { return "Big ol' Key"; } virtual const GrBackendFragmentProcessorFactory& getFactory() const SK_OVERRIDE { return GrTBackendFragmentProcessorFactory::getInstance(); } typedef GLBigKeyProcessor GLProcessor; private: BigKeyProcessor() { } virtual bool onIsEqual(const GrProcessor&) const SK_OVERRIDE { return true; } virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE { } GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrFragmentProcessor INHERITED; }; GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor); GrFragmentProcessor* BigKeyProcessor::TestCreate(SkRandom*, GrContext*, const GrDrawTargetCaps&, GrTexture*[]) { return BigKeyProcessor::Create(); } class GLBigKeyProcessor : public GrGLFragmentProcessor { public: GLBigKeyProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&) : INHERITED(factory) {} virtual void emitCode(GrGLFPBuilder* builder, const GrFragmentProcessor& fp, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) { for (uint32_t i = 0; i < kMaxKeySize; i++) { SkASSERT(key.get32(i) == i); } } static void GenKey(const GrProcessor& processor, const GrGLCaps&, GrProcessorKeyBuilder* b) { for (uint32_t i = 0; i < kMaxKeySize; i++) { b->add32(i); } } private: typedef GrGLFragmentProcessor INHERITED; }; /* * Begin test code */ static const int kRenderTargetHeight = 1; static const int kRenderTargetWidth = 1; static GrRenderTarget* random_render_target(GrGpuGL* gpu, const GrCacheID& cacheId, SkRandom* random) { // setup render target GrTextureParams params; GrTextureDesc texDesc; texDesc.fWidth = kRenderTargetWidth; texDesc.fHeight = kRenderTargetHeight; texDesc.fFlags = kRenderTarget_GrTextureFlagBit; texDesc.fConfig = kRGBA_8888_GrPixelConfig; texDesc.fOrigin = random->nextBool() == true ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin; GrTexture* texture = gpu->getContext()->findAndRefTexture(texDesc, cacheId, ¶ms); if (NULL == texture) { texture = gpu->getContext()->createTexture(¶ms, texDesc, cacheId, 0, 0); if (NULL == texture) { return NULL; } } return texture->asRenderTarget(); } // TODO clean this up, we have to do this to test geometry processors but there has got to be // a better way. In the mean time, we actually fill out these generic vertex attribs below with // the correct vertex attribs from the GP. We have to ensure, however, we don't try to add more // than two attributes. In addition, we 'pad' the below array with GPs up to 6 entries, 4 fixed // function vertex attributes and 2 GP custom attributes. GrVertexAttrib kGenericVertexAttribs[] = { { kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding }, { kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding }, { kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding }, { kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding }, { kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding }, { kVec2f_GrVertexAttribType, 0, kGeometryProcessor_GrVertexAttribBinding } }; /* * convert sl type to vertexattrib type, not a complete implementation, only use for debugging */ static GrVertexAttribType convert_sltype_to_attribtype(GrSLType type) { switch (type) { case kFloat_GrSLType: return kFloat_GrVertexAttribType; case kVec2f_GrSLType: return kVec2f_GrVertexAttribType; case kVec3f_GrSLType: return kVec3f_GrVertexAttribType; case kVec4f_GrSLType: return kVec4f_GrVertexAttribType; default: SkFAIL("Type isn't convertible"); return kFloat_GrVertexAttribType; } } // end test hack static void setup_random_ff_attribute(GrVertexAttribBinding binding, GrVertexAttribType type, SkRandom* random, int* attribIndex, int* runningStride) { if (random->nextBool()) { kGenericVertexAttribs[*attribIndex].fType = type; kGenericVertexAttribs[*attribIndex].fOffset = *runningStride; kGenericVertexAttribs[*attribIndex].fBinding = binding; *runningStride += GrVertexAttribTypeSize(kGenericVertexAttribs[(*attribIndex)++].fType); } } static void set_random_gp(GrGpuGL* gpu, SkRandom* random, GrTexture* dummyTextures[]) { GrProgramElementRef gp( GrProcessorTestFactory::CreateStage(random, gpu->getContext(), *gpu->caps(), dummyTextures)); SkASSERT(gp); // we have to set dummy vertex attributes, first we setup the fixed function attributes // always leave the position attribute untouched in the array int attribIndex = 1; int runningStride = GrVertexAttribTypeSize(kGenericVertexAttribs[0].fType); // local coords setup_random_ff_attribute(kLocalCoord_GrVertexAttribBinding, kVec2f_GrVertexAttribType, random, &attribIndex, &runningStride); // color setup_random_ff_attribute(kColor_GrVertexAttribBinding, kVec4f_GrVertexAttribType, random, &attribIndex, &runningStride); // coverage setup_random_ff_attribute(kCoverage_GrVertexAttribBinding, kVec4f_GrVertexAttribType, random, &attribIndex, &runningStride); // Update the geometry processor attributes const GrGeometryProcessor::VertexAttribArray& v = gp->getVertexAttribs(); int numGPAttribs = v.count(); SkASSERT(numGPAttribs <= GrGeometryProcessor::kMaxVertexAttribs && GrGeometryProcessor::kMaxVertexAttribs == 2); // we actually can't overflow if kMaxVertexAttribs == 2, but GCC 4.8 wants more proof int maxIndex = SK_ARRAY_COUNT(kGenericVertexAttribs); for (int i = 0; i < numGPAttribs && i + attribIndex < maxIndex; i++) { kGenericVertexAttribs[i + attribIndex].fType = convert_sltype_to_attribtype(v[i].getType()); kGenericVertexAttribs[i + attribIndex].fOffset = runningStride; kGenericVertexAttribs[i + attribIndex].fBinding = kGeometryProcessor_GrVertexAttribBinding; runningStride += GrVertexAttribTypeSize(kGenericVertexAttribs[i + attribIndex].fType); } // update the vertex attributes with the ds GrDrawState* ds = gpu->drawState(); ds->setVertexAttribs(attribIndex + numGPAttribs, runningStride); ds->setGeometryProcessor(gp); } static void set_random_color_coverage_stages(GrGpuGL* gpu, int maxStages, bool usePathRendering, SkRandom* random, GrTexture* dummyTextures[]) { int numProcs = random->nextULessThan(maxStages + 1); int numColorProcs = random->nextULessThan(numProcs + 1); int currTextureCoordSet = 0; for (int s = 0; s < numProcs;) { GrProgramElementRef fp( GrProcessorTestFactory::CreateStage(random, gpu->getContext(), *gpu->caps(), dummyTextures)); SkASSERT(fp); // don't add dst color reads to coverage stage if (s >= numColorProcs && fp->willReadDstColor()) { continue; } // If adding this effect would exceed the max texture coord set count then generate a // new random effect. if (usePathRendering && gpu->glPathRendering()->texturingMode() == GrGLPathRendering::FixedFunction_TexturingMode) {; int numTransforms = fp->numTransforms(); if (currTextureCoordSet + numTransforms > gpu->glCaps().maxFixedFunctionTextureCoords()) { continue; } currTextureCoordSet += numTransforms; } // finally add the stage to the correct pipeline in the drawstate GrDrawState* ds = gpu->drawState(); if (s < numColorProcs) { ds->addColorProcessor(fp); } else { ds->addCoverageProcessor(fp); } ++s; } } // There are only a few cases of random colors which interest us enum ColorMode { kAllOnes_ColorMode, kAllZeros_ColorMode, kAlphaOne_ColorMode, kRandom_ColorMode, kLast_ColorMode = kRandom_ColorMode }; static void set_random_color(GrGpuGL* gpu, SkRandom* random) { ColorMode colorMode = ColorMode(random->nextULessThan(kLast_ColorMode + 1)); GrColor color; switch (colorMode) { case kAllOnes_ColorMode: color = GrColorPackRGBA(0xFF, 0xFF, 0xFF, 0xFF); break; case kAllZeros_ColorMode: color = GrColorPackRGBA(0, 0, 0, 0); break; case kAlphaOne_ColorMode: color = GrColorPackRGBA(random->nextULessThan(256), random->nextULessThan(256), random->nextULessThan(256), 0xFF); break; case kRandom_ColorMode: uint8_t alpha = random->nextULessThan(256); color = GrColorPackRGBA(random->nextRangeU(0, alpha), random->nextRangeU(0, alpha), random->nextRangeU(0, alpha), alpha); break; } GrColorIsPMAssert(color); gpu->drawState()->setColor(color); } // There are only a few cases of random coverages which interest us enum CoverageMode { kZero_CoverageMode, kFF_CoverageMode, kRandom_CoverageMode, kLast_CoverageMode = kRandom_CoverageMode }; static void set_random_coverage(GrGpuGL* gpu, SkRandom* random) { CoverageMode coverageMode = CoverageMode(random->nextULessThan(kLast_CoverageMode + 1)); uint8_t coverage; switch (coverageMode) { case kZero_CoverageMode: coverage = 0; break; case kFF_CoverageMode: coverage = 0xFF; break; case kRandom_CoverageMode: coverage = uint8_t(random->nextU()); break; } gpu->drawState()->setCoverage(coverage); } static void set_random_hints(GrGpuGL* gpu, SkRandom* random) { for (int i = 1; i <= GrDrawState::kLast_Hint; i <<= 1) { gpu->drawState()->setHint(GrDrawState::Hints(i), random->nextBool()); } } static void set_random_state(GrGpuGL* gpu, SkRandom* random) { int state = 0; for (int i = 1; i <= GrDrawState::kLastPublicStateBit; i <<= 1) { state |= random->nextBool() * i; } gpu->drawState()->enableState(state); } // this function will randomly pick non-self referencing blend modes static void set_random_blend_func(GrGpuGL* gpu, SkRandom* random) { GrBlendCoeff src; do { src = GrBlendCoeff(random->nextRangeU(kFirstPublicGrBlendCoeff, kLastPublicGrBlendCoeff)); } while (GrBlendCoeffRefsSrc(src)); GrBlendCoeff dst; do { dst = GrBlendCoeff(random->nextRangeU(kFirstPublicGrBlendCoeff, kLastPublicGrBlendCoeff)); } while (GrBlendCoeffRefsDst(dst)); gpu->drawState()->setBlendFunc(src, dst); } // right now, the only thing we seem to care about in drawState's stencil is 'doesWrite()' static void set_random_stencil(GrGpuGL* gpu, SkRandom* random) { GR_STATIC_CONST_SAME_STENCIL(kDoesWriteStencil, kReplace_StencilOp, kReplace_StencilOp, kAlways_StencilFunc, 0xffff, 0xffff, 0xffff); GR_STATIC_CONST_SAME_STENCIL(kDoesNotWriteStencil, kKeep_StencilOp, kKeep_StencilOp, kNever_StencilFunc, 0xffff, 0xffff, 0xffff); if (random->nextBool()) { gpu->drawState()->setStencil(kDoesWriteStencil); } else { gpu->drawState()->setStencil(kDoesNotWriteStencil); } } bool GrGpuGL::programUnitTest(int maxStages) { // setup dummy textures GrTextureDesc dummyDesc; dummyDesc.fFlags = kRenderTarget_GrTextureFlagBit; dummyDesc.fConfig = kSkia8888_GrPixelConfig; dummyDesc.fWidth = 34; dummyDesc.fHeight = 18; SkAutoTUnref dummyTexture1(this->createTexture(dummyDesc, NULL, 0)); dummyDesc.fFlags = kNone_GrTextureFlags; dummyDesc.fConfig = kAlpha_8_GrPixelConfig; dummyDesc.fWidth = 16; dummyDesc.fHeight = 22; SkAutoTUnref dummyTexture2(this->createTexture(dummyDesc, NULL, 0)); if (!dummyTexture1 || ! dummyTexture2) { SkDebugf("Could not allocate dummy textures"); return false; } GrTexture* dummyTextures[] = {dummyTexture1.get(), dummyTexture2.get()}; // Setup texture cache id key const GrCacheID::Domain glProgramsDomain = GrCacheID::GenerateDomain(); GrCacheID::Key key; memset(&key, 0, sizeof(key)); key.fData32[0] = kRenderTargetWidth; key.fData32[1] = kRenderTargetHeight; GrCacheID glProgramsCacheID(glProgramsDomain, key); // setup clip SkRect screen = SkRect::MakeWH(SkIntToScalar(kRenderTargetWidth), SkIntToScalar(kRenderTargetHeight)); SkClipStack stack; stack.clipDevRect(screen, SkRegion::kReplace_Op, false); // wrap the SkClipStack in a GrClipData GrClipData clipData; clipData.fClipStack = &stack; this->setClip(&clipData); SkRandom random; static const int NUM_TESTS = 512; for (int t = 0; t < NUM_TESTS;) { // setup random render target(can fail) GrRenderTarget* rtPtr = random_render_target(this, glProgramsCacheID, &random); if (!rtPtr) { SkDebugf("Could not allocate render target"); return false; } GrTGpuResourceRef rt(SkRef(rtPtr), kWrite_GrIOType); GrDrawState* ds = this->drawState(); ds->setRenderTarget(rt.get()); // if path rendering we have to setup a couple of things like the draw type bool usePathRendering = this->glCaps().pathRenderingSupport() && random.nextBool(); GrGpu::DrawType drawType = usePathRendering ? GrGpu::kDrawPath_DrawType : GrGpu::kDrawPoints_DrawType; // twiddle drawstate knobs randomly bool hasGeometryProcessor = usePathRendering ? false : random.nextBool(); if (hasGeometryProcessor) { set_random_gp(this, &random, dummyTextures); } set_random_color_coverage_stages(this, maxStages - hasGeometryProcessor, usePathRendering, &random, dummyTextures); set_random_color(this, &random); set_random_coverage(this, &random); set_random_hints(this, &random); set_random_state(this, &random); set_random_blend_func(this, &random); set_random_stencil(this, &random); // create optimized draw state, setup readDst texture if required, and build a descriptor // and program. ODS creation can fail, so we have to check SkAutoTUnref ods(GrOptDrawState::Create(this->getDrawState(), *this->caps(), drawType)); if (!ods.get()) { ds->reset(); continue; } const GrGeometryStage* geometryProcessor = NULL; SkSTArray<8, const GrFragmentStage*, true> colorStages; SkSTArray<8, const GrFragmentStage*, true> coverageStages; GrGLProgramDesc desc; GrDeviceCoordTexture dstCopy; if (!this->setupDstReadIfNecessary(&dstCopy, NULL)) { SkDebugf("Couldn't setup dst read texture"); return false; } if (!GrGLProgramDesc::Build(*ods, drawType, ods->getSrcBlendCoeff(), ods->getDstBlendCoeff(), this, dstCopy.texture() ? &dstCopy : NULL, &geometryProcessor, &colorStages, &coverageStages, &desc)) { SkDebugf("Failed to generate GL program descriptor"); return false; } SkAutoTUnref program(GrGLProgramBuilder::CreateProgram(*ods, desc, drawType, geometryProcessor, colorStages.begin(), coverageStages.begin(), this)); if (NULL == program.get()) { SkDebugf("Failed to create program!"); return false; } // We have to reset the drawstate because we might have added a gp ds->reset(); // because occasionally optimized drawstate creation will fail for valid reasons, we only // want to increment on success ++t; } return true; } DEF_GPUTEST(GLPrograms, reporter, factory) { for (int type = 0; type < GrContextFactory::kLastGLContextType; ++type) { GrContext* context = factory->get(static_cast(type)); if (context) { GrGpuGL* gpu = static_cast(context->getGpu()); /* * For the time being, we only support the test with desktop GL or for android on * ARM platforms * TODO When we run ES 3.00 GLSL in more places, test again */ int maxStages; if (kGL_GrGLStandard == gpu->glStandard() || kARM_GrGLVendor == gpu->ctxInfo().vendor()) { maxStages = 6; } else if (kTegra3_GrGLRenderer == gpu->ctxInfo().renderer() || kOther_GrGLRenderer == gpu->ctxInfo().renderer()) { maxStages = 1; } else { return; } #if SK_ANGLE // Some long shaders run out of temporary registers in the D3D compiler on ANGLE. if (type == GrContextFactory::kANGLE_GLContextType) { maxStages = 3; } #endif REPORTER_ASSERT(reporter, gpu->programUnitTest(maxStages)); } } } #endif