/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTextureCompressor_LATC.h" #include "SkTextureCompressor_Blitter.h" #include "SkEndian.h" // Compression options. In general, the slow version is much more accurate, but // much slower. The fast option is much faster, but much less accurate. YMMV. #define COMPRESS_LATC_SLOW 0 #define COMPRESS_LATC_FAST 1 //////////////////////////////////////////////////////////////////////////////// // Generates an LATC palette. LATC constructs // a palette of eight colors from LUM0 and LUM1 using the algorithm: // // LUM0, if lum0 > lum1 and code(x,y) == 0 // LUM1, if lum0 > lum1 and code(x,y) == 1 // (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2 // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 // ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 // // LUM0, if lum0 <= lum1 and code(x,y) == 0 // LUM1, if lum0 <= lum1 and code(x,y) == 1 // (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 // 0, if lum0 <= lum1 and code(x,y) == 6 // 255, if lum0 <= lum1 and code(x,y) == 7 static const int kLATCPaletteSize = 8; static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { palette[0] = lum0; palette[1] = lum1; if (lum0 > lum1) { for (int i = 1; i < 7; i++) { palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; } } else { for (int i = 1; i < 5; i++) { palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; } palette[6] = 0; palette[7] = 255; } } //////////////////////////////////////////////////////////////////////////////// #if COMPRESS_LATC_SLOW //////////////////////////////////////////////////////////////////////////////// // // Utility Functions // //////////////////////////////////////////////////////////////////////////////// // Absolute difference between two values. More correct than SkTAbs(a - b) // because it works on unsigned values. template inline T abs_diff(const T &a, const T &b) { return (a > b) ? (a - b) : (b - a); } static bool is_extremal(uint8_t pixel) { return 0 == pixel || 255 == pixel; } typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); // This function is used by both R11 EAC and LATC to compress 4x4 blocks // of 8-bit alpha into 64-bit values that comprise the compressed data. // For both formats, we need to make sure that the dimensions of the // src pixels are divisible by 4, and copy 4x4 blocks one at a time // for compression. static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes, A84x4To64BitProc proc) { // Make sure that our data is well-formed enough to be considered for compression if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { return false; } int blocksX = width >> 2; int blocksY = height >> 2; uint8_t block[16]; uint64_t* encPtr = reinterpret_cast(dst); for (int y = 0; y < blocksY; ++y) { for (int x = 0; x < blocksX; ++x) { // Load block for (int k = 0; k < 4; ++k) { memcpy(block + k*4, src + k*rowBytes + 4*x, 4); } // Compress it *encPtr = proc(block); ++encPtr; } src += 4 * rowBytes; } return true; } //////////////////////////////////////////////////////////////////////////////// // // LATC compressor // //////////////////////////////////////////////////////////////////////////////// // LATC compressed texels down into square 4x4 blocks static const int kLATCBlockSize = 4; static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; // Compress a block by using the bounding box of the pixels. It is assumed that // there are no extremal pixels in this block otherwise we would have used // compressBlockBBIgnoreExtremal. static uint64_t compress_latc_block_bb(const uint8_t pixels[]) { uint8_t minVal = 255; uint8_t maxVal = 0; for (int i = 0; i < kLATCPixelsPerBlock; ++i) { minVal = SkTMin(pixels[i], minVal); maxVal = SkTMax(pixels[i], maxVal); } SkASSERT(!is_extremal(minVal)); SkASSERT(!is_extremal(maxVal)); uint8_t palette[kLATCPaletteSize]; generate_latc_palette(palette, maxVal, minVal); uint64_t indices = 0; for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { // Find the best palette index uint8_t bestError = abs_diff(pixels[i], palette[0]); uint8_t idx = 0; for (int j = 1; j < kLATCPaletteSize; ++j) { uint8_t error = abs_diff(pixels[i], palette[j]); if (error < bestError) { bestError = error; idx = j; } } indices <<= 3; indices |= idx; } return SkEndian_SwapLE64( static_cast(maxVal) | (static_cast(minVal) << 8) | (indices << 16)); } // Compress a block by using the bounding box of the pixels without taking into // account the extremal values. The generated palette will contain extremal values // and fewer points along the line segment to interpolate. static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) { uint8_t minVal = 255; uint8_t maxVal = 0; for (int i = 0; i < kLATCPixelsPerBlock; ++i) { if (is_extremal(pixels[i])) { continue; } minVal = SkTMin(pixels[i], minVal); maxVal = SkTMax(pixels[i], maxVal); } SkASSERT(!is_extremal(minVal)); SkASSERT(!is_extremal(maxVal)); uint8_t palette[kLATCPaletteSize]; generate_latc_palette(palette, minVal, maxVal); uint64_t indices = 0; for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { // Find the best palette index uint8_t idx = 0; if (is_extremal(pixels[i])) { if (0xFF == pixels[i]) { idx = 7; } else if (0 == pixels[i]) { idx = 6; } else { SkFAIL("Pixel is extremal but not really?!"); } } else { uint8_t bestError = abs_diff(pixels[i], palette[0]); for (int j = 1; j < kLATCPaletteSize - 2; ++j) { uint8_t error = abs_diff(pixels[i], palette[j]); if (error < bestError) { bestError = error; idx = j; } } } indices <<= 3; indices |= idx; } return SkEndian_SwapLE64( static_cast(minVal) | (static_cast(maxVal) << 8) | (indices << 16)); } // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two // values LUM0 and LUM1, and an index into the generated palette. Details of how // the palette is generated can be found in the comments of generatePalette above. // // We choose which palette type to use based on whether or not 'pixels' contains // any extremal values (0 or 255). If there are extremal values, then we use the // palette that has the extremal values built in. Otherwise, we use the full bounding // box. static uint64_t compress_latc_block(const uint8_t pixels[]) { // Collect unique pixels int nUniquePixels = 0; uint8_t uniquePixels[kLATCPixelsPerBlock]; for (int i = 0; i < kLATCPixelsPerBlock; ++i) { bool foundPixel = false; for (int j = 0; j < nUniquePixels; ++j) { foundPixel = foundPixel || uniquePixels[j] == pixels[i]; } if (!foundPixel) { uniquePixels[nUniquePixels] = pixels[i]; ++nUniquePixels; } } // If there's only one unique pixel, then our compression is easy. if (1 == nUniquePixels) { return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); // Similarly, if there are only two unique pixels, then our compression is // easy again: place the pixels in the block header, and assign the indices // with one or zero depending on which pixel they belong to. } else if (2 == nUniquePixels) { uint64_t outBlock = 0; for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { int idx = 0; if (pixels[i] == uniquePixels[1]) { idx = 1; } outBlock <<= 3; outBlock |= idx; } outBlock <<= 16; outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); return SkEndian_SwapLE64(outBlock); } // Count non-maximal pixel values int nonExtremalPixels = 0; for (int i = 0; i < nUniquePixels; ++i) { if (!is_extremal(uniquePixels[i])) { ++nonExtremalPixels; } } // If all the pixels are nonmaximal then compute the palette using // the bounding box of all the pixels. if (nonExtremalPixels == nUniquePixels) { // This is really just for correctness, in all of my tests we // never take this step. We don't lose too much perf here because // most of the processing in this function is worth it for the // 1 == nUniquePixels optimization. return compress_latc_block_bb(pixels); } else { return compress_latc_block_bb_ignore_extremal(pixels); } } #endif // COMPRESS_LATC_SLOW //////////////////////////////////////////////////////////////////////////////// #if COMPRESS_LATC_FAST // Take the top three indices of each int and pack them into the low 12 // bits of the integer. static inline uint32_t convert_index(uint32_t x) { // Since the palette is // 255, 0, 219, 182, 146, 109, 73, 36 // we need to map the high three bits of each byte in the integer // from // 0 1 2 3 4 5 6 7 // to // 1 7 6 5 4 3 2 0 // // This first operation takes the mapping from // 0 1 2 3 4 5 6 7 --> 7 6 5 4 3 2 1 0 x = 0x07070707 - ((x >> 5) & 0x07070707); // mask is 1 if index is non-zero const uint32_t mask = (x | (x >> 1) | (x >> 2)) & 0x01010101; // add mask: // 7 6 5 4 3 2 1 0 --> 8 7 6 5 4 3 2 0 x = (x + mask); // Handle overflow: // 8 7 6 5 4 3 2 0 --> 9 7 6 5 4 3 2 0 x |= (x >> 3) & 0x01010101; // Mask out high bits: // 9 7 6 5 4 3 2 0 --> 1 7 6 5 4 3 2 0 x &= 0x07070707; // Pack it in... #if defined (SK_CPU_BENDIAN) return (x >> 24) | ((x >> 13) & 0x38) | ((x >> 2) & 0x1C0) | ((x << 9) & 0xE00); #else return (x & 0x7) | ((x >> 5) & 0x38) | ((x >> 10) & 0x1C0) | ((x >> 15) & 0xE00); #endif } typedef uint64_t (*PackIndicesProc)(const uint8_t* alpha, int rowBytes); template static void compress_a8_latc_block(uint8_t** dstPtr, const uint8_t* src, int rowBytes) { *(reinterpret_cast(*dstPtr)) = SkEndian_SwapLE64(0xFF | (packIndicesProc(src, rowBytes) << 16)); *dstPtr += 8; } inline uint64_t PackRowMajor(const uint8_t *indices, int rowBytes) { uint64_t result = 0; for (int i = 0; i < 4; ++i) { const uint32_t idx = *(reinterpret_cast(indices + i*rowBytes)); result |= static_cast(convert_index(idx)) << 12*i; } return result; } inline uint64_t PackColumnMajor(const uint8_t *indices, int rowBytes) { // !SPEED! Blarg, this is kind of annoying. SSE4 can make this // a LOT faster. uint8_t transposed[16]; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { transposed[j*4+i] = indices[i*rowBytes + j]; } } return PackRowMajor(transposed, 4); } static bool compress_4x4_a8_latc(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { if (width < 0 || ((width % 4) != 0) || height < 0 || ((height % 4) != 0)) { return false; } uint8_t** dstPtr = &dst; for (int y = 0; y < height; y += 4) { for (int x = 0; x < width; x += 4) { compress_a8_latc_block(dstPtr, src + y*rowBytes + x, rowBytes); } } return true; } void CompressA8LATCBlockVertical(uint8_t* dst, const uint8_t block[]) { compress_a8_latc_block(&dst, block, 4); } #endif // COMPRESS_LATC_FAST void decompress_latc_block(uint8_t* dst, int dstRowBytes, const uint8_t* src) { uint64_t block = SkEndian_SwapLE64(*(reinterpret_cast(src))); uint8_t lum0 = block & 0xFF; uint8_t lum1 = (block >> 8) & 0xFF; uint8_t palette[kLATCPaletteSize]; generate_latc_palette(palette, lum0, lum1); block >>= 16; for (int j = 0; j < 4; ++j) { for (int i = 0; i < 4; ++i) { dst[i] = palette[block & 0x7]; block >>= 3; } dst += dstRowBytes; } } //////////////////////////////////////////////////////////////////////////////// namespace SkTextureCompressor { bool CompressA8ToLATC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { #if COMPRESS_LATC_FAST return compress_4x4_a8_latc(dst, src, width, height, rowBytes); #elif COMPRESS_LATC_SLOW return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block); #else #error "Must choose either fast or slow LATC compression" #endif } SkBlitter* CreateLATCBlitter(int width, int height, void* outputBuffer) { #if COMPRESS_LATC_FAST return new SkTCompressedAlphaBlitter<4, 8, CompressA8LATCBlockVertical> (width, height, outputBuffer); #elif COMPRESS_LATC_SLOW // TODO (krajcevski) return NULL; #endif } void DecompressLATC(uint8_t* dst, int dstRowBytes, const uint8_t* src, int width, int height) { for (int j = 0; j < height; j += 4) { for (int i = 0; i < width; i += 4) { decompress_latc_block(dst + i, dstRowBytes, src); src += 8; } dst += 4 * dstRowBytes; } } } // SkTextureCompressor