/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkShadowUtils.h" #include "SkCanvas.h" #include "SkColorFilter.h" #include "SkPath.h" #include "SkRandom.h" #include "SkResourceCache.h" #include "SkShadowTessellator.h" #include "SkString.h" #include "SkTLazy.h" #include "SkVertices.h" #if SK_SUPPORT_GPU #include "GrShape.h" #include "effects/GrBlurredEdgeFragmentProcessor.h" #endif #include "../../src/effects/shadows/SkAmbientShadowMaskFilter.h" #include "../../src/effects/shadows/SkSpotShadowMaskFilter.h" /** * Gaussian color filter -- produces a Gaussian ramp based on the color's B value, * then blends with the color's G value. * Final result is black with alpha of Gaussian(B)*G. * The assumption is that the original color's alpha is 1. */ class SK_API SkGaussianColorFilter : public SkColorFilter { public: static sk_sp Make() { return sk_sp(new SkGaussianColorFilter); } void filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const override; #if SK_SUPPORT_GPU sk_sp asFragmentProcessor(GrContext*, SkColorSpace*) const override; #endif SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkGaussianColorFilter) protected: void flatten(SkWriteBuffer&) const override {} private: SkGaussianColorFilter() : INHERITED() {} typedef SkColorFilter INHERITED; }; void SkGaussianColorFilter::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const { for (int i = 0; i < count; ++i) { SkPMColor c = src[i]; SkScalar factor = SK_Scalar1 - SkGetPackedB32(c) / 255.f; factor = SkScalarExp(-factor * factor * 4) - 0.018f; SkScalar a = factor * SkGetPackedG32(c); dst[i] = SkPackARGB32(a, a, a, a); } } sk_sp SkGaussianColorFilter::CreateProc(SkReadBuffer&) { return Make(); } #ifndef SK_IGNORE_TO_STRING void SkGaussianColorFilter::toString(SkString* str) const { str->append("SkGaussianColorFilter "); } #endif #if SK_SUPPORT_GPU sk_sp SkGaussianColorFilter::asFragmentProcessor(GrContext*, SkColorSpace*) const { return GrBlurredEdgeFP::Make(GrBlurredEdgeFP::kGaussian_Mode); } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// namespace { uint64_t resource_cache_shared_id() { return 0x2020776f64616873llu; // 'shadow ' } /** Factory for an ambient shadow mesh with particular shadow properties. */ struct AmbientVerticesFactory { SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. SkScalar fAmbientAlpha; bool fTransparent; bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const { if (fOccluderHeight != that.fOccluderHeight || fAmbientAlpha != that.fAmbientAlpha || fTransparent != that.fTransparent) { return false; } translate->set(0, 0); return true; } sk_sp makeVertices(const SkPath& path, const SkMatrix& ctm) const { SkScalar z = fOccluderHeight; return SkShadowTessellator::MakeAmbient(path, ctm, [z](SkScalar, SkScalar) { return z; }, fAmbientAlpha, fTransparent); } }; /** Factory for an spot shadow mesh with particular shadow properties. */ struct SpotVerticesFactory { enum class OccluderType { // The umbra cannot be dropped out because the occluder is not opaque. kTransparent, // The umbra can be dropped where it is occluded. kOpaque, // It is known that the entire umbra is occluded. kOpaqueCoversUmbra }; SkVector fOffset; SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. SkPoint3 fDevLightPos; SkScalar fLightRadius; SkScalar fSpotAlpha; OccluderType fOccluderType; bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const { if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ || fLightRadius != that.fLightRadius || fSpotAlpha != that.fSpotAlpha || fOccluderType != that.fOccluderType) { return false; } switch (fOccluderType) { case OccluderType::kTransparent: case OccluderType::kOpaqueCoversUmbra: // 'this' and 'that' will either both have no umbra removed or both have all the // umbra removed. *translate = that.fOffset - fOffset; return true; case OccluderType::kOpaque: // In this case we partially remove the umbra differently for 'this' and 'that' // if the offsets don't match. if (fOffset == that.fOffset) { translate->set(0, 0); return true; } return false; } SkFAIL("Uninitialized occluder type?"); return false; } sk_sp makeVertices(const SkPath& path, const SkMatrix& ctm) const { bool transparent = OccluderType::kTransparent == fOccluderType; SkScalar z = fOccluderHeight; return SkShadowTessellator::MakeSpot(path, ctm, [z](SkScalar, SkScalar) -> SkScalar { return z; }, fDevLightPos, fLightRadius, fSpotAlpha, transparent); } }; /** * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache * records are immutable this is not itself a Rec. When we need to update it we return this on * the FindVisitor and let the cache destory the Rec. We'll update the tessellations and then add * a new Rec with an adjusted size for any deletions/additions. */ class CachedTessellations : public SkRefCnt { public: size_t size() const { return fAmbientSet.size() + fSpotSet.size(); } sk_sp find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, SkVector* translate) const { return fAmbientSet.find(ambient, matrix, translate); } sk_sp add(const SkPath& devPath, const AmbientVerticesFactory& ambient, const SkMatrix& matrix) { return fAmbientSet.add(devPath, ambient, matrix); } sk_sp find(const SpotVerticesFactory& spot, const SkMatrix& matrix, SkVector* translate) const { return fSpotSet.find(spot, matrix, translate); } sk_sp add(const SkPath& devPath, const SpotVerticesFactory& spot, const SkMatrix& matrix) { return fSpotSet.add(devPath, spot, matrix); } private: template class Set { public: size_t size() const { return fSize; } sk_sp find(const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) const { for (int i = 0; i < MAX_ENTRIES; ++i) { if (fEntries[i].fFactory.isCompatible(factory, translate)) { const SkMatrix& m = fEntries[i].fMatrix; if (matrix.hasPerspective() || m.hasPerspective()) { if (matrix != fEntries[i].fMatrix) { continue; } } else if (matrix.getScaleX() != m.getScaleX() || matrix.getSkewX() != m.getSkewX() || matrix.getScaleY() != m.getScaleY() || matrix.getSkewY() != m.getSkewY()) { continue; } *translate += SkVector{matrix.getTranslateX() - m.getTranslateX(), matrix.getTranslateY() - m.getTranslateY()}; return fEntries[i].fVertices; } } return nullptr; } sk_sp add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix) { sk_sp vertices = factory.makeVertices(path, matrix); if (!vertices) { return nullptr; } int i; if (fCount < MAX_ENTRIES) { i = fCount++; } else { i = gRandom.nextULessThan(MAX_ENTRIES); fSize -= fEntries[i].fVertices->approximateSize(); } fEntries[i].fFactory = factory; fEntries[i].fVertices = vertices; fEntries[i].fMatrix = matrix; fSize += vertices->approximateSize(); return vertices; } private: struct Entry { FACTORY fFactory; sk_sp fVertices; SkMatrix fMatrix; }; Entry fEntries[MAX_ENTRIES]; int fCount = 0; size_t fSize = 0; }; Set fAmbientSet; Set fSpotSet; static SkRandom gRandom; }; SkRandom CachedTessellations::gRandom; /** * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular * path. The key represents the path's geometry and not any shadow params. */ class CachedTessellationsRec : public SkResourceCache::Rec { public: CachedTessellationsRec(const SkResourceCache::Key& key, sk_sp tessellations) : fTessellations(std::move(tessellations)) { fKey.reset(new uint8_t[key.size()]); memcpy(fKey.get(), &key, key.size()); } const Key& getKey() const override { return *reinterpret_cast(fKey.get()); } size_t bytesUsed() const override { return fTessellations->size(); } const char* getCategory() const override { return "tessellated shadow masks"; } sk_sp refTessellations() const { return fTessellations; } template sk_sp find(const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) const { return fTessellations->find(factory, matrix, translate); } private: std::unique_ptr fKey; sk_sp fTessellations; }; /** * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the * vertices and a translation vector. If the CachedTessellations does not contain a suitable * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations * to the caller. The caller will update it and reinsert it back into the cache. */ template struct FindContext { FindContext(const SkMatrix* viewMatrix, const FACTORY* factory) : fViewMatrix(viewMatrix), fFactory(factory) {} const SkMatrix* const fViewMatrix; // If this is valid after Find is called then we found the vertices and they should be drawn // with fTranslate applied. sk_sp fVertices; SkVector fTranslate = {0, 0}; // If this is valid after Find then the caller should add the vertices to the tessellation set // and create a new CachedTessellationsRec and insert it into SkResourceCache. sk_sp fTessellationsOnFailure; const FACTORY* fFactory; }; /** * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of * the FindContext are used to determine if the vertices are reusable. If so the vertices and * necessary translation vector are set on the FindContext. */ template bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) { FindContext* findContext = (FindContext*)ctx; const CachedTessellationsRec& rec = static_cast(baseRec); findContext->fVertices = rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate); if (findContext->fVertices) { return true; } // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been // manipulated we will add a new Rec. findContext->fTessellationsOnFailure = rec.refTessellations(); return false; } class ShadowedPath { public: ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix) : fPath(path) , fViewMatrix(viewMatrix) #if SK_SUPPORT_GPU , fShapeForKey(*path, GrStyle::SimpleFill()) #endif {} const SkPath& path() const { return *fPath; } const SkMatrix& viewMatrix() const { return *fViewMatrix; } #if SK_SUPPORT_GPU /** Negative means the vertices should not be cached for this path. */ int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); } void writeKey(void* key) const { fShapeForKey.writeUnstyledKey(reinterpret_cast(key)); } bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); } #else int keyBytes() const { return -1; } void writeKey(void* key) const { SkFAIL("Should never be called"); } bool isRRect(SkRRect* rrect) { return false; } #endif private: const SkPath* fPath; const SkMatrix* fViewMatrix; #if SK_SUPPORT_GPU GrShape fShapeForKey; #endif }; // This creates a domain of keys in SkResourceCache used by this file. static void* kNamespace; /** * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless * they are first found in SkResourceCache. */ template void draw_shadow(const FACTORY& factory, SkCanvas* canvas, ShadowedPath& path, SkColor color, SkResourceCache* cache) { FindContext context(&path.viewMatrix(), &factory); SkResourceCache::Key* key = nullptr; SkAutoSTArray<32 * 4, uint8_t> keyStorage; int keyDataBytes = path.keyBytes(); if (keyDataBytes >= 0) { keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key)); key = new (keyStorage.begin()) SkResourceCache::Key(); path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key))); key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes); if (cache) { cache->find(*key, FindVisitor, &context); } else { SkResourceCache::Find(*key, FindVisitor, &context); } } sk_sp vertices; const SkVector* translate; static constexpr SkVector kZeroTranslate = {0, 0}; bool foundInCache = SkToBool(context.fVertices); if (foundInCache) { vertices = std::move(context.fVertices); translate = &context.fTranslate; } else { // TODO: handle transforming the path as part of the tessellator if (key) { // Update or initialize a tessellation set and add it to the cache. sk_sp tessellations; if (context.fTessellationsOnFailure) { tessellations = std::move(context.fTessellationsOnFailure); } else { tessellations.reset(new CachedTessellations()); } vertices = tessellations->add(path.path(), factory, path.viewMatrix()); if (!vertices) { return; } auto rec = new CachedTessellationsRec(*key, std::move(tessellations)); if (cache) { cache->add(rec); } else { SkResourceCache::Add(rec); } } else { vertices = factory.makeVertices(path.path(), path.viewMatrix()); if (!vertices) { return; } } translate = &kZeroTranslate; } SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of // that against our 'color' param. paint.setColorFilter(SkColorFilter::MakeComposeFilter( SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate), SkGaussianColorFilter::Make())); if (translate->fX || translate->fY) { canvas->save(); canvas->translate(translate->fX, translate->fY); } canvas->drawVertices(vertices, SkBlendMode::kModulate, paint); if (translate->fX || translate->fY) { canvas->restore(); } } } static bool draw_analytic_shadows(SkCanvas* canvas, const SkPath& path, SkScalar occluderZ, const SkPoint3& devLightPos, SkScalar lightRadius, SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color, uint32_t flags) { SkRect rect; SkRRect rrect; if (canvas->getTotalMatrix().isSimilarity()) { if (path.isRect(&rect)) { SkPaint newPaint; newPaint.setColor(color); if (ambientAlpha > 0) { newPaint.setMaskFilter(SkAmbientShadowMaskFilter::Make(occluderZ, ambientAlpha, flags)); canvas->drawRect(rect, newPaint); } if (spotAlpha > 0) { newPaint.setMaskFilter(SkSpotShadowMaskFilter::Make(occluderZ, devLightPos, lightRadius, spotAlpha, flags)); canvas->drawRect(rect, newPaint); } return true; } else if (path.isRRect(&rrect) && rrect.isSimpleCircular() && rrect.radii(SkRRect::kUpperLeft_Corner).fX > SK_ScalarNearlyZero) { SkPaint newPaint; newPaint.setColor(color); if (ambientAlpha > 0) { newPaint.setMaskFilter(SkAmbientShadowMaskFilter::Make(occluderZ, ambientAlpha, flags)); canvas->drawRRect(rrect, newPaint); } if (spotAlpha > 0) { newPaint.setMaskFilter(SkSpotShadowMaskFilter::Make(occluderZ, devLightPos, lightRadius, spotAlpha, flags)); canvas->drawRRect(rrect, newPaint); } return true; } else if (path.isOval(&rect) && SkScalarNearlyEqual(rect.width(), rect.height()) && rect.width() > SK_ScalarNearlyZero) { SkPaint newPaint; newPaint.setColor(color); if (ambientAlpha > 0) { newPaint.setMaskFilter(SkAmbientShadowMaskFilter::Make(occluderZ, ambientAlpha, flags)); canvas->drawOval(rect, newPaint); } if (spotAlpha > 0) { newPaint.setMaskFilter(SkSpotShadowMaskFilter::Make(occluderZ, devLightPos, lightRadius, spotAlpha, flags)); canvas->drawOval(rect, newPaint); } return true; } } return false; } // Draw an offset spot shadow and outlining ambient shadow for the given path. void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, SkScalar occluderHeight, const SkPoint3& devLightPos, SkScalar lightRadius, SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color, uint32_t flags, SkResourceCache* cache) { // try fast paths if (draw_analytic_shadows(canvas, path, occluderHeight, devLightPos, lightRadius, ambientAlpha, spotAlpha, color, flags)) { return; } SkAutoCanvasRestore acr(canvas, true); SkMatrix viewMatrix = canvas->getTotalMatrix(); canvas->resetMatrix(); ShadowedPath shadowedPath(&path, &viewMatrix); bool transparent = SkToBool(flags & SkShadowFlags::kTransparentOccluder_ShadowFlag); if (ambientAlpha > 0) { ambientAlpha = SkTMin(ambientAlpha, 1.f); AmbientVerticesFactory factory; factory.fOccluderHeight = occluderHeight; factory.fAmbientAlpha = ambientAlpha; factory.fTransparent = transparent; draw_shadow(factory, canvas, shadowedPath, color, cache); } if (spotAlpha > 0) { spotAlpha = SkTMin(spotAlpha, 1.f); SpotVerticesFactory factory; float zRatio = SkTPin(occluderHeight / (devLightPos.fZ - occluderHeight), 0.0f, 0.95f); SkScalar radius = lightRadius * zRatio; // Compute the scale and translation for the spot shadow. SkScalar scale = devLightPos.fZ / (devLightPos.fZ - occluderHeight); SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY()); viewMatrix.mapPoints(¢er, 1); factory.fOffset = SkVector::Make(zRatio * (center.fX - devLightPos.fX), zRatio * (center.fY - devLightPos.fY)); factory.fOccluderHeight = occluderHeight; factory.fDevLightPos = devLightPos; factory.fLightRadius = lightRadius; factory.fSpotAlpha = spotAlpha; SkRRect rrect; if (transparent) { factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; } else { factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaque; if (shadowedPath.isRRect(&rrect)) { SkRRect devRRect; if (rrect.transform(viewMatrix, &devRRect)) { SkScalar s = 1.f - scale; SkScalar w = devRRect.width(); SkScalar h = devRRect.height(); SkScalar hw = w / 2.f; SkScalar hh = h / 2.f; SkScalar umbraInsetX = s * hw + radius; SkScalar umbraInsetY = s * hh + radius; // The umbra is inset by radius along the diagonal, so adjust for that. SkScalar d = 1.f / SkScalarSqrt(hw * hw + hh * hh); umbraInsetX *= hw * d; umbraInsetY *= hh * d; if (umbraInsetX > hw || umbraInsetY > hh) { // There is no umbra to occlude. factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; } else if (fabsf(factory.fOffset.fX) < umbraInsetX && fabsf(factory.fOffset.fY) < umbraInsetY) { factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueCoversUmbra; } else if (factory.fOffset.fX > w - umbraInsetX || factory.fOffset.fY > h - umbraInsetY) { // There umbra is fully exposed, there is nothing to omit. factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; } } } } if (factory.fOccluderType == SpotVerticesFactory::OccluderType::kOpaque) { factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; } draw_shadow(factory, canvas, shadowedPath, color, cache); } } // Draw an offset spot shadow and outlining ambient shadow for the given path, // without caching and using a function based on local position to compute the height. void SkShadowUtils::DrawUncachedShadow(SkCanvas* canvas, const SkPath& path, std::function heightFunc, const SkPoint3& lightPos, SkScalar lightRadius, SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color, uint32_t flags) { // try fast paths if (draw_analytic_shadows(canvas, path, heightFunc(0, 0), lightPos, lightRadius, ambientAlpha, spotAlpha, color, flags)) { return; } SkAutoCanvasRestore acr(canvas, true); SkMatrix viewMatrix = canvas->getTotalMatrix(); canvas->resetMatrix(); bool transparent = SkToBool(flags & SkShadowFlags::kTransparentOccluder_ShadowFlag); if (ambientAlpha > 0) { ambientAlpha = SkTMin(ambientAlpha, 1.f); sk_sp vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix, heightFunc, ambientAlpha, transparent); SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the grayscale // result of that against our 'color' param. paint.setColorFilter(SkColorFilter::MakeComposeFilter( SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate), SkGaussianColorFilter::Make())); canvas->drawVertices(vertices, SkBlendMode::kModulate, paint); } if (spotAlpha > 0) { spotAlpha = SkTMin(spotAlpha, 1.f); sk_sp vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, heightFunc, lightPos, lightRadius, spotAlpha, transparent); SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the grayscale // result of that against our 'color' param. paint.setColorFilter(SkColorFilter::MakeComposeFilter( SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate), SkGaussianColorFilter::Make())); canvas->drawVertices(vertices, SkBlendMode::kModulate, paint); } }