/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkGrPriv.h" #include "SkRect.h" #include "SkTemplates.h" #include "Test.h" static const char* boolStr(bool value) { return value ? "true" : "false"; } // these are in the same order as the SkColorType enum static const char* gColorTypeName[] = { "None", "A8", "565", "4444", "RGBA", "BGRA", "Index8" }; static void report_opaqueness(skiatest::Reporter* reporter, const SkBitmap& src, const SkBitmap& dst) { ERRORF(reporter, "src %s opaque:%d, dst %s opaque:%d", gColorTypeName[src.colorType()], src.isOpaque(), gColorTypeName[dst.colorType()], dst.isOpaque()); } static bool canHaveAlpha(SkColorType ct) { return kRGB_565_SkColorType != ct; } // copyTo() should preserve isOpaque when it makes sense static void test_isOpaque(skiatest::Reporter* reporter, const SkBitmap& srcOpaque, const SkBitmap& srcPremul, SkColorType dstColorType) { SkBitmap dst; if (canHaveAlpha(srcPremul.colorType()) && canHaveAlpha(dstColorType)) { REPORTER_ASSERT(reporter, srcPremul.copyTo(&dst, dstColorType)); REPORTER_ASSERT(reporter, dst.colorType() == dstColorType); if (srcPremul.isOpaque() != dst.isOpaque()) { report_opaqueness(reporter, srcPremul, dst); } } REPORTER_ASSERT(reporter, srcOpaque.copyTo(&dst, dstColorType)); REPORTER_ASSERT(reporter, dst.colorType() == dstColorType); if (srcOpaque.isOpaque() != dst.isOpaque()) { report_opaqueness(reporter, srcOpaque, dst); } } static void init_src(const SkBitmap& bitmap) { SkAutoLockPixels lock(bitmap); if (bitmap.getPixels()) { if (bitmap.getColorTable()) { sk_bzero(bitmap.getPixels(), bitmap.getSize()); } else { bitmap.eraseColor(SK_ColorWHITE); } } } static SkColorTable* init_ctable() { static const SkColor colors[] = { SK_ColorBLACK, SK_ColorRED, SK_ColorGREEN, SK_ColorBLUE, SK_ColorWHITE }; return new SkColorTable(colors, SK_ARRAY_COUNT(colors)); } struct Pair { SkColorType fColorType; const char* fValid; }; // Utility functions for copyPixelsTo()/copyPixelsFrom() tests. // getPixel() // setPixel() // getSkConfigName() // struct Coordinates // reportCopyVerification() // writeCoordPixels() // Utility function to read the value of a given pixel in bm. All // values converted to uint32_t for simplification of comparisons. static uint32_t getPixel(int x, int y, const SkBitmap& bm) { uint32_t val = 0; uint16_t val16; uint8_t val8; SkAutoLockPixels lock(bm); const void* rawAddr = bm.getAddr(x,y); switch (bm.bytesPerPixel()) { case 4: memcpy(&val, rawAddr, sizeof(uint32_t)); break; case 2: memcpy(&val16, rawAddr, sizeof(uint16_t)); val = val16; break; case 1: memcpy(&val8, rawAddr, sizeof(uint8_t)); val = val8; break; default: break; } return val; } // Utility function to set value of any pixel in bm. // bm.getConfig() specifies what format 'val' must be // converted to, but at present uint32_t can handle all formats. static void setPixel(int x, int y, uint32_t val, SkBitmap& bm) { uint16_t val16; uint8_t val8; SkAutoLockPixels lock(bm); void* rawAddr = bm.getAddr(x,y); switch (bm.bytesPerPixel()) { case 4: memcpy(rawAddr, &val, sizeof(uint32_t)); break; case 2: val16 = val & 0xFFFF; memcpy(rawAddr, &val16, sizeof(uint16_t)); break; case 1: val8 = val & 0xFF; memcpy(rawAddr, &val8, sizeof(uint8_t)); break; default: // Ignore. break; } } // Helper struct to contain pixel locations, while avoiding need for STL. struct Coordinates { const int length; SkIPoint* const data; explicit Coordinates(int _length): length(_length) , data(new SkIPoint[length]) { } ~Coordinates(){ delete [] data; } SkIPoint* operator[](int i) const { // Use with care, no bounds checking. return data + i; } }; // A function to verify that two bitmaps contain the same pixel values // at all coordinates indicated by coords. Simplifies verification of // copied bitmaps. static void reportCopyVerification(const SkBitmap& bm1, const SkBitmap& bm2, Coordinates& coords, const char* msg, skiatest::Reporter* reporter){ // Confirm all pixels in the list match. for (int i = 0; i < coords.length; ++i) { uint32_t p1 = getPixel(coords[i]->fX, coords[i]->fY, bm1); uint32_t p2 = getPixel(coords[i]->fX, coords[i]->fY, bm2); // SkDebugf("[%d] (%d %d) p1=%x p2=%x\n", i, coords[i]->fX, coords[i]->fY, p1, p2); if (p1 != p2) { ERRORF(reporter, "%s [colortype = %s]", msg, gColorTypeName[bm1.colorType()]); break; } } } // Writes unique pixel values at locations specified by coords. static void writeCoordPixels(SkBitmap& bm, const Coordinates& coords) { for (int i = 0; i < coords.length; ++i) setPixel(coords[i]->fX, coords[i]->fY, i, bm); } static const Pair gPairs[] = { { kUnknown_SkColorType, "000000" }, { kAlpha_8_SkColorType, "010000" }, { kIndex_8_SkColorType, "011111" }, { kRGB_565_SkColorType, "010101" }, { kARGB_4444_SkColorType, "010111" }, { kN32_SkColorType, "010111" }, }; static const int W = 20; static const int H = 33; static void setup_src_bitmaps(SkBitmap* srcOpaque, SkBitmap* srcPremul, SkColorType ct) { SkColorTable* ctable = nullptr; if (kIndex_8_SkColorType == ct) { ctable = init_ctable(); } srcOpaque->allocPixels(SkImageInfo::Make(W, H, ct, kOpaque_SkAlphaType), nullptr, ctable); srcPremul->allocPixels(SkImageInfo::Make(W, H, ct, kPremul_SkAlphaType), nullptr, ctable); SkSafeUnref(ctable); init_src(*srcOpaque); init_src(*srcPremul); } DEF_TEST(BitmapCopy_extractSubset, reporter) { for (size_t i = 0; i < SK_ARRAY_COUNT(gPairs); i++) { SkBitmap srcOpaque, srcPremul; setup_src_bitmaps(&srcOpaque, &srcPremul, gPairs[i].fColorType); SkBitmap bitmap(srcOpaque); SkBitmap subset; SkIRect r; // Extract a subset which has the same width as the original. This // catches a bug where we cloned the genID incorrectly. r.set(0, 1, W, 3); bitmap.setIsVolatile(true); // Relies on old behavior of extractSubset failing if colortype is unknown if (kUnknown_SkColorType != bitmap.colorType() && bitmap.extractSubset(&subset, r)) { REPORTER_ASSERT(reporter, subset.width() == W); REPORTER_ASSERT(reporter, subset.height() == 2); REPORTER_ASSERT(reporter, subset.alphaType() == bitmap.alphaType()); REPORTER_ASSERT(reporter, subset.isVolatile() == true); // Test copying an extracted subset. for (size_t j = 0; j < SK_ARRAY_COUNT(gPairs); j++) { SkBitmap copy; bool success = subset.copyTo(©, gPairs[j].fColorType); if (!success) { // Skip checking that success matches fValid, which is redundant // with the code below. REPORTER_ASSERT(reporter, gPairs[i].fColorType != gPairs[j].fColorType); continue; } // When performing a copy of an extracted subset, the gen id should // change. REPORTER_ASSERT(reporter, copy.getGenerationID() != subset.getGenerationID()); REPORTER_ASSERT(reporter, copy.width() == W); REPORTER_ASSERT(reporter, copy.height() == 2); if (gPairs[i].fColorType == gPairs[j].fColorType) { SkAutoLockPixels alp0(subset); SkAutoLockPixels alp1(copy); // they should both have, or both not-have, a colortable bool hasCT = subset.getColorTable() != nullptr; REPORTER_ASSERT(reporter, (copy.getColorTable() != nullptr) == hasCT); } } } bitmap = srcPremul; bitmap.setIsVolatile(false); if (bitmap.extractSubset(&subset, r)) { REPORTER_ASSERT(reporter, subset.alphaType() == bitmap.alphaType()); REPORTER_ASSERT(reporter, subset.isVolatile() == false); } } } DEF_TEST(BitmapCopy, reporter) { static const bool isExtracted[] = { false, true }; for (size_t i = 0; i < SK_ARRAY_COUNT(gPairs); i++) { SkBitmap srcOpaque, srcPremul; setup_src_bitmaps(&srcOpaque, &srcPremul, gPairs[i].fColorType); for (size_t j = 0; j < SK_ARRAY_COUNT(gPairs); j++) { SkBitmap dst; bool success = srcPremul.copyTo(&dst, gPairs[j].fColorType); bool expected = gPairs[i].fValid[j] != '0'; if (success != expected) { ERRORF(reporter, "SkBitmap::copyTo from %s to %s. expected %s " "returned %s", gColorTypeName[i], gColorTypeName[j], boolStr(expected), boolStr(success)); } bool canSucceed = srcPremul.canCopyTo(gPairs[j].fColorType); if (success != canSucceed) { ERRORF(reporter, "SkBitmap::copyTo from %s to %s. returned %s " "canCopyTo %s", gColorTypeName[i], gColorTypeName[j], boolStr(success), boolStr(canSucceed)); } if (success) { REPORTER_ASSERT(reporter, srcPremul.width() == dst.width()); REPORTER_ASSERT(reporter, srcPremul.height() == dst.height()); REPORTER_ASSERT(reporter, dst.colorType() == gPairs[j].fColorType); test_isOpaque(reporter, srcOpaque, srcPremul, dst.colorType()); if (srcPremul.colorType() == dst.colorType()) { SkAutoLockPixels srcLock(srcPremul); SkAutoLockPixels dstLock(dst); REPORTER_ASSERT(reporter, srcPremul.readyToDraw()); REPORTER_ASSERT(reporter, dst.readyToDraw()); const char* srcP = (const char*)srcPremul.getAddr(0, 0); const char* dstP = (const char*)dst.getAddr(0, 0); REPORTER_ASSERT(reporter, srcP != dstP); REPORTER_ASSERT(reporter, !memcmp(srcP, dstP, srcPremul.getSize())); REPORTER_ASSERT(reporter, srcPremul.getGenerationID() == dst.getGenerationID()); } else { REPORTER_ASSERT(reporter, srcPremul.getGenerationID() != dst.getGenerationID()); } } else { // dst should be unchanged from its initial state REPORTER_ASSERT(reporter, dst.colorType() == kUnknown_SkColorType); REPORTER_ASSERT(reporter, dst.width() == 0); REPORTER_ASSERT(reporter, dst.height() == 0); } } // for (size_t j = ... // Tests for getSafeSize(), getSafeSize64(), copyPixelsTo(), // copyPixelsFrom(). // for (size_t copyCase = 0; copyCase < SK_ARRAY_COUNT(isExtracted); ++copyCase) { // Test copying to/from external buffer. // Note: the tests below have hard-coded values --- // Please take care if modifying. // Tests for getSafeSize64(). // Test with a very large configuration without pixel buffer // attached. SkBitmap tstSafeSize; tstSafeSize.setInfo(SkImageInfo::Make(100000000U, 100000000U, gPairs[i].fColorType, kPremul_SkAlphaType)); int64_t safeSize = tstSafeSize.computeSafeSize64(); if (safeSize < 0) { ERRORF(reporter, "getSafeSize64() negative: %s", gColorTypeName[tstSafeSize.colorType()]); } bool sizeFail = false; // Compare against hand-computed values. switch (gPairs[i].fColorType) { case kUnknown_SkColorType: break; case kAlpha_8_SkColorType: case kIndex_8_SkColorType: if (safeSize != 0x2386F26FC10000LL) { sizeFail = true; } break; case kRGB_565_SkColorType: case kARGB_4444_SkColorType: if (safeSize != 0x470DE4DF820000LL) { sizeFail = true; } break; case kN32_SkColorType: if (safeSize != 0x8E1BC9BF040000LL) { sizeFail = true; } break; default: break; } if (sizeFail) { ERRORF(reporter, "computeSafeSize64() wrong size: %s", gColorTypeName[tstSafeSize.colorType()]); } int subW = 2; int subH = 2; // Create bitmap to act as source for copies and subsets. SkBitmap src, subset; SkColorTable* ct = nullptr; if (kIndex_8_SkColorType == src.colorType()) { ct = init_ctable(); } int localSubW; if (isExtracted[copyCase]) { // A larger image to extract from. localSubW = 2 * subW + 1; } else { // Tests expect a 2x2 bitmap, so make smaller. localSubW = subW; } // could fail if we pass kIndex_8 for the colortype if (src.tryAllocPixels(SkImageInfo::Make(localSubW, subH, gPairs[i].fColorType, kPremul_SkAlphaType))) { // failure is fine, as we will notice later on } SkSafeUnref(ct); // Either copy src or extract into 'subset', which is used // for subsequent calls to copyPixelsTo/From. bool srcReady = false; // Test relies on older behavior that extractSubset will fail on // kUnknown_SkColorType if (kUnknown_SkColorType != src.colorType() && isExtracted[copyCase]) { // The extractedSubset() test case allows us to test copy- // ing when src and dst mave possibly different strides. SkIRect r; r.set(1, 0, 1 + subW, subH); // 2x2 extracted bitmap srcReady = src.extractSubset(&subset, r); } else { srcReady = src.copyTo(&subset); } // Not all configurations will generate a valid 'subset'. if (srcReady) { // Allocate our target buffer 'buf' for all copies. // To simplify verifying correctness of copies attach // buf to a SkBitmap, but copies are done using the // raw buffer pointer. const size_t bufSize = subH * SkColorTypeMinRowBytes(src.colorType(), subW) * 2; SkAutoTMalloc autoBuf (bufSize); uint8_t* buf = autoBuf.get(); SkBitmap bufBm; // Attach buf to this bitmap. bool successExpected; // Set up values for each pixel being copied. Coordinates coords(subW * subH); for (int x = 0; x < subW; ++x) for (int y = 0; y < subH; ++y) { int index = y * subW + x; SkASSERT(index < coords.length); coords[index]->fX = x; coords[index]->fY = y; } writeCoordPixels(subset, coords); // Test #1 //////////////////////////////////////////// const SkImageInfo info = SkImageInfo::Make(subW, subH, gPairs[i].fColorType, kPremul_SkAlphaType); // Before/after comparisons easier if we attach buf // to an appropriately configured SkBitmap. memset(buf, 0xFF, bufSize); // Config with stride greater than src but that fits in buf. bufBm.installPixels(info, buf, info.minRowBytes() * 2); successExpected = false; // Then attempt to copy with a stride that is too large // to fit in the buffer. REPORTER_ASSERT(reporter, subset.copyPixelsTo(buf, bufSize, bufBm.rowBytes() * 3) == successExpected); if (successExpected) reportCopyVerification(subset, bufBm, coords, "copyPixelsTo(buf, bufSize, 1.5*maxRowBytes)", reporter); // Test #2 //////////////////////////////////////////// // This test should always succeed, but in the case // of extracted bitmaps only because we handle the // issue of getSafeSize(). Without getSafeSize() // buffer overrun/read would occur. memset(buf, 0xFF, bufSize); bufBm.installPixels(info, buf, subset.rowBytes()); successExpected = subset.getSafeSize() <= bufSize; REPORTER_ASSERT(reporter, subset.copyPixelsTo(buf, bufSize) == successExpected); if (successExpected) reportCopyVerification(subset, bufBm, coords, "copyPixelsTo(buf, bufSize)", reporter); // Test #3 //////////////////////////////////////////// // Copy with different stride between src and dst. memset(buf, 0xFF, bufSize); bufBm.installPixels(info, buf, subset.rowBytes()+1); successExpected = true; // Should always work. REPORTER_ASSERT(reporter, subset.copyPixelsTo(buf, bufSize, subset.rowBytes()+1) == successExpected); if (successExpected) reportCopyVerification(subset, bufBm, coords, "copyPixelsTo(buf, bufSize, rowBytes+1)", reporter); // Test #4 //////////////////////////////////////////// // Test copy with stride too small. memset(buf, 0xFF, bufSize); bufBm.installPixels(info, buf, info.minRowBytes()); successExpected = false; // Request copy with stride too small. REPORTER_ASSERT(reporter, subset.copyPixelsTo(buf, bufSize, bufBm.rowBytes()-1) == successExpected); if (successExpected) reportCopyVerification(subset, bufBm, coords, "copyPixelsTo(buf, bufSize, rowBytes()-1)", reporter); #if 0 // copyPixelsFrom is gone // Test #5 //////////////////////////////////////////// // Tests the case where the source stride is too small // for the source configuration. memset(buf, 0xFF, bufSize); bufBm.installPixels(info, buf, info.minRowBytes()); writeCoordPixels(bufBm, coords); REPORTER_ASSERT(reporter, subset.copyPixelsFrom(buf, bufSize, 1) == false); // Test #6 /////////////////////////////////////////// // Tests basic copy from an external buffer to the bitmap. // If the bitmap is "extracted", this also tests the case // where the source stride is different from the dest. // stride. // We've made the buffer large enough to always succeed. bufBm.installPixels(info, buf, info.minRowBytes()); writeCoordPixels(bufBm, coords); REPORTER_ASSERT(reporter, subset.copyPixelsFrom(buf, bufSize, bufBm.rowBytes()) == true); reportCopyVerification(bufBm, subset, coords, "copyPixelsFrom(buf, bufSize)", reporter); // Test #7 //////////////////////////////////////////// // Tests the case where the source buffer is too small // for the transfer. REPORTER_ASSERT(reporter, subset.copyPixelsFrom(buf, 1, subset.rowBytes()) == false); #endif } } // for (size_t copyCase ... } } #include "SkColorPriv.h" #include "SkUtils.h" /** * Construct 4x4 pixels where we can look at a color and determine where it should be in the grid. * alpha = 0xFF, blue = 0x80, red = x, green = y */ static void fill_4x4_pixels(SkPMColor colors[16]) { for (int y = 0; y < 4; ++y) { for (int x = 0; x < 4; ++x) { colors[y*4+x] = SkPackARGB32(0xFF, x, y, 0x80); } } } static bool check_4x4_pixel(SkPMColor color, unsigned x, unsigned y) { SkASSERT(x < 4 && y < 4); return 0xFF == SkGetPackedA32(color) && x == SkGetPackedR32(color) && y == SkGetPackedG32(color) && 0x80 == SkGetPackedB32(color); } /** * Fill with all zeros, which will never match any value from fill_4x4_pixels */ static void clear_4x4_pixels(SkPMColor colors[16]) { sk_memset32(colors, 0, 16); } // Much of readPixels is exercised by copyTo testing, since readPixels is the backend for that // method. Here we explicitly test subset copies. // DEF_TEST(BitmapReadPixels, reporter) { const int W = 4; const int H = 4; const size_t rowBytes = W * sizeof(SkPMColor); const SkImageInfo srcInfo = SkImageInfo::MakeN32Premul(W, H); SkPMColor srcPixels[16]; fill_4x4_pixels(srcPixels); SkBitmap srcBM; srcBM.installPixels(srcInfo, srcPixels, rowBytes); SkImageInfo dstInfo = SkImageInfo::MakeN32Premul(W, H); SkPMColor dstPixels[16]; const struct { bool fExpectedSuccess; SkIPoint fRequestedSrcLoc; SkISize fRequestedDstSize; // If fExpectedSuccess, check these, otherwise ignore SkIPoint fExpectedDstLoc; SkIRect fExpectedSrcR; } gRec[] = { { true, { 0, 0 }, { 4, 4 }, { 0, 0 }, { 0, 0, 4, 4 } }, { true, { 1, 1 }, { 2, 2 }, { 0, 0 }, { 1, 1, 3, 3 } }, { true, { 2, 2 }, { 4, 4 }, { 0, 0 }, { 2, 2, 4, 4 } }, { true, {-1,-1 }, { 2, 2 }, { 1, 1 }, { 0, 0, 1, 1 } }, { false, {-1,-1 }, { 1, 1 }, { 0, 0 }, { 0, 0, 0, 0 } }, }; for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) { clear_4x4_pixels(dstPixels); dstInfo = dstInfo.makeWH(gRec[i].fRequestedDstSize.width(), gRec[i].fRequestedDstSize.height()); bool success = srcBM.readPixels(dstInfo, dstPixels, rowBytes, gRec[i].fRequestedSrcLoc.x(), gRec[i].fRequestedSrcLoc.y()); REPORTER_ASSERT(reporter, gRec[i].fExpectedSuccess == success); if (success) { const SkIRect srcR = gRec[i].fExpectedSrcR; const int dstX = gRec[i].fExpectedDstLoc.x(); const int dstY = gRec[i].fExpectedDstLoc.y(); // Walk the dst pixels, and check if we got what we expected for (int y = 0; y < H; ++y) { for (int x = 0; x < W; ++x) { SkPMColor dstC = dstPixels[y*4+x]; // get into src coordinates int sx = x - dstX + srcR.x(); int sy = y - dstY + srcR.y(); if (srcR.contains(sx, sy)) { REPORTER_ASSERT(reporter, check_4x4_pixel(dstC, sx, sy)); } else { REPORTER_ASSERT(reporter, 0 == dstC); } } } } } }