/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Test.h" #include "SkBitmap.h" #include "SkRect.h" static const char* boolStr(bool value) { return value ? "true" : "false"; } // these are in the same order as the SkBitmap::Config enum static const char* gConfigName[] = { "None", "A1", "A8", "Index8", "565", "4444", "8888", "RLE_Index8" }; static void report_opaqueness(skiatest::Reporter* reporter, const SkBitmap& src, const SkBitmap& dst) { SkString str; str.printf("src %s opaque:%d, dst %s opaque:%d", gConfigName[src.config()], src.isOpaque(), gConfigName[dst.config()], dst.isOpaque()); reporter->reportFailed(str); } static bool canHaveAlpha(SkBitmap::Config config) { return config != SkBitmap::kRGB_565_Config; } // copyTo() should preserve isOpaque when it makes sense static void test_isOpaque(skiatest::Reporter* reporter, const SkBitmap& src, SkBitmap::Config dstConfig) { SkBitmap bitmap(src); SkBitmap dst; // we need the lock so that we get a valid colorTable (when available) SkAutoLockPixels alp(bitmap); SkColorTable* ctable = bitmap.getColorTable(); unsigned ctableFlags = ctable ? ctable->getFlags() : 0; if (canHaveAlpha(bitmap.config()) && canHaveAlpha(dstConfig)) { bitmap.setIsOpaque(false); if (ctable) { ctable->setFlags(ctableFlags & ~SkColorTable::kColorsAreOpaque_Flag); } REPORTER_ASSERT(reporter, bitmap.copyTo(&dst, dstConfig)); REPORTER_ASSERT(reporter, dst.config() == dstConfig); if (bitmap.isOpaque() != dst.isOpaque()) { report_opaqueness(reporter, bitmap, dst); } } bitmap.setIsOpaque(true); if (ctable) { ctable->setFlags(ctableFlags | SkColorTable::kColorsAreOpaque_Flag); } REPORTER_ASSERT(reporter, bitmap.copyTo(&dst, dstConfig)); REPORTER_ASSERT(reporter, dst.config() == dstConfig); if (bitmap.isOpaque() != dst.isOpaque()) { report_opaqueness(reporter, bitmap, dst); } if (ctable) { ctable->setFlags(ctableFlags); } } static void init_src(const SkBitmap& bitmap, const SkColorTable* ct) { SkAutoLockPixels lock(bitmap); if (bitmap.getPixels()) { if (ct) { sk_bzero(bitmap.getPixels(), bitmap.getSize()); } else { bitmap.eraseColor(SK_ColorWHITE); } } } static SkColorTable* init_ctable() { static const SkColor colors[] = { SK_ColorBLACK, SK_ColorRED, SK_ColorGREEN, SK_ColorBLUE, SK_ColorWHITE }; return new SkColorTable(colors, SK_ARRAY_COUNT(colors)); } struct Pair { SkBitmap::Config fConfig; const char* fValid; }; // Utility functions for copyPixelsTo()/copyPixelsFrom() tests. // getPixel() // setPixel() // getSkConfigName() // struct Coordinates // reportCopyVerification() // writeCoordPixels() // Utility function to read the value of a given pixel in bm. All // values converted to uint32_t for simplification of comparisons. static uint32_t getPixel(int x, int y, const SkBitmap& bm) { uint32_t val = 0; uint16_t val16; uint8_t val8, shift; SkAutoLockPixels lock(bm); const void* rawAddr = bm.getAddr(x,y); switch (bm.getConfig()) { case SkBitmap::kARGB_8888_Config: memcpy(&val, rawAddr, sizeof(uint32_t)); break; case SkBitmap::kARGB_4444_Config: case SkBitmap::kRGB_565_Config: memcpy(&val16, rawAddr, sizeof(uint16_t)); val = val16; break; case SkBitmap::kA8_Config: case SkBitmap::kIndex8_Config: memcpy(&val8, rawAddr, sizeof(uint8_t)); val = val8; break; case SkBitmap::kA1_Config: memcpy(&val8, rawAddr, sizeof(uint8_t)); shift = x % 8; val = (val8 >> shift) & 0x1 ; break; default: break; } return val; } // Utility function to set value of any pixel in bm. // bm.getConfig() specifies what format 'val' must be // converted to, but at present uint32_t can handle all formats. static void setPixel(int x, int y, uint32_t val, SkBitmap& bm) { uint16_t val16; uint8_t val8, shift; SkAutoLockPixels lock(bm); void* rawAddr = bm.getAddr(x,y); switch (bm.getConfig()) { case SkBitmap::kARGB_8888_Config: memcpy(rawAddr, &val, sizeof(uint32_t)); break; case SkBitmap::kARGB_4444_Config: case SkBitmap::kRGB_565_Config: val16 = val & 0xFFFF; memcpy(rawAddr, &val16, sizeof(uint16_t)); break; case SkBitmap::kA8_Config: case SkBitmap::kIndex8_Config: val8 = val & 0xFF; memcpy(rawAddr, &val8, sizeof(uint8_t)); break; case SkBitmap::kA1_Config: shift = x % 8; // We assume we're in the right byte. memcpy(&val8, rawAddr, sizeof(uint8_t)); if (val & 0x1) // Turn bit on. val8 |= (0x1 << shift); else // Turn bit off. val8 &= ~(0x1 << shift); memcpy(rawAddr, &val8, sizeof(uint8_t)); break; default: // Ignore. break; } } // Utility to return string containing name of each format, to // simplify diagnostic output. static const char* getSkConfigName(const SkBitmap& bm) { switch (bm.getConfig()) { case SkBitmap::kNo_Config: return "SkBitmap::kNo_Config"; case SkBitmap::kA1_Config: return "SkBitmap::kA1_Config"; case SkBitmap::kA8_Config: return "SkBitmap::kA8_Config"; case SkBitmap::kIndex8_Config: return "SkBitmap::kIndex8_Config"; case SkBitmap::kRGB_565_Config: return "SkBitmap::kRGB_565_Config"; case SkBitmap::kARGB_4444_Config: return "SkBitmap::kARGB_4444_Config"; case SkBitmap::kARGB_8888_Config: return "SkBitmap::kARGB_8888_Config"; case SkBitmap::kRLE_Index8_Config: return "SkBitmap::kRLE_Index8_Config,"; default: return "Unknown SkBitmap configuration."; } } // Helper struct to contain pixel locations, while avoiding need for STL. struct Coordinates { const int length; SkIPoint* const data; explicit Coordinates(int _length): length(_length) , data(new SkIPoint[length]) { } ~Coordinates(){ delete [] data; } SkIPoint* operator[](int i) const { // Use with care, no bounds checking. return data + i; } }; // A function to verify that two bitmaps contain the same pixel values // at all coordinates indicated by coords. Simplifies verification of // copied bitmaps. static void reportCopyVerification(const SkBitmap& bm1, const SkBitmap& bm2, Coordinates& coords, const char* msg, skiatest::Reporter* reporter){ bool success = true; // Confirm all pixels in the list match. for (int i = 0; i < coords.length; ++i) { success = success && (getPixel(coords[i]->fX, coords[i]->fY, bm1) == getPixel(coords[i]->fX, coords[i]->fY, bm2)); } if (!success) { SkString str; str.printf("%s [config = %s]", msg, getSkConfigName(bm1)); reporter->reportFailed(str); } } // Writes unique pixel values at locations specified by coords. static void writeCoordPixels(SkBitmap& bm, const Coordinates& coords) { for (int i = 0; i < coords.length; ++i) setPixel(coords[i]->fX, coords[i]->fY, i, bm); } static void TestBitmapCopy(skiatest::Reporter* reporter) { static const Pair gPairs[] = { { SkBitmap::kNo_Config, "00000000" }, { SkBitmap::kA1_Config, "01000000" }, { SkBitmap::kA8_Config, "00101110" }, { SkBitmap::kIndex8_Config, "00111110" }, { SkBitmap::kRGB_565_Config, "00101110" }, { SkBitmap::kARGB_4444_Config, "00101110" }, { SkBitmap::kARGB_8888_Config, "00101110" }, // TODO: create valid RLE bitmap to test with // { SkBitmap::kRLE_Index8_Config, "00101111" } }; static const bool isExtracted[] = { false, true }; const int W = 20; const int H = 33; for (size_t i = 0; i < SK_ARRAY_COUNT(gPairs); i++) { for (size_t j = 0; j < SK_ARRAY_COUNT(gPairs); j++) { SkBitmap src, dst; SkColorTable* ct = NULL; src.setConfig(gPairs[i].fConfig, W, H); if (SkBitmap::kIndex8_Config == src.config() || SkBitmap::kRLE_Index8_Config == src.config()) { ct = init_ctable(); } src.allocPixels(ct); SkSafeUnref(ct); init_src(src, ct); bool success = src.copyTo(&dst, gPairs[j].fConfig); bool expected = gPairs[i].fValid[j] != '0'; if (success != expected) { SkString str; str.printf("SkBitmap::copyTo from %s to %s. expected %s returned %s", gConfigName[i], gConfigName[j], boolStr(expected), boolStr(success)); reporter->reportFailed(str); } bool canSucceed = src.canCopyTo(gPairs[j].fConfig); if (success != canSucceed) { SkString str; str.printf("SkBitmap::copyTo from %s to %s. returned %s canCopyTo %s", gConfigName[i], gConfigName[j], boolStr(success), boolStr(canSucceed)); reporter->reportFailed(str); } if (success) { REPORTER_ASSERT(reporter, src.width() == dst.width()); REPORTER_ASSERT(reporter, src.height() == dst.height()); REPORTER_ASSERT(reporter, dst.config() == gPairs[j].fConfig); test_isOpaque(reporter, src, dst.config()); if (src.config() == dst.config()) { SkAutoLockPixels srcLock(src); SkAutoLockPixels dstLock(dst); REPORTER_ASSERT(reporter, src.readyToDraw()); REPORTER_ASSERT(reporter, dst.readyToDraw()); const char* srcP = (const char*)src.getAddr(0, 0); const char* dstP = (const char*)dst.getAddr(0, 0); REPORTER_ASSERT(reporter, srcP != dstP); REPORTER_ASSERT(reporter, !memcmp(srcP, dstP, src.getSize())); REPORTER_ASSERT(reporter, src.getGenerationID() == dst.getGenerationID()); } else { REPORTER_ASSERT(reporter, src.getGenerationID() != dst.getGenerationID()); } // test extractSubset { SkBitmap bitmap(src); SkBitmap subset; SkIRect r; r.set(1, 1, 2, 2); bitmap.setIsOpaque(true); bitmap.setIsVolatile(true); if (bitmap.extractSubset(&subset, r)) { REPORTER_ASSERT(reporter, subset.width() == 1); REPORTER_ASSERT(reporter, subset.height() == 1); REPORTER_ASSERT(reporter, subset.isOpaque() == bitmap.isOpaque()); REPORTER_ASSERT(reporter, subset.isVolatile() == true); SkBitmap copy; REPORTER_ASSERT(reporter, subset.copyTo(©, subset.config())); REPORTER_ASSERT(reporter, copy.width() == 1); REPORTER_ASSERT(reporter, copy.height() == 1); REPORTER_ASSERT(reporter, copy.rowBytes() <= 4); SkAutoLockPixels alp0(subset); SkAutoLockPixels alp1(copy); // they should both have, or both not-have, a colortable bool hasCT = subset.getColorTable() != NULL; REPORTER_ASSERT(reporter, (copy.getColorTable() != NULL) == hasCT); } bitmap.setIsOpaque(false); bitmap.setIsVolatile(false); if (bitmap.extractSubset(&subset, r)) { REPORTER_ASSERT(reporter, subset.isOpaque() == bitmap.isOpaque()); REPORTER_ASSERT(reporter, subset.isVolatile() == false); } } } else { // dst should be unchanged from its initial state REPORTER_ASSERT(reporter, dst.config() == SkBitmap::kNo_Config); REPORTER_ASSERT(reporter, dst.width() == 0); REPORTER_ASSERT(reporter, dst.height() == 0); } } // for (size_t j = ... // Tests for getSafeSize(), getSafeSize64(), copyPixelsTo(), // copyPixelsFrom(). // for (size_t copyCase = 0; copyCase < SK_ARRAY_COUNT(isExtracted); ++copyCase) { // Test copying to/from external buffer. // Note: the tests below have hard-coded values --- // Please take care if modifying. if (gPairs[i].fConfig != SkBitmap::kRLE_Index8_Config) { // Tests for getSafeSize64(). // Test with a very large configuration without pixel buffer // attached. SkBitmap tstSafeSize; tstSafeSize.setConfig(gPairs[i].fConfig, 100000000U, 100000000U); Sk64 safeSize = tstSafeSize.getSafeSize64(); if (safeSize.isNeg()) { SkString str; str.printf("getSafeSize64() negative: %s", getSkConfigName(tstSafeSize)); reporter->reportFailed(str); } bool sizeFail = false; // Compare against hand-computed values. switch (gPairs[i].fConfig) { case SkBitmap::kNo_Config: break; case SkBitmap::kA1_Config: if (safeSize.fHi != 0x470DE || safeSize.fLo != 0x4DF82000) sizeFail = true; break; case SkBitmap::kA8_Config: case SkBitmap::kIndex8_Config: if (safeSize.fHi != 0x2386F2 || safeSize.fLo != 0x6FC10000) sizeFail = true; break; case SkBitmap::kRGB_565_Config: case SkBitmap::kARGB_4444_Config: if (safeSize.fHi != 0x470DE4 || safeSize.fLo != 0xDF820000) sizeFail = true; break; case SkBitmap::kARGB_8888_Config: if (safeSize.fHi != 0x8E1BC9 || safeSize.fLo != 0xBF040000) sizeFail = true; break; case SkBitmap::kRLE_Index8_Config: break; default: break; } if (sizeFail) { SkString str; str.printf("getSafeSize64() wrong size: %s", getSkConfigName(tstSafeSize)); reporter->reportFailed(str); } size_t subW, subH; // Set sizes to be height = 2 to force the last row of the // source to be used, thus verifying correct operation if // the bitmap is an extracted subset. if (gPairs[i].fConfig == SkBitmap::kA1_Config) { // If one-bit per pixel, use 9 pixels to force more than // one byte per row. subW = 9; subH = 2; } else { // All other configurations are at least one byte per pixel, // and different configs will test copying different numbers // of bytes. subW = subH = 2; } // Create bitmap to act as source for copies and subsets. SkBitmap src, subset; SkColorTable* ct = NULL; if (isExtracted[copyCase]) { // A larger image to extract from. src.setConfig(gPairs[i].fConfig, 2 * subW + 1, subH); } else // Tests expect a 2x2 bitmap, so make smaller. src.setConfig(gPairs[i].fConfig, subW, subH); if (SkBitmap::kIndex8_Config == src.config() || SkBitmap::kRLE_Index8_Config == src.config()) { ct = init_ctable(); } src.allocPixels(ct); SkSafeUnref(ct); // Either copy src or extract into 'subset', which is used // for subsequent calls to copyPixelsTo/From. bool srcReady = false; if (isExtracted[copyCase]) { // The extractedSubset() test case allows us to test copy- // ing when src and dst mave possibly different strides. SkIRect r; if (gPairs[i].fConfig == SkBitmap::kA1_Config) // This config seems to need byte-alignment of // extracted subset bits. r.set(0, 0, subW, subH); else r.set(1, 0, 1 + subW, subH); // 2x2 extracted bitmap srcReady = src.extractSubset(&subset, r); } else { srcReady = src.copyTo(&subset, src.getConfig()); } // Not all configurations will generate a valid 'subset'. if (srcReady) { // Allocate our target buffer 'buf' for all copies. // To simplify verifying correctness of copies attach // buf to a SkBitmap, but copies are done using the // raw buffer pointer. const uint32_t bufSize = subH * SkBitmap::ComputeRowBytes(src.getConfig(), subW) * 2; SkAutoMalloc autoBuf (bufSize); uint8_t* buf = static_cast(autoBuf.get()); SkBitmap bufBm; // Attach buf to this bitmap. bool successExpected; // Set up values for each pixel being copied. Coordinates coords(subW * subH); for (size_t x = 0; x < subW; ++x) for (size_t y = 0; y < subH; ++y) { int index = y * subW + x; SkASSERT(index < coords.length); coords[index]->fX = x; coords[index]->fY = y; } writeCoordPixels(subset, coords); // Test #1 //////////////////////////////////////////// // Before/after comparisons easier if we attach buf // to an appropriately configured SkBitmap. memset(buf, 0xFF, bufSize); // Config with stride greater than src but that fits in buf. bufBm.setConfig(gPairs[i].fConfig, subW, subH, SkBitmap::ComputeRowBytes(subset.getConfig(), subW) * 2); bufBm.setPixels(buf); successExpected = false; // Then attempt to copy with a stride that is too large // to fit in the buffer. REPORTER_ASSERT(reporter, subset.copyPixelsTo(buf, bufSize, bufBm.rowBytes() * 3) == successExpected); if (successExpected) reportCopyVerification(subset, bufBm, coords, "copyPixelsTo(buf, bufSize, 1.5*maxRowBytes)", reporter); // Test #2 //////////////////////////////////////////// // This test should always succeed, but in the case // of extracted bitmaps only because we handle the // issue of getSafeSize(). Without getSafeSize() // buffer overrun/read would occur. memset(buf, 0xFF, bufSize); bufBm.setConfig(gPairs[i].fConfig, subW, subH, subset.rowBytes()); bufBm.setPixels(buf); successExpected = subset.getSafeSize() <= bufSize; REPORTER_ASSERT(reporter, subset.copyPixelsTo(buf, bufSize) == successExpected); if (successExpected) reportCopyVerification(subset, bufBm, coords, "copyPixelsTo(buf, bufSize)", reporter); // Test #3 //////////////////////////////////////////// // Copy with different stride between src and dst. memset(buf, 0xFF, bufSize); bufBm.setConfig(gPairs[i].fConfig, subW, subH, subset.rowBytes()+1); bufBm.setPixels(buf); successExpected = true; // Should always work. REPORTER_ASSERT(reporter, subset.copyPixelsTo(buf, bufSize, subset.rowBytes()+1) == successExpected); if (successExpected) reportCopyVerification(subset, bufBm, coords, "copyPixelsTo(buf, bufSize, rowBytes+1)", reporter); // Test #4 //////////////////////////////////////////// // Test copy with stride too small. memset(buf, 0xFF, bufSize); bufBm.setConfig(gPairs[i].fConfig, subW, subH); bufBm.setPixels(buf); successExpected = false; // Request copy with stride too small. REPORTER_ASSERT(reporter, subset.copyPixelsTo(buf, bufSize, bufBm.rowBytes()-1) == successExpected); if (successExpected) reportCopyVerification(subset, bufBm, coords, "copyPixelsTo(buf, bufSize, rowBytes()-1)", reporter); #if 0 // copyPixelsFrom is gone // Test #5 //////////////////////////////////////////// // Tests the case where the source stride is too small // for the source configuration. memset(buf, 0xFF, bufSize); bufBm.setConfig(gPairs[i].fConfig, subW, subH); bufBm.setPixels(buf); writeCoordPixels(bufBm, coords); REPORTER_ASSERT(reporter, subset.copyPixelsFrom(buf, bufSize, 1) == false); // Test #6 /////////////////////////////////////////// // Tests basic copy from an external buffer to the bitmap. // If the bitmap is "extracted", this also tests the case // where the source stride is different from the dest. // stride. // We've made the buffer large enough to always succeed. bufBm.setConfig(gPairs[i].fConfig, subW, subH); bufBm.setPixels(buf); writeCoordPixels(bufBm, coords); REPORTER_ASSERT(reporter, subset.copyPixelsFrom(buf, bufSize, bufBm.rowBytes()) == true); reportCopyVerification(bufBm, subset, coords, "copyPixelsFrom(buf, bufSize)", reporter); // Test #7 //////////////////////////////////////////// // Tests the case where the source buffer is too small // for the transfer. REPORTER_ASSERT(reporter, subset.copyPixelsFrom(buf, 1, subset.rowBytes()) == false); #endif } } } // for (size_t copyCase ... } } #include "TestClassDef.h" DEFINE_TESTCLASS("BitmapCopy", TestBitmapCopyClass, TestBitmapCopy)