/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Resources.h" #include "SkBitmap.h" #include "SkCodec.h" #include "SkMD5.h" #include "SkRandom.h" #include "SkScaledCodec.h" #include "Test.h" static SkStreamAsset* resource(const char path[]) { SkString fullPath = GetResourcePath(path); return SkStream::NewFromFile(fullPath.c_str()); } static void md5(const SkBitmap& bm, SkMD5::Digest* digest) { SkAutoLockPixels autoLockPixels(bm); SkASSERT(bm.getPixels()); SkMD5 md5; size_t rowLen = bm.info().bytesPerPixel() * bm.width(); for (int y = 0; y < bm.height(); ++y) { md5.update(static_cast(bm.getAddr(0, y)), rowLen); } md5.finish(*digest); } /** * Compute the digest for bm and compare it to a known good digest. * @param r Reporter to assert that bm's digest matches goodDigest. * @param goodDigest The known good digest to compare to. * @param bm The bitmap to test. */ static void compare_to_good_digest(skiatest::Reporter* r, const SkMD5::Digest& goodDigest, const SkBitmap& bm) { SkMD5::Digest digest; md5(bm, &digest); REPORTER_ASSERT(r, digest == goodDigest); } /** * Test decoding an SkCodec to a particular SkImageInfo. * * Calling getPixels(info) should return expectedResult, and if goodDigest is non nullptr, * the resulting decode should match. */ static void test_info(skiatest::Reporter* r, SkCodec* codec, const SkImageInfo& info, SkCodec::Result expectedResult, const SkMD5::Digest* goodDigest) { SkBitmap bm; bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == expectedResult); if (goodDigest) { compare_to_good_digest(r, *goodDigest, bm); } } SkIRect generate_random_subset(SkRandom* rand, int w, int h) { SkIRect rect; do { rect.fLeft = rand->nextRangeU(0, w); rect.fTop = rand->nextRangeU(0, h); rect.fRight = rand->nextRangeU(0, w); rect.fBottom = rand->nextRangeU(0, h); rect.sort(); } while (rect.isEmpty()); return rect; } static void test_codec(skiatest::Reporter* r, SkCodec* codec, SkBitmap& bm, const SkImageInfo& info, const SkISize& size, bool supports565, SkMD5::Digest* digest, const SkMD5::Digest* goodDigest) { REPORTER_ASSERT(r, info.dimensions() == size); bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == SkCodec::kSuccess); md5(bm, digest); if (goodDigest) { REPORTER_ASSERT(r, *digest == *goodDigest); } { // Test decoding to 565 SkImageInfo info565 = info.makeColorType(kRGB_565_SkColorType); SkCodec::Result expected = (supports565 && info.alphaType() == kOpaque_SkAlphaType) ? SkCodec::kSuccess : SkCodec::kInvalidConversion; test_info(r, codec, info565, expected, nullptr); } // Verify that re-decoding gives the same result. It is interesting to check this after // a decode to 565, since choosing to decode to 565 may result in some of the decode // options being modified. These options should return to their defaults on another // decode to kN32, so the new digest should match the old digest. test_info(r, codec, info, SkCodec::kSuccess, digest); { // Check alpha type conversions if (info.alphaType() == kOpaque_SkAlphaType) { test_info(r, codec, info.makeAlphaType(kUnpremul_SkAlphaType), SkCodec::kInvalidConversion, nullptr); test_info(r, codec, info.makeAlphaType(kPremul_SkAlphaType), SkCodec::kInvalidConversion, nullptr); } else { // Decoding to opaque should fail test_info(r, codec, info.makeAlphaType(kOpaque_SkAlphaType), SkCodec::kInvalidConversion, nullptr); SkAlphaType otherAt = info.alphaType(); if (kPremul_SkAlphaType == otherAt) { otherAt = kUnpremul_SkAlphaType; } else { otherAt = kPremul_SkAlphaType; } // The other non-opaque alpha type should always succeed, but not match. test_info(r, codec, info.makeAlphaType(otherAt), SkCodec::kSuccess, nullptr); } } } static void check(skiatest::Reporter* r, const char path[], SkISize size, bool supportsScanlineDecoding, bool supportsSubsetDecoding, bool supports565 = true) { SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete codec(SkCodec::NewFromStream(stream.detach())); if (!codec) { ERRORF(r, "Unable to decode '%s'", path); return; } // Test full image decodes with SkCodec SkMD5::Digest codecDigest; SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType); SkBitmap bm; test_codec(r, codec, bm, info, size, supports565, &codecDigest, nullptr); // Scanline decoding follows. // Need to call startScanlineDecode() first. REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == SkCodec::kScanlineDecodingNotStarted); REPORTER_ASSERT(r, codec->skipScanlines(1) == SkCodec::kScanlineDecodingNotStarted); const SkCodec::Result startResult = codec->startScanlineDecode(info); if (supportsScanlineDecoding) { bm.eraseColor(SK_ColorYELLOW); REPORTER_ASSERT(r, startResult == SkCodec::kSuccess); for (int y = 0; y < info.height(); y++) { SkCodec::Result result = codec->getScanlines(bm.getAddr(0, y), 1, 0); REPORTER_ASSERT(r, result == SkCodec::kSuccess); } // verify that scanline decoding gives the same result. if (SkCodec::kTopDown_SkScanlineOrder == codec->getScanlineOrder()) { compare_to_good_digest(r, codecDigest, bm); } // Cannot continue to decode scanlines beyond the end REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == SkCodec::kInvalidParameters); // Interrupting a scanline decode with a full decode starts from // scratch REPORTER_ASSERT(r, codec->startScanlineDecode(info) == SkCodec::kSuccess); REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == SkCodec::kSuccess); REPORTER_ASSERT(r, codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes()) == SkCodec::kSuccess); REPORTER_ASSERT(r, codec->getScanlines(bm.getAddr(0, 0), 1, 0) == SkCodec::kScanlineDecodingNotStarted); REPORTER_ASSERT(r, codec->skipScanlines(1) == SkCodec::kScanlineDecodingNotStarted); } else { REPORTER_ASSERT(r, startResult == SkCodec::kUnimplemented); } // The rest of this function tests decoding subsets, and will decode an arbitrary number of // random subsets. // Do not attempt to decode subsets of an image of only once pixel, since there is no // meaningful subset. if (size.width() * size.height() == 1) { return; } SkRandom rand; SkIRect subset; SkCodec::Options opts; opts.fSubset = ⊂ for (int i = 0; i < 5; i++) { subset = generate_random_subset(&rand, size.width(), size.height()); SkASSERT(!subset.isEmpty()); const bool supported = codec->getValidSubset(&subset); REPORTER_ASSERT(r, supported == supportsSubsetDecoding); SkImageInfo subsetInfo = info.makeWH(subset.width(), subset.height()); SkBitmap bm; bm.allocPixels(subsetInfo); const SkCodec::Result result = codec->getPixels(bm.info(), bm.getPixels(), bm.rowBytes(), &opts, nullptr, nullptr); if (supportsSubsetDecoding) { REPORTER_ASSERT(r, result == SkCodec::kSuccess); // Webp is the only codec that supports subsets, and it will have modified the subset // to have even left/top. REPORTER_ASSERT(r, SkIsAlign2(subset.fLeft) && SkIsAlign2(subset.fTop)); } else { // No subsets will work. REPORTER_ASSERT(r, result == SkCodec::kUnimplemented); } } // SkScaledCodec tests if (supportsScanlineDecoding || supportsSubsetDecoding){ SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete codec(SkScaledCodec::NewFromStream(stream.detach())); if (!codec) { ERRORF(r, "Unable to decode '%s'", path); return; } SkBitmap bm; SkMD5::Digest scaledCodecDigest; test_codec(r, codec, bm, info, size, supports565, &scaledCodecDigest, &codecDigest); } } DEF_TEST(Codec, r) { // WBMP check(r, "mandrill.wbmp", SkISize::Make(512, 512), true, false); // WEBP check(r, "baby_tux.webp", SkISize::Make(386, 395), false, true); check(r, "color_wheel.webp", SkISize::Make(128, 128), false, true); check(r, "yellow_rose.webp", SkISize::Make(400, 301), false, true); // BMP check(r, "randPixels.bmp", SkISize::Make(8, 8), true, false); // ICO // These two tests examine interestingly different behavior: // Decodes an embedded BMP image check(r, "color_wheel.ico", SkISize::Make(128, 128), false, false); // Decodes an embedded PNG image check(r, "google_chrome.ico", SkISize::Make(256, 256), false, false); // GIF check(r, "box.gif", SkISize::Make(200, 55), true, false); check(r, "color_wheel.gif", SkISize::Make(128, 128), true, false); check(r, "randPixels.gif", SkISize::Make(8, 8), true, false); // JPG check(r, "CMYK.jpg", SkISize::Make(642, 516), true, false, false); check(r, "color_wheel.jpg", SkISize::Make(128, 128), true, false); check(r, "grayscale.jpg", SkISize::Make(128, 128), true, false); check(r, "mandrill_512_q075.jpg", SkISize::Make(512, 512), true, false); check(r, "randPixels.jpg", SkISize::Make(8, 8), true, false); // PNG check(r, "arrow.png", SkISize::Make(187, 312), true, false); check(r, "baby_tux.png", SkISize::Make(240, 246), true, false); check(r, "color_wheel.png", SkISize::Make(128, 128), true, false); check(r, "half-transparent-white-pixel.png", SkISize::Make(1, 1), true, false); check(r, "mandrill_128.png", SkISize::Make(128, 128), true, false); check(r, "mandrill_16.png", SkISize::Make(16, 16), true, false); check(r, "mandrill_256.png", SkISize::Make(256, 256), true, false); check(r, "mandrill_32.png", SkISize::Make(32, 32), true, false); check(r, "mandrill_512.png", SkISize::Make(512, 512), true, false); check(r, "mandrill_64.png", SkISize::Make(64, 64), true, false); check(r, "plane.png", SkISize::Make(250, 126), true, false); check(r, "plane_interlaced.png", SkISize::Make(250, 126), true, false); check(r, "randPixels.png", SkISize::Make(8, 8), true, false); check(r, "yellow_rose.png", SkISize::Make(400, 301), true, false); } // Test interlaced PNG in stripes, similar to DM's kStripe_Mode DEF_TEST(Codec_stripes, r) { const char * path = "plane_interlaced.png"; SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); } SkAutoTDelete codec(SkCodec::NewFromStream(stream.detach())); REPORTER_ASSERT(r, codec); if (!codec) { return; } switch (codec->getScanlineOrder()) { case SkCodec::kBottomUp_SkScanlineOrder: case SkCodec::kOutOfOrder_SkScanlineOrder: ERRORF(r, "This scanline order will not match the original."); return; default: break; } // Baseline for what the image should look like, using N32. const SkImageInfo info = codec->getInfo().makeColorType(kN32_SkColorType); SkBitmap bm; bm.allocPixels(info); SkAutoLockPixels autoLockPixels(bm); SkCodec::Result result = codec->getPixels(info, bm.getPixels(), bm.rowBytes()); REPORTER_ASSERT(r, result == SkCodec::kSuccess); SkMD5::Digest digest; md5(bm, &digest); // Now decode in stripes const int height = info.height(); const int numStripes = 4; int stripeHeight; int remainingLines; SkTDivMod(height, numStripes, &stripeHeight, &remainingLines); bm.eraseColor(SK_ColorYELLOW); result = codec->startScanlineDecode(info); REPORTER_ASSERT(r, result == SkCodec::kSuccess); // Odd stripes for (int i = 1; i < numStripes; i += 2) { // Skip the even stripes result = codec->skipScanlines(stripeHeight); REPORTER_ASSERT(r, result == SkCodec::kSuccess); result = codec->getScanlines(bm.getAddr(0, i * stripeHeight), stripeHeight, bm.rowBytes()); REPORTER_ASSERT(r, result == SkCodec::kSuccess); } // Even stripes result = codec->startScanlineDecode(info); REPORTER_ASSERT(r, result == SkCodec::kSuccess); for (int i = 0; i < numStripes; i += 2) { result = codec->getScanlines(bm.getAddr(0, i * stripeHeight), stripeHeight, bm.rowBytes()); REPORTER_ASSERT(r, result == SkCodec::kSuccess); // Skip the odd stripes if (i + 1 < numStripes) { result = codec->skipScanlines(stripeHeight); REPORTER_ASSERT(r, result == SkCodec::kSuccess); } } // Remainder at the end if (remainingLines > 0) { result = codec->startScanlineDecode(info); REPORTER_ASSERT(r, result == SkCodec::kSuccess); result = codec->skipScanlines(height - remainingLines); REPORTER_ASSERT(r, result == SkCodec::kSuccess); result = codec->getScanlines(bm.getAddr(0, height - remainingLines), remainingLines, bm.rowBytes()); REPORTER_ASSERT(r, result == SkCodec::kSuccess); } compare_to_good_digest(r, digest, bm); } static void test_invalid_stream(skiatest::Reporter* r, const void* stream, size_t len) { SkCodec* codec = SkCodec::NewFromStream(new SkMemoryStream(stream, len, false)); // We should not have gotten a codec. Bots should catch us if we leaked anything. REPORTER_ASSERT(r, !codec); } // Ensure that SkCodec::NewFromStream handles freeing the passed in SkStream, // even on failure. Test some bad streams. DEF_TEST(Codec_leaks, r) { // No codec should claim this as their format, so this tests SkCodec::NewFromStream. const char nonSupportedStream[] = "hello world"; // The other strings should look like the beginning of a file type, so we'll call some // internal version of NewFromStream, which must also delete the stream on failure. const unsigned char emptyPng[] = { 0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a }; const unsigned char emptyJpeg[] = { 0xFF, 0xD8, 0xFF }; const char emptyWebp[] = "RIFF1234WEBPVP"; const char emptyBmp[] = { 'B', 'M' }; const char emptyIco[] = { '\x00', '\x00', '\x01', '\x00' }; const char emptyGif[] = "GIFVER"; test_invalid_stream(r, nonSupportedStream, sizeof(nonSupportedStream)); test_invalid_stream(r, emptyPng, sizeof(emptyPng)); test_invalid_stream(r, emptyJpeg, sizeof(emptyJpeg)); test_invalid_stream(r, emptyWebp, sizeof(emptyWebp)); test_invalid_stream(r, emptyBmp, sizeof(emptyBmp)); test_invalid_stream(r, emptyIco, sizeof(emptyIco)); test_invalid_stream(r, emptyGif, sizeof(emptyGif)); } static void test_dimensions(skiatest::Reporter* r, const char path[]) { // Create the codec from the resource file SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete codec(SkScaledCodec::NewFromStream(stream.detach())); if (!codec) { ERRORF(r, "Unable to create codec '%s'", path); return; } // Check that the decode is successful for a variety of scales for (float scale = 0.05f; scale < 2.0f; scale += 0.05f) { // Scale the output dimensions SkISize scaledDims = codec->getScaledDimensions(scale); SkImageInfo scaledInfo = codec->getInfo() .makeWH(scaledDims.width(), scaledDims.height()) .makeColorType(kN32_SkColorType); // Set up for the decode size_t rowBytes = scaledDims.width() * sizeof(SkPMColor); size_t totalBytes = scaledInfo.getSafeSize(rowBytes); SkAutoTMalloc pixels(totalBytes); SkCodec::Result result = codec->getPixels(scaledInfo, pixels.get(), rowBytes, nullptr, nullptr, nullptr); REPORTER_ASSERT(r, SkCodec::kSuccess == result); } } // Ensure that onGetScaledDimensions returns valid image dimensions to use for decodes DEF_TEST(Codec_Dimensions, r) { // JPG test_dimensions(r, "CMYK.jpg"); test_dimensions(r, "color_wheel.jpg"); test_dimensions(r, "grayscale.jpg"); test_dimensions(r, "mandrill_512_q075.jpg"); test_dimensions(r, "randPixels.jpg"); // Decoding small images with very large scaling factors is a potential // source of bugs and crashes. We disable these tests in Gold because // tiny images are not very useful to look at. // Here we make sure that we do not crash or access illegal memory when // performing scaled decodes on small images. test_dimensions(r, "1x1.png"); test_dimensions(r, "2x2.png"); test_dimensions(r, "3x3.png"); test_dimensions(r, "3x1.png"); test_dimensions(r, "1x1.png"); test_dimensions(r, "16x1.png"); test_dimensions(r, "1x16.png"); test_dimensions(r, "mandrill_16.png"); } static void test_invalid(skiatest::Reporter* r, const char path[]) { SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete codec(SkCodec::NewFromStream(stream.detach())); REPORTER_ASSERT(r, nullptr == codec); } DEF_TEST(Codec_Empty, r) { // Test images that should not be able to create a codec test_invalid(r, "empty_images/zero-dims.gif"); test_invalid(r, "empty_images/zero-embedded.ico"); test_invalid(r, "empty_images/zero-width.bmp"); test_invalid(r, "empty_images/zero-height.bmp"); test_invalid(r, "empty_images/zero-width.jpg"); test_invalid(r, "empty_images/zero-height.jpg"); test_invalid(r, "empty_images/zero-width.png"); test_invalid(r, "empty_images/zero-height.png"); test_invalid(r, "empty_images/zero-width.wbmp"); test_invalid(r, "empty_images/zero-height.wbmp"); // This image is an ico with an embedded mask-bmp. This is illegal. test_invalid(r, "invalid_images/mask-bmp-ico.ico"); } static void test_invalid_parameters(skiatest::Reporter* r, const char path[]) { SkAutoTDelete stream(resource(path)); if (!stream) { SkDebugf("Missing resource '%s'\n", path); return; } SkAutoTDelete decoder(SkCodec::NewFromStream(stream.detach())); // This should return kSuccess because kIndex8 is supported. SkPMColor colorStorage[256]; int colorCount; SkCodec::Result result = decoder->startScanlineDecode( decoder->getInfo().makeColorType(kIndex_8_SkColorType), nullptr, colorStorage, &colorCount); REPORTER_ASSERT(r, SkCodec::kSuccess == result); // The rest of the test is uninteresting if kIndex8 is not supported if (SkCodec::kSuccess != result) { return; } // This should return kInvalidParameters because, in kIndex_8 mode, we must pass in a valid // colorPtr and a valid colorCountPtr. result = decoder->startScanlineDecode( decoder->getInfo().makeColorType(kIndex_8_SkColorType), nullptr, nullptr, nullptr); REPORTER_ASSERT(r, SkCodec::kInvalidParameters == result); result = decoder->startScanlineDecode( decoder->getInfo().makeColorType(kIndex_8_SkColorType)); REPORTER_ASSERT(r, SkCodec::kInvalidParameters == result); } DEF_TEST(Codec_Params, r) { test_invalid_parameters(r, "index8.png"); test_invalid_parameters(r, "mandrill.wbmp"); }