/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTextureCompressor.h" #include "SkTextureCompressor_Blitter.h" #include "SkEndian.h" // #define COMPRESS_R11_EAC_SLOW 1 // #define COMPRESS_R11_EAC_FAST 1 #define COMPRESS_R11_EAC_FASTEST 1 // Blocks compressed into R11 EAC are represented as follows: // 0000000000000000000000000000000000000000000000000000000000000000 // |base_cw|mod|mul| ----------------- indices ------------------- // // To reconstruct the value of a given pixel, we use the formula: // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) // // mod_val is chosen from a palette of values based on the index of the // given pixel. The palette is chosen by the value stored in mod. // This formula returns a value between 0 and 2047, which is converted // to a float from 0 to 1 in OpenGL. // // If mul is zero, then we set mul = 1/8, so that the formula becomes // clamp[0, 2047](base_cw * 8 + 4 + mod_val) static const int kNumR11EACPalettes = 16; static const int kR11EACPaletteSize = 8; static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = { {-3, -6, -9, -15, 2, 5, 8, 14}, {-3, -7, -10, -13, 2, 6, 9, 12}, {-2, -5, -8, -13, 1, 4, 7, 12}, {-2, -4, -6, -13, 1, 3, 5, 12}, {-3, -6, -8, -12, 2, 5, 7, 11}, {-3, -7, -9, -11, 2, 6, 8, 10}, {-4, -7, -8, -11, 3, 6, 7, 10}, {-3, -5, -8, -11, 2, 4, 7, 10}, {-2, -6, -8, -10, 1, 5, 7, 9}, {-2, -5, -8, -10, 1, 4, 7, 9}, {-2, -4, -8, -10, 1, 3, 7, 9}, {-2, -5, -7, -10, 1, 4, 6, 9}, {-3, -4, -7, -10, 2, 3, 6, 9}, {-1, -2, -3, -10, 0, 1, 2, 9}, {-4, -6, -8, -9, 3, 5, 7, 8}, {-3, -5, -7, -9, 2, 4, 6, 8} }; #if COMPRESS_R11_EAC_SLOW // Pack the base codeword, palette, and multiplier into the 64 bits necessary // to decode it. static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier, uint64_t indices) { SkASSERT(palette < 16); SkASSERT(multiplier < 16); SkASSERT(indices < (static_cast(1) << 48)); const uint64_t b = static_cast(base_cw) << 56; const uint64_t m = static_cast(multiplier) << 52; const uint64_t p = static_cast(palette) << 48; return SkEndian_SwapBE64(b | m | p | indices); } // Given a base codeword, a modifier, and a multiplier, compute the proper // pixel value in the range [0, 2047]. static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); } // Compress a block into R11 EAC format. // The compression works as follows: // 1. Find the center of the span of the block's values. Use this as the base codeword. // 2. Choose a multiplier based roughly on the size of the span of block values // 3. Iterate through each palette and choose the one with the most accurate // modifiers. static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { // Find the center of the data... uint16_t bmin = block[0]; uint16_t bmax = block[0]; for (int i = 1; i < 16; ++i) { bmin = SkTMin(bmin, block[i]); bmax = SkTMax(bmax, block[i]); } uint16_t center = (bmax + bmin) >> 1; SkASSERT(center <= 255); // Based on the min and max, we can guesstimate a proper multiplier // This is kind of a magic choice to start with. uint16_t multiplier = (bmax - center) / 10; // Now convert the block to 11 bits and transpose it to match // the proper layout uint16_t cblock[16]; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { int srcIdx = i*4+j; int dstIdx = j*4+i; cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5); } } // Finally, choose the proper palette and indices uint32_t bestError = 0xFFFFFFFF; uint64_t bestIndices = 0; uint16_t bestPalette = 0; for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { const int *palette = kR11EACModifierPalettes[paletteIdx]; // Iterate through each pixel to find the best palette index // and update the indices with the choice. Also store the error // for this palette to be compared against the best error... uint32_t error = 0; uint64_t indices = 0; for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) { const uint16_t pixel = cblock[pixelIdx]; // Iterate through each palette value to find the best index // for this particular pixel for this particular palette. uint16_t bestPixelError = abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier)); int bestIndex = 0; for (int i = 1; i < kR11EACPaletteSize; ++i) { const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier); const uint16_t perror = abs_diff(pixel, p); // Is this index better? if (perror < bestPixelError) { bestIndex = i; bestPixelError = perror; } } SkASSERT(bestIndex < 8); error += bestPixelError; indices <<= 3; indices |= bestIndex; } SkASSERT(indices < (static_cast(1) << 48)); // Is this palette better? if (error < bestError) { bestPalette = paletteIdx; bestIndices = indices; bestError = error; } } // Finally, pack everything together... return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); } #endif // COMPRESS_R11_EAC_SLOW #if COMPRESS_R11_EAC_FAST // This function takes into account that most blocks that we compress have a gradation from // fully opaque to fully transparent. The compression scheme works by selecting the // palette and multiplier that has the tightest fit to the 0-255 range. This is encoded // as the block header (0x8490). The indices are then selected by considering the top // three bits of each alpha value. For alpha masks, this reduces the dynamic range from // 17 to 8, but the quality is still acceptable. // // There are a few caveats that need to be taken care of... // // 1. The block is read in as scanlines, so the indices are stored as: // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 // However, the decomrpession routine reads them in column-major order, so they // need to be packed as: // 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 // So when reading, they must be transposed. // // 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes // above store the modulation values first decreasing and then increasing: // e.g. {-3, -6, -9, -15, 2, 5, 8, 14} // Hence, we need to convert the indices with the following mapping: // From: 0 1 2 3 4 5 6 7 // To: 3 2 1 0 4 5 6 7 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { uint64_t retVal = static_cast(0x8490) << 48; for(int i = 0; i < 4; ++i) { for(int j = 0; j < 4; ++j) { const int shift = 45-3*(j*4+i); SkASSERT(shift <= 45); const uint64_t idx = block[i*4+j] >> 5; SkASSERT(idx < 8); // !SPEED! This is slightly faster than having an if-statement. switch(idx) { case 0: case 1: case 2: case 3: retVal |= (3-idx) << shift; break; default: retVal |= idx << shift; break; } } } return SkEndian_SwapBE64(retVal); } #endif // COMPRESS_R11_EAC_FAST #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) static uint64_t compress_r11eac_block(const uint8_t block[16]) { // Are all blocks a solid color? bool solid = true; for (int i = 1; i < 16; ++i) { if (block[i] != block[0]) { solid = false; break; } } if (solid) { switch(block[0]) { // Fully transparent? We know the encoding... case 0: // (0x0020 << 48) produces the following: // basw_cw: 0 // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14} // multiplier: 2 // mod_val: -3 // // this gives the following formula: // clamp[0, 2047](0*8+4+(-3)*2*8) = 0 // // Furthermore, it is impervious to endianness: // 0x0020000000002000ULL // Will produce one pixel with index 2, which gives: // clamp[0, 2047](0*8+4+(-9)*2*8) = 0 return 0x0020000000002000ULL; // Fully opaque? We know this encoding too... case 255: // -1 produces the following: // basw_cw: 255 // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} // mod_val: 8 // // this gives the following formula: // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 return 0xFFFFFFFFFFFFFFFFULL; default: // !TODO! krajcevski: // This will probably never happen, since we're using this format // primarily for compressing alpha maps. Usually the only // non-fullly opaque or fully transparent blocks are not a solid // intermediate color. If we notice that they are, then we can // add another optimization... break; } } return compress_heterogeneous_r11eac_block(block); } // This function is used by R11 EAC to compress 4x4 blocks // of 8-bit alpha into 64-bit values that comprise the compressed data. // We need to make sure that the dimensions of the src pixels are divisible // by 4, and copy 4x4 blocks one at a time for compression. typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes, A84x4To64BitProc proc) { // Make sure that our data is well-formed enough to be considered for compression if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { return false; } int blocksX = width >> 2; int blocksY = height >> 2; uint8_t block[16]; uint64_t* encPtr = reinterpret_cast(dst); for (int y = 0; y < blocksY; ++y) { for (int x = 0; x < blocksX; ++x) { // Load block for (int k = 0; k < 4; ++k) { memcpy(block + k*4, src + k*rowBytes + 4*x, 4); } // Compress it *encPtr = proc(block); ++encPtr; } src += 4 * rowBytes; } return true; } #endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) // This function converts an integer containing four bytes of alpha // values into an integer containing four bytes of indices into R11 EAC. // Note, there needs to be a mapping of indices: // 0 1 2 3 4 5 6 7 // 3 2 1 0 4 5 6 7 // // To compute this, we first negate each byte, and then add three, which // gives the mapping // 3 2 1 0 -1 -2 -3 -4 // // Then we mask out the negative values, take their absolute value, and // add three. // // Most of the voodoo in this function comes from Hacker's Delight, section 2-18 static inline uint32_t convert_indices(uint32_t x) { // Take the top three bits... x = (x & 0xE0E0E0E0) >> 5; // Negate... x = ~((0x80808080 - x) ^ 0x7F7F7F7F); // Add three const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; x = ((x ^ 0x03030303) & 0x80808080) ^ s; // Absolute value const uint32_t a = x & 0x80808080; const uint32_t b = a >> 7; // Aside: mask negatives (m is three if the byte was negative) const uint32_t m = (a >> 6) | b; // .. continue absolute value x = (x ^ ((a - b) | a)) + b; // Add three return x + m; } #if COMPRESS_R11_EAC_FASTEST template static inline uint64_t swap_shift(uint64_t x, uint64_t mask) { const uint64_t t = (x ^ (x >> shift)) & mask; return x ^ t ^ (t << shift); } static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) { // If our 3-bit block indices are laid out as: // a b c d // e f g h // i j k l // m n o p // // This function expects topRows and bottomRows to contain the first two rows // of indices interleaved in the least significant bits of a and b. In other words... // // If the architecture is big endian, then topRows and bottomRows will contain the following: // Bits 31-0: // a: 00 a e 00 b f 00 c g 00 d h // b: 00 i m 00 j n 00 k o 00 l p // // If the architecture is little endian, then topRows and bottomRows will contain // the following: // Bits 31-0: // a: 00 d h 00 c g 00 b f 00 a e // b: 00 l p 00 k o 00 j n 00 i m // // This function returns a 48-bit packing of the form: // a e i m b f j n c g k o d h l p // // !SPEED! this function might be even faster if certain SIMD intrinsics are // used.. // For both architectures, we can figure out a packing of the bits by // using a shuffle and a few shift-rotates... uint64_t x = (static_cast(topRows) << 32) | static_cast(bottomRows); // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p x = swap_shift<10>(x, 0x3FC0003FC00000ULL); // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16; // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n x = swap_shift<6>(x, 0xFC0000ULL); #if defined (SK_CPU_BENDIAN) // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n x = swap_shift<36>(x, 0x3FULL); // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p x = swap_shift<12>(x, 0xFFF000000ULL); #else // If our CPU is little endian, then the above logic will // produce the following indices: // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o x = swap_shift<36>(x, 0xFC0ULL); // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL); #endif // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p return x; } // This function follows the same basic procedure as compress_heterogeneous_r11eac_block // above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and // tries to optimize where it can using SIMD. static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) { // Store each row of alpha values in an integer const uint32_t alphaRow1 = *(reinterpret_cast(src)); const uint32_t alphaRow2 = *(reinterpret_cast(src + rowBytes)); const uint32_t alphaRow3 = *(reinterpret_cast(src + 2*rowBytes)); const uint32_t alphaRow4 = *(reinterpret_cast(src + 3*rowBytes)); // Check for solid blocks. The explanations for these values // can be found in the comments of compress_r11eac_block above if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) { if (0 == alphaRow1) { // Fully transparent block return 0x0020000000002000ULL; } else if (0xFFFFFFFF == alphaRow1) { // Fully opaque block return 0xFFFFFFFFFFFFFFFFULL; } } // Convert each integer of alpha values into an integer of indices const uint32_t indexRow1 = convert_indices(alphaRow1); const uint32_t indexRow2 = convert_indices(alphaRow2); const uint32_t indexRow3 = convert_indices(alphaRow3); const uint32_t indexRow4 = convert_indices(alphaRow4); // Interleave the indices from the top two rows and bottom two rows // prior to passing them to interleave6. Since each index is at most // three bits, then each byte can hold two indices... The way that the // compression scheme expects the packing allows us to efficiently pack // the top two rows and bottom two rows. Interleaving each 6-bit sequence // and tightly packing it into a uint64_t is a little trickier, which is // taken care of in interleave6. const uint32_t r1r2 = (indexRow1 << 3) | indexRow2; const uint32_t r3r4 = (indexRow3 << 3) | indexRow4; const uint64_t indices = interleave6(r1r2, r3r4); // Return the packed incdices in the least significant bits with the magic header return SkEndian_SwapBE64(0x8490000000000000ULL | indices); } static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { // Make sure that our data is well-formed enough to be considered for compression if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { return false; } const int blocksX = width >> 2; const int blocksY = height >> 2; uint64_t* encPtr = reinterpret_cast(dst); for (int y = 0; y < blocksY; ++y) { for (int x = 0; x < blocksX; ++x) { // Compress it *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes); ++encPtr; } src += 4 * rowBytes; } return true; } #endif // COMPRESS_R11_EAC_FASTEST //////////////////////////////////////////////////////////////////////////////// // // Utility functions used by the blitter // //////////////////////////////////////////////////////////////////////////////// // The R11 EAC format expects that indices are given in column-major order. Since // we receive alpha values in raster order, this usually means that we have to use // pack6 above to properly pack our indices. However, if our indices come from the // blitter, then each integer will be a column of indices, and hence can be efficiently // packed. This function takes the bottom three bits of each byte and places them in // the least significant 12 bits of the resulting integer. static inline uint32_t pack_indices_vertical(uint32_t x) { #if defined (SK_CPU_BENDIAN) return (x & 7) | ((x >> 5) & (7 << 3)) | ((x >> 10) & (7 << 6)) | ((x >> 15) & (7 << 9)); #else return ((x >> 24) & 7) | ((x >> 13) & (7 << 3)) | ((x >> 2) & (7 << 6)) | ((x << 9) & (7 << 9)); #endif } // This function returns the compressed format of a block given as four columns of // alpha values. Each column is assumed to be loaded from top to bottom, and hence // must first be converted to indices and then packed into the resulting 64-bit // integer. inline void compress_block_vertical(uint8_t* dstPtr, const uint8_t *block) { const uint32_t* src = reinterpret_cast(block); uint64_t* dst = reinterpret_cast(dstPtr); const uint32_t alphaColumn0 = src[0]; const uint32_t alphaColumn1 = src[1]; const uint32_t alphaColumn2 = src[2]; const uint32_t alphaColumn3 = src[3]; if (alphaColumn0 == alphaColumn1 && alphaColumn2 == alphaColumn3 && alphaColumn0 == alphaColumn2) { if (0 == alphaColumn0) { // Transparent *dst = 0x0020000000002000ULL; return; } else if (0xFFFFFFFF == alphaColumn0) { // Opaque *dst = 0xFFFFFFFFFFFFFFFFULL; return; } } const uint32_t indexColumn0 = convert_indices(alphaColumn0); const uint32_t indexColumn1 = convert_indices(alphaColumn1); const uint32_t indexColumn2 = convert_indices(alphaColumn2); const uint32_t indexColumn3 = convert_indices(alphaColumn3); const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0); const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1); const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2); const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3); *dst = SkEndian_SwapBE64(0x8490000000000000ULL | (static_cast(packedIndexColumn0) << 36) | (static_cast(packedIndexColumn1) << 24) | static_cast(packedIndexColumn2 << 12) | static_cast(packedIndexColumn3)); } static inline int get_r11_eac_index(uint64_t block, int x, int y) { SkASSERT(x >= 0 && x < 4); SkASSERT(y >= 0 && y < 4); const int idx = x*4 + y; return (block >> ((15-idx)*3)) & 0x7; } static void decompress_r11_eac_block(uint8_t* dst, int dstRowBytes, const uint8_t* src) { const uint64_t block = SkEndian_SwapBE64(*(reinterpret_cast(src))); const int base_cw = (block >> 56) & 0xFF; const int mod = (block >> 52) & 0xF; const int palette_idx = (block >> 48) & 0xF; const int* palette = kR11EACModifierPalettes[palette_idx]; for (int j = 0; j < 4; ++j) { for (int i = 0; i < 4; ++i) { const int idx = get_r11_eac_index(block, i, j); const int val = base_cw*8 + 4 + palette[idx]*mod*8; if (val < 0) { dst[i] = 0; } else if (val > 2047) { dst[i] = 0xFF; } else { dst[i] = (val >> 3) & 0xFF; } } dst += dstRowBytes; } } //////////////////////////////////////////////////////////////////////////////// namespace SkTextureCompressor { bool CompressA8ToR11EAC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block); #elif COMPRESS_R11_EAC_FASTEST return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes); #else #error "Must choose R11 EAC algorithm" #endif } SkBlitter* CreateR11EACBlitter(int width, int height, void* outputBuffer) { return new SkTCompressedAlphaBlitter<4, 8, compress_block_vertical> (width, height, outputBuffer); } void DecompressR11EAC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height) { for (int j = 0; j < height; j += 4) { for (int i = 0; i < width; i += 4) { decompress_r11_eac_block(dst + i, dstRowBytes, src); src += 8; } dst += 4 * dstRowBytes; } } } // namespace SkTextureCompressor