/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Resources.h" #include "SkCodec.h" #include "SkCodecPriv.h" #include "SkColorPriv.h" #include "SkColorSpace.h" #include "SkColorSpace_A2B.h" #include "SkColorSpace_Base.h" #include "SkColorSpace_XYZ.h" #include "SkColorSpaceXform_Base.h" #include "Test.h" static constexpr int kChannels = 3; class ColorSpaceXformTest { public: static std::unique_ptr CreateIdentityXform(const sk_sp& gammas) { // Logically we can pass any matrix here. For simplicty, pass I(), i.e. D50 XYZ gamut. sk_sp space(new SkColorSpace_XYZ( kNonStandard_SkGammaNamed, gammas, SkMatrix::I(), nullptr)); // Use special testing entry point, so we don't skip the xform, even though src == dst. return SlowIdentityXform(static_cast(space.get())); } static std::unique_ptr CreateIdentityXform_A2B( SkGammaNamed gammaNamed, const sk_sp& gammas) { std::vector srcElements; // sRGB const float values[16] = { 0.4358f, 0.3853f, 0.1430f, 0.0f, 0.2224f, 0.7170f, 0.0606f, 0.0f, 0.0139f, 0.0971f, 0.7139f, 0.0f, 0.0000f, 0.0000f, 0.0000f, 1.0f }; SkMatrix44 arbitraryMatrix{SkMatrix44::kUninitialized_Constructor}; arbitraryMatrix.setRowMajorf(values); if (kNonStandard_SkGammaNamed == gammaNamed) { SkASSERT(gammas); srcElements.push_back(SkColorSpace_A2B::Element(gammas)); } else { srcElements.push_back(SkColorSpace_A2B::Element(gammaNamed, kChannels)); } srcElements.push_back(SkColorSpace_A2B::Element(arbitraryMatrix)); auto srcSpace = ColorSpaceXformTest::CreateA2BSpace(SkColorSpace_A2B::PCS::kXYZ, SkColorSpace_Base::kRGB_ICCTypeFlag, std::move(srcElements)); sk_sp dstSpace(new SkColorSpace_XYZ(gammaNamed, gammas, arbitraryMatrix, nullptr)); return SkColorSpaceXform::New(static_cast(srcSpace.get()), static_cast(dstSpace.get())); } static sk_sp CreateA2BSpace(SkColorSpace_A2B::PCS pcs, SkColorSpace_Base::ICCTypeFlag iccType, std::vector elements) { return sk_sp(new SkColorSpace_A2B(iccType, std::move(elements), pcs, nullptr)); } }; static bool almost_equal(int x, int y, int tol=1) { return SkTAbs(x-y) <= tol; } static void test_identity_xform(skiatest::Reporter* r, const sk_sp& gammas, bool repeat) { // Arbitrary set of 10 pixels constexpr int width = 10; constexpr uint32_t srcPixels[width] = { 0xFFABCDEF, 0xFF146829, 0xFF382759, 0xFF184968, 0xFFDE8271, 0xFF32AB52, 0xFF0383BC, 0xFF000102, 0xFFFFFFFF, 0xFFDDEEFF, }; uint32_t dstPixels[width]; // Create and perform an identity xform. std::unique_ptr xform = ColorSpaceXformTest::CreateIdentityXform(gammas); bool result = xform->apply(select_xform_format(kN32_SkColorType), dstPixels, SkColorSpaceXform::kBGRA_8888_ColorFormat, srcPixels, width, kOpaque_SkAlphaType); REPORTER_ASSERT(r, result); // Since the src->dst matrix is the identity, and the gamma curves match, // the pixels should be unchanged. for (int i = 0; i < width; i++) { REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 0) & 0xFF), SkGetPackedB32(dstPixels[i]))); REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 8) & 0xFF), SkGetPackedG32(dstPixels[i]))); REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 16) & 0xFF), SkGetPackedR32(dstPixels[i]))); REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 24) & 0xFF), SkGetPackedA32(dstPixels[i]))); } if (repeat) { // We should cache part of the transform after the run. So it is interesting // to make sure it still runs correctly the second time. test_identity_xform(r, gammas, false); } } static void test_identity_xform_A2B(skiatest::Reporter* r, SkGammaNamed gammaNamed, const sk_sp& gammas, int tol=1) { // Arbitrary set of 10 pixels constexpr int width = 10; constexpr uint32_t srcPixels[width] = { 0xFFABCDEF, 0xFF146829, 0xFF382759, 0xFF184968, 0xFFDE8271, 0xFF32AB52, 0xFF0383BC, 0xFF000102, 0xFFFFFFFF, 0xFFDDEEFF, }; uint32_t dstPixels[width]; // Create and perform an identity xform. auto xform = ColorSpaceXformTest::CreateIdentityXform_A2B(gammaNamed, gammas); bool result = xform->apply(select_xform_format(kN32_SkColorType), dstPixels, SkColorSpaceXform::kBGRA_8888_ColorFormat, srcPixels, width, kOpaque_SkAlphaType); REPORTER_ASSERT(r, result); // Since the src->dst matrix is the identity, and the gamma curves match, // the pixels should be ~unchanged. for (int i = 0; i < width; i++) { REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 0) & 0xFF), SkGetPackedB32(dstPixels[i]), tol)); REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 8) & 0xFF), SkGetPackedG32(dstPixels[i]), tol)); REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 16) & 0xFF), SkGetPackedR32(dstPixels[i]), tol)); REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 24) & 0xFF), SkGetPackedA32(dstPixels[i]), tol)); } } DEF_TEST(ColorSpaceXform_TableGamma, r) { // Lookup-table based gamma curves constexpr size_t tableSize = 10; void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize); sk_sp gammas = sk_sp(new (memory) SkGammas(kChannels)); for (int i = 0; i < kChannels; ++i) { gammas->fType[i] = SkGammas::Type::kTable_Type; gammas->fData[i].fTable.fSize = tableSize; gammas->fData[i].fTable.fOffset = 0; } float* table = SkTAddOffset(memory, sizeof(SkGammas)); table[0] = 0.00f; table[1] = 0.05f; table[2] = 0.10f; table[3] = 0.15f; table[4] = 0.25f; table[5] = 0.35f; table[6] = 0.45f; table[7] = 0.60f; table[8] = 0.75f; table[9] = 1.00f; // This table's pretty small compared to real ones in the wild (think 256), // so we give test_identity_xform_A2B a wide tolerance. // This lets us implement table transfer functions with a single lookup. const int tolerance = 13; test_identity_xform(r, gammas, true); test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas, tolerance); } DEF_TEST(ColorSpaceXform_ParametricGamma, r) { // Parametric gamma curves void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(SkColorSpaceTransferFn)); sk_sp gammas = sk_sp(new (memory) SkGammas(kChannels)); for (int i = 0; i < kChannels; ++i) { gammas->fType[i] = SkGammas::Type::kParam_Type; gammas->fData[i].fParamOffset = 0; } SkColorSpaceTransferFn* params = SkTAddOffset (memory, sizeof(SkGammas)); // Interval. params->fD = 0.04045f; // First equation: params->fC = 1.0f / 12.92f; params->fF = 0.0f; // Second equation: // Note that the function is continuous (it's actually sRGB). params->fA = 1.0f / 1.055f; params->fB = 0.055f / 1.055f; params->fE = 0.0f; params->fG = 2.4f; test_identity_xform(r, gammas, true); test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas); } DEF_TEST(ColorSpaceXform_ExponentialGamma, r) { // Exponential gamma curves sk_sp gammas = sk_sp(new SkGammas(kChannels)); for (int i = 0; i < kChannels; ++i) { gammas->fType[i] = SkGammas::Type::kValue_Type; gammas->fData[i].fValue = 1.4f; } test_identity_xform(r, gammas, true); test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas); } DEF_TEST(ColorSpaceXform_NamedGamma, r) { sk_sp gammas = sk_sp(new SkGammas(kChannels)); gammas->fType[0] = gammas->fType[1] = gammas->fType[2] = SkGammas::Type::kNamed_Type; gammas->fData[0].fNamed = kSRGB_SkGammaNamed; gammas->fData[1].fNamed = k2Dot2Curve_SkGammaNamed; gammas->fData[2].fNamed = kLinear_SkGammaNamed; test_identity_xform(r, gammas, true); test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas); test_identity_xform_A2B(r, kSRGB_SkGammaNamed, nullptr); test_identity_xform_A2B(r, k2Dot2Curve_SkGammaNamed, nullptr); test_identity_xform_A2B(r, kLinear_SkGammaNamed, nullptr); } DEF_TEST(ColorSpaceXform_NonMatchingGamma, r) { constexpr size_t tableSize = 10; void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize + sizeof(SkColorSpaceTransferFn)); sk_sp gammas = sk_sp(new (memory) SkGammas(kChannels)); float* table = SkTAddOffset(memory, sizeof(SkGammas)); table[0] = 0.00f; table[1] = 0.15f; table[2] = 0.20f; table[3] = 0.25f; table[4] = 0.35f; table[5] = 0.45f; table[6] = 0.55f; table[7] = 0.70f; table[8] = 0.85f; table[9] = 1.00f; SkColorSpaceTransferFn* params = SkTAddOffset(memory, sizeof(SkGammas) + sizeof(float) * tableSize); params->fA = 1.0f / 1.055f; params->fB = 0.055f / 1.055f; params->fC = 1.0f / 12.92f; params->fD = 0.04045f; params->fE = 0.0f; params->fF = 0.0f; params->fG = 2.4f; gammas->fType[0] = SkGammas::Type::kValue_Type; gammas->fData[0].fValue = 1.2f; // See ColorSpaceXform_TableGamma... we've decided to allow some tolerance // for SkJumper's implementation of tables. const int tolerance = 12; gammas->fType[1] = SkGammas::Type::kTable_Type; gammas->fData[1].fTable.fSize = tableSize; gammas->fData[1].fTable.fOffset = 0; gammas->fType[2] = SkGammas::Type::kParam_Type; gammas->fData[2].fParamOffset = sizeof(float) * tableSize; test_identity_xform(r, gammas, true); test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas, tolerance); } DEF_TEST(ColorSpaceXform_A2BCLUT, r) { constexpr int inputChannels = 3; constexpr int gp = 4; // # grid points constexpr int numEntries = gp*gp*gp*3; const uint8_t gridPoints[3] = {gp, gp, gp}; void* memory = sk_malloc_throw(sizeof(SkColorLookUpTable) + sizeof(float) * numEntries); sk_sp colorLUT(new (memory) SkColorLookUpTable(inputChannels, gridPoints)); // make a CLUT that rotates R, G, and B ie R->G, G->B, B->R float* table = SkTAddOffset(memory, sizeof(SkColorLookUpTable)); for (int r = 0; r < gp; ++r) { for (int g = 0; g < gp; ++g) { for (int b = 0; b < gp; ++b) { table[3*(gp*gp*r + gp*g + b) + 0] = g * (1.f / (gp - 1.f)); table[3*(gp*gp*r + gp*g + b) + 1] = b * (1.f / (gp - 1.f)); table[3*(gp*gp*r + gp*g + b) + 2] = r * (1.f / (gp - 1.f)); } } } // build an even distribution of pixels every (7 / 255) steps // to test the xform on constexpr int pixelgp = 7; constexpr int numPixels = pixelgp*pixelgp*pixelgp; SkAutoTMalloc srcPixels(numPixels); int srcIndex = 0; for (int r = 0; r < pixelgp; ++r) { for (int g = 0; g < pixelgp; ++g) { for (int b = 0; b < pixelgp; ++b) { const int red = (int) (r * (255.f / (pixelgp - 1.f))); const int green = (int) (g * (255.f / (pixelgp - 1.f))); const int blue = (int) (b * (255.f / (pixelgp - 1.f))); srcPixels[srcIndex] = SkColorSetRGB(red, green, blue); ++srcIndex; } } } SkAutoTMalloc dstPixels(numPixels); // src space is identity besides CLUT std::vector srcElements; srcElements.push_back(SkColorSpace_A2B::Element(std::move(colorLUT))); auto srcSpace = ColorSpaceXformTest::CreateA2BSpace(SkColorSpace_A2B::PCS::kXYZ, SkColorSpace_Base::kRGB_ICCTypeFlag, std::move(srcElements)); // dst space is entirely identity auto dstSpace = SkColorSpace::MakeRGB(SkColorSpace::kLinear_RenderTargetGamma, SkMatrix44::I()); auto xform = SkColorSpaceXform::New(srcSpace.get(), dstSpace.get()); bool result = xform->apply(SkColorSpaceXform::kRGBA_8888_ColorFormat, dstPixels.get(), SkColorSpaceXform::kRGBA_8888_ColorFormat, srcPixels.get(), numPixels, kOpaque_SkAlphaType); REPORTER_ASSERT(r, result); for (int i = 0; i < numPixels; ++i) { REPORTER_ASSERT(r, almost_equal(SkColorGetR(srcPixels[i]), SkColorGetG(dstPixels[i]))); REPORTER_ASSERT(r, almost_equal(SkColorGetG(srcPixels[i]), SkColorGetB(dstPixels[i]))); REPORTER_ASSERT(r, almost_equal(SkColorGetB(srcPixels[i]), SkColorGetR(dstPixels[i]))); } } DEF_TEST(SkColorSpaceXform_LoadTail, r) { std::unique_ptr srcPixel(new uint64_t[1]); srcPixel[0] = 0; uint32_t dstPixel; sk_sp adobe = SkColorSpace_Base::MakeNamed(SkColorSpace_Base::kAdobeRGB_Named); sk_sp srgb = SkColorSpace::MakeSRGB(); std::unique_ptr xform = SkColorSpaceXform::New(adobe.get(), srgb.get()); // ASAN will catch us if we read past the tail. bool success = xform->apply(SkColorSpaceXform::kRGBA_8888_ColorFormat, &dstPixel, SkColorSpaceXform::kRGBA_U16_BE_ColorFormat, srcPixel.get(), 1, kUnpremul_SkAlphaType); REPORTER_ASSERT(r, success); }