/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTextureCompressor_Blitter_DEFINED #define SkTextureCompressor_Blitter_DEFINED #include "SkTypes.h" #include "SkBlitter.h" namespace SkTextureCompressor { // The function used to compress an A8 block. This function is expected to be // used as a template argument to SkCompressedAlphaBlitter. The layout of the // block is also expected to be in column-major order. typedef void (*CompressA8Proc)(uint8_t* dst, const uint8_t block[]); // This class implements a blitter that blits directly into a buffer that will // be used as an compressed alpha texture. We compute this buffer by // buffering scan lines and then outputting them all at once. The number of // scan lines buffered is controlled by kBlockSize template class SkTCompressedAlphaBlitter : public SkBlitter { public: SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer) // 0x7FFE is one minus the largest positive 16-bit int. We use it for // debugging to make sure that we're properly setting the nextX distance // in flushRuns(). : kLongestRun(0x7FFE), kZeroAlpha(0) , fNextRun(0) , fWidth(width) , fHeight(height) , fBuffer(compressedBuffer) { SkASSERT((width % BlockDim) == 0); SkASSERT((height % BlockDim) == 0); } virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); } // Blit a horizontal run of one or more pixels. virtual void blitH(int x, int y, int width) SK_OVERRIDE { // This function is intended to be called from any standard RGB // buffer, so we should never encounter it. However, if some code // path does end up here, then this needs to be investigated. SkFAIL("Not implemented!"); } // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* // zero-terminated run-length encoding of spans of constant alpha values. virtual void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) SK_OVERRIDE { // Make sure that the new row to blit is either the first // row that we're blitting, or it's exactly the next scan row // since the last row that we blit. This is to ensure that when // we go to flush the runs, that they are all the same four // runs. if (fNextRun > 0 && ((x != fBufferedRuns[fNextRun-1].fX) || (y-1 != fBufferedRuns[fNextRun-1].fY))) { this->flushRuns(); } // Align the rows to a block boundary. If we receive rows that // are not on a block boundary, then fill in the preceding runs // with zeros. We do this by producing a single RLE that says // that we have 0x7FFE pixels of zero (0x7FFE = 32766). const int row = BlockDim * (y / BlockDim); while ((row + fNextRun) < y) { fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; fBufferedRuns[fNextRun].fRuns = &kLongestRun; fBufferedRuns[fNextRun].fX = 0; fBufferedRuns[fNextRun].fY = row + fNextRun; ++fNextRun; } // Make sure that our assumptions aren't violated... SkASSERT(fNextRun == (y % BlockDim)); SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); // Set the values of the next run fBufferedRuns[fNextRun].fAlphas = antialias; fBufferedRuns[fNextRun].fRuns = runs; fBufferedRuns[fNextRun].fX = x; fBufferedRuns[fNextRun].fY = y; // If we've output a block of scanlines in a row that don't violate our // assumptions, then it's time to flush them... if (BlockDim == ++fNextRun) { this->flushRuns(); } } // Blit a vertical run of pixels with a constant alpha value. virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE { // This function is currently not implemented. It is not explicitly // required by the contract, but if at some time a code path runs into // this function (which is entirely possible), it needs to be implemented. // // TODO (krajcevski): // This function will be most easily implemented in one of two ways: // 1. Buffer each vertical column value and then construct a list // of alpha values and output all of the blocks at once. This only // requires a write to the compressed buffer // 2. Replace the indices of each block with the proper indices based // on the alpha value. This requires a read and write of the compressed // buffer, but much less overhead. SkFAIL("Not implemented!"); } // Blit a solid rectangle one or more pixels wide. virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE { // Analogous to blitRow, this function is intended for RGB targets // and should never be called by this blitter. Any calls to this function // are probably a bug and should be investigated. SkFAIL("Not implemented!"); } // Blit a rectangle with one alpha-blended column on the left, // width (zero or more) opaque pixels, and one alpha-blended column // on the right. The result will always be at least two pixels wide. virtual void blitAntiRect(int x, int y, int width, int height, SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE { // This function is currently not implemented. It is not explicitly // required by the contract, but if at some time a code path runs into // this function (which is entirely possible), it needs to be implemented. // // TODO (krajcevski): // This function will be most easily implemented as follows: // 1. If width/height are smaller than a block, then update the // indices of the affected blocks. // 2. If width/height are larger than a block, then construct a 9-patch // of block encodings that represent the rectangle, and write them // to the compressed buffer as necessary. Whether or not the blocks // are overwritten by zeros or just their indices are updated is up // to debate. SkFAIL("Not implemented!"); } // Blit a pattern of pixels defined by a rectangle-clipped mask; // typically used for text. virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE { // This function is currently not implemented. It is not explicitly // required by the contract, but if at some time a code path runs into // this function (which is entirely possible), it needs to be implemented. // // TODO (krajcevski): // This function will be most easily implemented in the same way as // blitAntiRect above. SkFAIL("Not implemented!"); } // If the blitter just sets a single value for each pixel, return the // bitmap it draws into, and assign value. If not, return NULL and ignore // the value parameter. virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE { return NULL; } /** * Compressed texture blitters only really work correctly if they get * BlockDim rows at a time. That being said, this blitter tries it's best * to preserve semantics if blitAntiH doesn't get called in too many * weird ways... */ virtual int requestRowsPreserved() const { return BlockDim; } private: static const int kPixelsPerBlock = BlockDim * BlockDim; // The longest possible run of pixels that this blitter will receive. // This is initialized in the constructor to 0x7FFE, which is one less // than the largest positive 16-bit integer. We make sure that it's one // less for debugging purposes. We also don't make this variable static // in order to make sure that we can construct a valid pointer to it. const int16_t kLongestRun; // Usually used in conjunction with kLongestRun. This is initialized to // zero. const SkAlpha kZeroAlpha; // This is the information that we buffer whenever we're asked to blit // a row with this blitter. struct BufferedRun { const SkAlpha* fAlphas; const int16_t* fRuns; int fX, fY; } fBufferedRuns[BlockDim]; // The next row [0, BlockDim) that we need to blit. int fNextRun; // The width and height of the image that we're blitting const int fWidth; const int fHeight; // The compressed buffer that we're blitting into. It is assumed that the buffer // is large enough to store a compressed image of size fWidth*fHeight. void* const fBuffer; // Various utility functions int blocksWide() const { return fWidth / BlockDim; } int blocksTall() const { return fHeight / BlockDim; } int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } // Returns the block index for the block containing pixel (x, y). Block // indices start at zero and proceed in raster order. int getBlockOffset(int x, int y) const { SkASSERT(x < fWidth); SkASSERT(y < fHeight); const int blockCol = x / BlockDim; const int blockRow = y / BlockDim; return blockRow * this->blocksWide() + blockCol; } // Returns a pointer to the block containing pixel (x, y) uint8_t *getBlock(int x, int y) const { uint8_t* ptr = reinterpret_cast(fBuffer); return ptr + EncodedBlockSize*this->getBlockOffset(x, y); } // Updates the block whose columns are stored in block. curAlphai is expected // to store the alpha values that will be placed within each of the columns in // the range [col, col+colsLeft). typedef uint32_t Column[BlockDim/4]; typedef uint32_t Block[BlockDim][BlockDim/4]; inline void updateBlockColumns(Block block, const int col, const int colsLeft, const Column curAlphai) { SkASSERT(NULL != block); SkASSERT(col + colsLeft <= BlockDim); for (int i = col; i < (col + colsLeft); ++i) { memcpy(block[i], curAlphai, sizeof(Column)); } } // The following function writes the buffered runs to compressed blocks. // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with // the constant zero buffer. void flushRuns() { // If we don't have any runs, then just return. if (0 == fNextRun) { return; } #ifndef NDEBUG // Make sure that if we have any runs, they all match for (int i = 1; i < fNextRun; ++i) { SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); } #endif // If we don't have as many runs as we have rows, fill in the remaining // runs with constant zeros. for (int i = fNextRun; i < BlockDim; ++i) { fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; fBufferedRuns[i].fX = fBufferedRuns[0].fX; fBufferedRuns[i].fAlphas = &kZeroAlpha; fBufferedRuns[i].fRuns = &kLongestRun; } // Make sure that our assumptions aren't violated. SkASSERT(fNextRun > 0 && fNextRun <= BlockDim); SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0); // The following logic walks BlockDim rows at a time and outputs compressed // blocks to the buffer passed into the constructor. // We do the following: // // c1 c2 c3 c4 // ----------------------------------------------------------------------- // ... | | | | | ----> fBufferedRuns[0] // ----------------------------------------------------------------------- // ... | | | | | ----> fBufferedRuns[1] // ----------------------------------------------------------------------- // ... | | | | | ----> fBufferedRuns[2] // ----------------------------------------------------------------------- // ... | | | | | ----> fBufferedRuns[3] // ----------------------------------------------------------------------- // // curX -- the macro X value that we've gotten to. // c[BlockDim] -- the buffers that represent the columns of the current block // that we're operating on // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns. // nextX -- for each run, the next point at which we need to update curAlphaColumn // after the value of curX. // finalX -- the minimum of all the nextX values. // // curX advances to finalX outputting any blocks that it passes along // the way. Since finalX will not change when we reach the end of a // run, the termination criteria will be whenever curX == finalX at the // end of a loop. // Setup: Block block; sk_bzero(block, sizeof(block)); Column curAlphaColumn; sk_bzero(curAlphaColumn, sizeof(curAlphaColumn)); SkAlpha *curAlpha = reinterpret_cast(&curAlphaColumn); int nextX[BlockDim]; for (int i = 0; i < BlockDim; ++i) { nextX[i] = 0x7FFFFF; } uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); // Populate the first set of runs and figure out how far we need to // advance on the first step int curX = 0; int finalX = 0xFFFFF; for (int i = 0; i < BlockDim; ++i) { nextX[i] = *(fBufferedRuns[i].fRuns); curAlpha[i] = *(fBufferedRuns[i].fAlphas); finalX = SkMin32(nextX[i], finalX); } // Make sure that we have a valid right-bound X value SkASSERT(finalX < 0xFFFFF); // Run the blitter... while (curX != finalX) { SkASSERT(finalX >= curX); // Do we need to populate the rest of the block? if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) { const int col = curX % BlockDim; const int colsLeft = BlockDim - col; SkASSERT(curX + colsLeft <= finalX); this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); // Write this block CompressionProc(outPtr, reinterpret_cast(block)); outPtr += EncodedBlockSize; curX += colsLeft; } // If we can advance even further, then just keep memsetting the block if ((finalX - curX) >= BlockDim) { SkASSERT((curX % BlockDim) == 0); const int col = 0; const int colsLeft = BlockDim; this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); // While we can keep advancing, just keep writing the block. uint8_t lastBlock[EncodedBlockSize]; CompressionProc(lastBlock, reinterpret_cast(block)); while((finalX - curX) >= BlockDim) { memcpy(outPtr, lastBlock, EncodedBlockSize); outPtr += EncodedBlockSize; curX += BlockDim; } } // If we haven't advanced within the block then do so. if (curX < finalX) { const int col = curX % BlockDim; const int colsLeft = finalX - curX; this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); curX += colsLeft; } SkASSERT(curX == finalX); // Figure out what the next advancement is... for (int i = 0; i < BlockDim; ++i) { if (nextX[i] == finalX) { const int16_t run = *(fBufferedRuns[i].fRuns); fBufferedRuns[i].fRuns += run; fBufferedRuns[i].fAlphas += run; curAlpha[i] = *(fBufferedRuns[i].fAlphas); nextX[i] += *(fBufferedRuns[i].fRuns); } } finalX = 0xFFFFF; for (int i = 0; i < BlockDim; ++i) { finalX = SkMin32(nextX[i], finalX); } } // If we didn't land on a block boundary, output the block... if ((curX % BlockDim) > 1) { CompressionProc(outPtr, reinterpret_cast(block)); } fNextRun = 0; } }; } // namespace SkTextureCompressor #endif // SkTextureCompressor_Blitter_DEFINED