/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkColor.h" #include "SkColorPriv.h" #include "SkTaskGroup.h" #include "SkXfermode.h" #define ASSERT(x) REPORTER_ASSERT(r, x) static uint8_t double_to_u8(double d) { SkASSERT(d >= 0); SkASSERT(d < 256); return uint8_t(d); } // All algorithms we're testing have this interface. // We want a single channel blend, src over dst, assuming src is premultiplied by srcAlpha. typedef uint8_t(*Blend)(uint8_t dst, uint8_t src, uint8_t srcAlpha); // This is our golden algorithm. static uint8_t blend_double_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { SkASSERT(src <= srcAlpha); return double_to_u8(0.5 + src + dst * (255.0 - srcAlpha) / 255.0); } static uint8_t abs_diff(uint8_t a, uint8_t b) { const int diff = a - b; return diff > 0 ? diff : -diff; } static void test(skiatest::Reporter* r, int maxDiff, Blend algorithm, uint8_t dst, uint8_t src, uint8_t alpha) { const uint8_t golden = blend_double_round(dst, src, alpha); const uint8_t blend = algorithm(dst, src, alpha); if (abs_diff(blend, golden) > maxDiff) { SkDebugf("dst %02x, src %02x, alpha %02x, |%02x - %02x| > %d\n", dst, src, alpha, blend, golden, maxDiff); ASSERT(abs_diff(blend, golden) <= maxDiff); } } // Exhaustively compare an algorithm against our golden, for a given alpha. static void test_alpha(skiatest::Reporter* r, uint8_t alpha, int maxDiff, Blend algorithm) { SkASSERT(maxDiff >= 0); for (unsigned src = 0; src <= alpha; src++) { for (unsigned dst = 0; dst < 256; dst++) { test(r, maxDiff, algorithm, dst, src, alpha); } } } // Exhaustively compare an algorithm against our golden, for a given dst. static void test_dst(skiatest::Reporter* r, uint8_t dst, int maxDiff, Blend algorithm) { SkASSERT(maxDiff >= 0); for (unsigned alpha = 0; alpha < 256; alpha++) { for (unsigned src = 0; src <= alpha; src++) { test(r, maxDiff, algorithm, dst, src, alpha); } } } static uint8_t blend_double_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { return double_to_u8(src + dst * (255.0 - srcAlpha) / 255.0); } static uint8_t blend_float_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { return double_to_u8(src + dst * (255.0f - srcAlpha) / 255.0f); } static uint8_t blend_float_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { return double_to_u8(0.5f + src + dst * (255.0f - srcAlpha) / 255.0f); } static uint8_t blend_255_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { const uint16_t invAlpha = 255 - srcAlpha; const uint16_t product = dst * invAlpha; return src + (product >> 8); } static uint8_t blend_255_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { const uint16_t invAlpha = 255 - srcAlpha; const uint16_t product = dst * invAlpha + 128; return src + (product >> 8); } static uint8_t blend_256_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { const uint16_t invAlpha = 256 - (srcAlpha + (srcAlpha >> 7)); const uint16_t product = dst * invAlpha; return src + (product >> 8); } static uint8_t blend_256_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { const uint16_t invAlpha = 256 - (srcAlpha + (srcAlpha >> 7)); const uint16_t product = dst * invAlpha + 128; return src + (product >> 8); } static uint8_t blend_256_round_alt(uint8_t dst, uint8_t src, uint8_t srcAlpha) { const uint8_t invAlpha8 = 255 - srcAlpha; const uint16_t invAlpha = invAlpha8 + (invAlpha8 >> 7); const uint16_t product = dst * invAlpha + 128; return src + (product >> 8); } static uint8_t blend_256_plus1_trunc(uint8_t dst, uint8_t src, uint8_t srcAlpha) { const uint16_t invAlpha = 256 - (srcAlpha + 1); const uint16_t product = dst * invAlpha; return src + (product >> 8); } static uint8_t blend_256_plus1_round(uint8_t dst, uint8_t src, uint8_t srcAlpha) { const uint16_t invAlpha = 256 - (srcAlpha + 1); const uint16_t product = dst * invAlpha + 128; return src + (product >> 8); } static uint8_t blend_perfect(uint8_t dst, uint8_t src, uint8_t srcAlpha) { const uint8_t invAlpha = 255 - srcAlpha; const uint16_t product = dst * invAlpha + 128; return src + ((product + (product >> 8)) >> 8); } // We want 0 diff whenever src is fully transparent. DEF_TEST(Blend_alpha_0x00, r) { const uint8_t alpha = 0x00; // GOOD test_alpha(r, alpha, 0, blend_256_round); test_alpha(r, alpha, 0, blend_256_round_alt); test_alpha(r, alpha, 0, blend_256_trunc); test_alpha(r, alpha, 0, blend_double_trunc); test_alpha(r, alpha, 0, blend_float_round); test_alpha(r, alpha, 0, blend_float_trunc); test_alpha(r, alpha, 0, blend_perfect); // BAD test_alpha(r, alpha, 1, blend_255_round); test_alpha(r, alpha, 1, blend_255_trunc); test_alpha(r, alpha, 1, blend_256_plus1_round); test_alpha(r, alpha, 1, blend_256_plus1_trunc); } // We want 0 diff whenever dst is 0. DEF_TEST(Blend_dst_0x00, r) { const uint8_t dst = 0x00; // GOOD test_dst(r, dst, 0, blend_255_round); test_dst(r, dst, 0, blend_255_trunc); test_dst(r, dst, 0, blend_256_plus1_round); test_dst(r, dst, 0, blend_256_plus1_trunc); test_dst(r, dst, 0, blend_256_round); test_dst(r, dst, 0, blend_256_round_alt); test_dst(r, dst, 0, blend_256_trunc); test_dst(r, dst, 0, blend_double_trunc); test_dst(r, dst, 0, blend_float_round); test_dst(r, dst, 0, blend_float_trunc); test_dst(r, dst, 0, blend_perfect); // BAD } // We want 0 diff whenever src is fully opaque. DEF_TEST(Blend_alpha_0xFF, r) { const uint8_t alpha = 0xFF; // GOOD test_alpha(r, alpha, 0, blend_255_round); test_alpha(r, alpha, 0, blend_255_trunc); test_alpha(r, alpha, 0, blend_256_plus1_round); test_alpha(r, alpha, 0, blend_256_plus1_trunc); test_alpha(r, alpha, 0, blend_256_round); test_alpha(r, alpha, 0, blend_256_round_alt); test_alpha(r, alpha, 0, blend_256_trunc); test_alpha(r, alpha, 0, blend_double_trunc); test_alpha(r, alpha, 0, blend_float_round); test_alpha(r, alpha, 0, blend_float_trunc); test_alpha(r, alpha, 0, blend_perfect); // BAD } // We want 0 diff whenever dst is 0xFF. DEF_TEST(Blend_dst_0xFF, r) { const uint8_t dst = 0xFF; // GOOD test_dst(r, dst, 0, blend_256_round); test_dst(r, dst, 0, blend_256_round_alt); test_dst(r, dst, 0, blend_double_trunc); test_dst(r, dst, 0, blend_float_round); test_dst(r, dst, 0, blend_float_trunc); test_dst(r, dst, 0, blend_perfect); // BAD test_dst(r, dst, 1, blend_255_round); test_dst(r, dst, 1, blend_255_trunc); test_dst(r, dst, 1, blend_256_plus1_round); test_dst(r, dst, 1, blend_256_plus1_trunc); test_dst(r, dst, 1, blend_256_trunc); } // We'd like diff <= 1 everywhere. DEF_TEST(Blend_alpha_Exhaustive, r) { for (unsigned alpha = 0; alpha < 256; alpha++) { // PERFECT test_alpha(r, alpha, 0, blend_float_round); test_alpha(r, alpha, 0, blend_perfect); // GOOD test_alpha(r, alpha, 1, blend_255_round); test_alpha(r, alpha, 1, blend_256_plus1_round); test_alpha(r, alpha, 1, blend_256_round); test_alpha(r, alpha, 1, blend_256_round_alt); test_alpha(r, alpha, 1, blend_256_trunc); test_alpha(r, alpha, 1, blend_double_trunc); test_alpha(r, alpha, 1, blend_float_trunc); // BAD test_alpha(r, alpha, 2, blend_255_trunc); test_alpha(r, alpha, 2, blend_256_plus1_trunc); } } // We'd like diff <= 1 everywhere. DEF_TEST(Blend_dst_Exhaustive, r) { for (unsigned dst = 0; dst < 256; dst++) { // PERFECT test_dst(r, dst, 0, blend_float_round); test_dst(r, dst, 0, blend_perfect); // GOOD test_dst(r, dst, 1, blend_255_round); test_dst(r, dst, 1, blend_256_plus1_round); test_dst(r, dst, 1, blend_256_round); test_dst(r, dst, 1, blend_256_round_alt); test_dst(r, dst, 1, blend_256_trunc); test_dst(r, dst, 1, blend_double_trunc); test_dst(r, dst, 1, blend_float_trunc); // BAD test_dst(r, dst, 2, blend_255_trunc); test_dst(r, dst, 2, blend_256_plus1_trunc); } } // Overall summary: // PERFECT // blend_double_round // blend_float_round // blend_perfect // GOOD ENOUGH // blend_double_trunc // blend_float_trunc // blend_256_round // blend_256_round_alt // NOT GOOD ENOUGH // all others // // Algorithms that make sense to use in Skia: blend_256_round, blend_256_round_alt, blend_perfect DEF_TEST(Blend_premul_begets_premul, r) { // This test is quite slow, even if you have enough cores to run each mode in parallel. if (!r->allowExtendedTest()) { return; } // No matter what xfermode we use, premul inputs should create premul outputs. auto test_mode = [&](int m) { SkXfermode::Mode mode = (SkXfermode::Mode)m; if (mode == SkXfermode::kSrcOver_Mode) { return; // TODO: can't create a SrcOver xfermode. } SkAutoTUnref xfermode(SkXfermode::Create(mode)); SkASSERT(xfermode); // We'll test all alphas and legal color values, assuming all colors work the same. // This is not true for non-separable blend modes, but this test still can't hurt. for (int sa = 0; sa <= 255; sa++) { for (int da = 0; da <= 255; da++) { for (int s = 0; s <= sa; s++) { for (int d = 0; d <= da; d++) { SkPMColor src = SkPackARGB32(sa, s, s, s), dst = SkPackARGB32(da, d, d, d); xfermode->xfer32(&dst, &src, 1, nullptr); // To keep it simple, no AA. if (!SkPMColorValid(dst)) { ERRORF(r, "%08x is not premul using %s", dst, SkXfermode::ModeName(mode)); } }}}} }; // Parallelism helps speed things up on my desktop from ~725s to ~50s. sk_parallel_for(SkXfermode::kLastMode, test_mode); }