/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkShadowUtils.h" #include "SkCanvas.h" #include "SkColorFilter.h" #include "SkColorPriv.h" #include "SkDevice.h" #include "SkDrawShadowRec.h" #include "SkPath.h" #include "SkPM4f.h" #include "SkRandom.h" #include "SkResourceCache.h" #include "SkShadowTessellator.h" #include "SkString.h" #include "SkTLazy.h" #include "SkVertices.h" #if SK_SUPPORT_GPU #include "GrShape.h" #include "effects/GrBlurredEdgeFragmentProcessor.h" #endif /** * Gaussian color filter -- produces a Gaussian ramp based on the color's B value, * then blends with the color's G value. * Final result is black with alpha of Gaussian(B)*G. * The assumption is that the original color's alpha is 1. */ class SK_API SkGaussianColorFilter : public SkColorFilter { public: static sk_sp Make() { return sk_sp(new SkGaussianColorFilter); } void filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const override; void filterSpan4f(const SkPM4f src[], int count, SkPM4f result[]) const override; #if SK_SUPPORT_GPU sk_sp asFragmentProcessor(GrContext*, SkColorSpace*) const override; #endif SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkGaussianColorFilter) protected: void flatten(SkWriteBuffer&) const override {} private: SkGaussianColorFilter() : INHERITED() {} typedef SkColorFilter INHERITED; }; static inline float eval_gaussian(float x) { // x = 1 - x; // return sk_float_exp(-x * x * 4) - 0.018f; return 0.00030726194381713867f + x*(0.15489584207534790039f + x*(0.21345567703247070312f + (2.89795351028442382812f - 2.26661229133605957031f*x)*x)); } static void build_table() { SkDebugf("const uint8_t gByteExpU8Table[256] = {"); for (int i = 0; i <= 255; ++i) { if (!(i % 8)) { SkDebugf("\n"); } int v = (int)(eval_gaussian(i / 255.f) * 256); SkDebugf(" 0x%02X,", v); } SkDebugf("\n};\n"); } const uint8_t gByteExpU8Table[256] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x08, 0x08, 0x08, 0x09, 0x09, 0x09, 0x0A, 0x0A, 0x0B, 0x0B, 0x0B, 0x0C, 0x0C, 0x0D, 0x0D, 0x0E, 0x0E, 0x0F, 0x0F, 0x10, 0x10, 0x11, 0x11, 0x12, 0x12, 0x13, 0x14, 0x14, 0x15, 0x15, 0x16, 0x17, 0x17, 0x18, 0x19, 0x19, 0x1A, 0x1B, 0x1C, 0x1C, 0x1D, 0x1E, 0x1F, 0x1F, 0x20, 0x21, 0x22, 0x23, 0x24, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3F, 0x40, 0x41, 0x42, 0x44, 0x45, 0x46, 0x48, 0x49, 0x4A, 0x4C, 0x4D, 0x4E, 0x50, 0x51, 0x53, 0x54, 0x55, 0x57, 0x58, 0x5A, 0x5B, 0x5D, 0x5E, 0x60, 0x61, 0x63, 0x64, 0x66, 0x68, 0x69, 0x6B, 0x6C, 0x6E, 0x70, 0x71, 0x73, 0x75, 0x76, 0x78, 0x79, 0x7B, 0x7D, 0x7F, 0x80, 0x82, 0x84, 0x85, 0x87, 0x89, 0x8A, 0x8C, 0x8E, 0x90, 0x91, 0x93, 0x95, 0x96, 0x98, 0x9A, 0x9C, 0x9D, 0x9F, 0xA1, 0xA2, 0xA4, 0xA6, 0xA8, 0xA9, 0xAB, 0xAD, 0xAE, 0xB0, 0xB2, 0xB3, 0xB5, 0xB7, 0xB8, 0xBA, 0xBC, 0xBD, 0xBF, 0xC0, 0xC2, 0xC3, 0xC5, 0xC7, 0xC8, 0xCA, 0xCB, 0xCD, 0xCE, 0xCF, 0xD1, 0xD2, 0xD4, 0xD5, 0xD6, 0xD8, 0xD9, 0xDA, 0xDC, 0xDD, 0xDE, 0xDF, 0xE1, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xEB, 0xEC, 0xED, 0xEE, 0xEF, 0xF0, 0xF0, 0xF1, 0xF2, 0xF3, 0xF3, 0xF4, 0xF5, 0xF5, 0xF6, 0xF6, 0xF7, 0xF7, 0xF8, 0xF8, 0xF9, 0xF9, 0xF9, 0xFA, 0xFA, 0xFA, 0xFA, 0xFA, 0xFB, 0xFB, 0xFB, 0xFB, 0xFB, }; void SkGaussianColorFilter::filterSpan(const SkPMColor src[], int count, SkPMColor dst[]) const { // to re-build the table, call build_table() which will dump it out using SkDebugf. if (false) { build_table(); } for (int i = 0; i < count; ++i) { SkPMColor c = src[i]; uint8_t a = gByteExpU8Table[SkGetPackedA32(c)]; dst[i] = SkPackARGB32(a, a, a, a); } } void SkGaussianColorFilter::filterSpan4f(const SkPM4f src[], int count, SkPM4f dst[]) const { for (int i = 0; i < count; ++i) { float v = eval_gaussian(src[i].a()); dst[i] = SkPM4f::FromPremulRGBA(v, v, v, v); } } sk_sp SkGaussianColorFilter::CreateProc(SkReadBuffer&) { return Make(); } #ifndef SK_IGNORE_TO_STRING void SkGaussianColorFilter::toString(SkString* str) const { str->append("SkGaussianColorFilter "); } #endif #if SK_SUPPORT_GPU sk_sp SkGaussianColorFilter::asFragmentProcessor(GrContext*, SkColorSpace*) const { return GrBlurredEdgeFP::Make(GrBlurredEdgeFP::kGaussian_Mode); } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// namespace { uint64_t resource_cache_shared_id() { return 0x2020776f64616873llu; // 'shadow ' } /** Factory for an ambient shadow mesh with particular shadow properties. */ struct AmbientVerticesFactory { SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. bool fTransparent; bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const { if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) { return false; } translate->set(0, 0); return true; } sk_sp makeVertices(const SkPath& path, const SkMatrix& ctm) const { SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); return SkShadowTessellator::MakeAmbient(path, ctm, zParams, fTransparent); } }; /** Factory for an spot shadow mesh with particular shadow properties. */ struct SpotVerticesFactory { enum class OccluderType { // The umbra cannot be dropped out because the occluder is not opaque. kTransparent, // The occluder is opaque and the umbra is fully visible kOpaqueFullUmbra, // The umbra can be dropped where it is occluded. kOpaquePartialUmbra, // It is known that the entire umbra is occluded. kOpaqueNoUmbra }; SkVector fOffset; SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. SkPoint3 fDevLightPos; SkScalar fLightRadius; OccluderType fOccluderType; bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const { if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ || fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) { return false; } switch (fOccluderType) { case OccluderType::kTransparent: case OccluderType::kOpaqueFullUmbra: case OccluderType::kOpaqueNoUmbra: // 'this' and 'that' will either both have no umbra removed or both have all the // umbra removed. *translate = that.fOffset - fOffset; return true; case OccluderType::kOpaquePartialUmbra: // In this case we partially remove the umbra differently for 'this' and 'that' // if the offsets don't match. if (fOffset == that.fOffset) { translate->set(0, 0); return true; } return false; } SkFAIL("Uninitialized occluder type?"); return false; } sk_sp makeVertices(const SkPath& path, const SkMatrix& ctm) const { bool transparent = OccluderType::kTransparent == fOccluderType; SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, transparent); } }; /** * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache * records are immutable this is not itself a Rec. When we need to update it we return this on * the FindVisitor and let the cache destory the Rec. We'll update the tessellations and then add * a new Rec with an adjusted size for any deletions/additions. */ class CachedTessellations : public SkRefCnt { public: size_t size() const { return fAmbientSet.size() + fSpotSet.size(); } sk_sp find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, SkVector* translate) const { return fAmbientSet.find(ambient, matrix, translate); } sk_sp add(const SkPath& devPath, const AmbientVerticesFactory& ambient, const SkMatrix& matrix) { return fAmbientSet.add(devPath, ambient, matrix); } sk_sp find(const SpotVerticesFactory& spot, const SkMatrix& matrix, SkVector* translate) const { return fSpotSet.find(spot, matrix, translate); } sk_sp add(const SkPath& devPath, const SpotVerticesFactory& spot, const SkMatrix& matrix) { return fSpotSet.add(devPath, spot, matrix); } private: template class Set { public: size_t size() const { return fSize; } sk_sp find(const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) const { for (int i = 0; i < MAX_ENTRIES; ++i) { if (fEntries[i].fFactory.isCompatible(factory, translate)) { const SkMatrix& m = fEntries[i].fMatrix; if (matrix.hasPerspective() || m.hasPerspective()) { if (matrix != fEntries[i].fMatrix) { continue; } } else if (matrix.getScaleX() != m.getScaleX() || matrix.getSkewX() != m.getSkewX() || matrix.getScaleY() != m.getScaleY() || matrix.getSkewY() != m.getSkewY()) { continue; } *translate += SkVector{matrix.getTranslateX() - m.getTranslateX(), matrix.getTranslateY() - m.getTranslateY()}; return fEntries[i].fVertices; } } return nullptr; } sk_sp add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix) { sk_sp vertices = factory.makeVertices(path, matrix); if (!vertices) { return nullptr; } int i; if (fCount < MAX_ENTRIES) { i = fCount++; } else { i = gRandom.nextULessThan(MAX_ENTRIES); fSize -= fEntries[i].fVertices->approximateSize(); } fEntries[i].fFactory = factory; fEntries[i].fVertices = vertices; fEntries[i].fMatrix = matrix; fSize += vertices->approximateSize(); return vertices; } private: struct Entry { FACTORY fFactory; sk_sp fVertices; SkMatrix fMatrix; }; Entry fEntries[MAX_ENTRIES]; int fCount = 0; size_t fSize = 0; }; Set fAmbientSet; Set fSpotSet; static SkRandom gRandom; }; SkRandom CachedTessellations::gRandom; /** * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular * path. The key represents the path's geometry and not any shadow params. */ class CachedTessellationsRec : public SkResourceCache::Rec { public: CachedTessellationsRec(const SkResourceCache::Key& key, sk_sp tessellations) : fTessellations(std::move(tessellations)) { fKey.reset(new uint8_t[key.size()]); memcpy(fKey.get(), &key, key.size()); } const Key& getKey() const override { return *reinterpret_cast(fKey.get()); } size_t bytesUsed() const override { return fTessellations->size(); } const char* getCategory() const override { return "tessellated shadow masks"; } sk_sp refTessellations() const { return fTessellations; } template sk_sp find(const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) const { return fTessellations->find(factory, matrix, translate); } private: std::unique_ptr fKey; sk_sp fTessellations; }; /** * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the * vertices and a translation vector. If the CachedTessellations does not contain a suitable * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations * to the caller. The caller will update it and reinsert it back into the cache. */ template struct FindContext { FindContext(const SkMatrix* viewMatrix, const FACTORY* factory) : fViewMatrix(viewMatrix), fFactory(factory) {} const SkMatrix* const fViewMatrix; // If this is valid after Find is called then we found the vertices and they should be drawn // with fTranslate applied. sk_sp fVertices; SkVector fTranslate = {0, 0}; // If this is valid after Find then the caller should add the vertices to the tessellation set // and create a new CachedTessellationsRec and insert it into SkResourceCache. sk_sp fTessellationsOnFailure; const FACTORY* fFactory; }; /** * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of * the FindContext are used to determine if the vertices are reusable. If so the vertices and * necessary translation vector are set on the FindContext. */ template bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) { FindContext* findContext = (FindContext*)ctx; const CachedTessellationsRec& rec = static_cast(baseRec); findContext->fVertices = rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate); if (findContext->fVertices) { return true; } // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been // manipulated we will add a new Rec. findContext->fTessellationsOnFailure = rec.refTessellations(); return false; } class ShadowedPath { public: ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix) : fPath(path) , fViewMatrix(viewMatrix) #if SK_SUPPORT_GPU , fShapeForKey(*path, GrStyle::SimpleFill()) #endif {} const SkPath& path() const { return *fPath; } const SkMatrix& viewMatrix() const { return *fViewMatrix; } #if SK_SUPPORT_GPU /** Negative means the vertices should not be cached for this path. */ int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); } void writeKey(void* key) const { fShapeForKey.writeUnstyledKey(reinterpret_cast(key)); } bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); } #else int keyBytes() const { return -1; } void writeKey(void* key) const { SkFAIL("Should never be called"); } bool isRRect(SkRRect* rrect) { return false; } #endif private: const SkPath* fPath; const SkMatrix* fViewMatrix; #if SK_SUPPORT_GPU GrShape fShapeForKey; #endif }; // This creates a domain of keys in SkResourceCache used by this file. static void* kNamespace; /** * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless * they are first found in SkResourceCache. */ template void draw_shadow(const FACTORY& factory, std::function drawProc, ShadowedPath& path, SkColor color) { FindContext context(&path.viewMatrix(), &factory); SkResourceCache::Key* key = nullptr; SkAutoSTArray<32 * 4, uint8_t> keyStorage; int keyDataBytes = path.keyBytes(); if (keyDataBytes >= 0) { keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key)); key = new (keyStorage.begin()) SkResourceCache::Key(); path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key))); key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes); SkResourceCache::Find(*key, FindVisitor, &context); } sk_sp vertices; const SkVector* translate; static constexpr SkVector kZeroTranslate = {0, 0}; bool foundInCache = SkToBool(context.fVertices); if (foundInCache) { vertices = std::move(context.fVertices); translate = &context.fTranslate; } else { // TODO: handle transforming the path as part of the tessellator if (key) { // Update or initialize a tessellation set and add it to the cache. sk_sp tessellations; if (context.fTessellationsOnFailure) { tessellations = std::move(context.fTessellationsOnFailure); } else { tessellations.reset(new CachedTessellations()); } vertices = tessellations->add(path.path(), factory, path.viewMatrix()); if (!vertices) { return; } auto rec = new CachedTessellationsRec(*key, std::move(tessellations)); SkResourceCache::Add(rec); } else { vertices = factory.makeVertices(path.path(), path.viewMatrix()); if (!vertices) { return; } } translate = &kZeroTranslate; } SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of // that against our 'color' param. paint.setColorFilter(SkColorFilter::MakeComposeFilter( SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate), SkGaussianColorFilter::Make())); drawProc(vertices.get(), SkBlendMode::kModulate, paint, translate->fX, translate->fY); } } static bool tilted(const SkPoint3& zPlaneParams) { return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY); } static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) { SkPoint3 result; m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX); result.fZ = pt.fZ; return result; } static SkColor compute_render_color(SkColor color, float alpha) { return SkColorSetARGB(alpha*SkColorGetA(color), SkColorGetR(color), SkColorGetG(color), SkColorGetB(color)); } // Draw an offset spot shadow and outlining ambient shadow for the given path. void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& devLightPos, SkScalar lightRadius, SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color, uint32_t flags) { SkMatrix inverse; if (!canvas->getTotalMatrix().invert(&inverse)) { return; } SkPoint pt = inverse.mapXY(devLightPos.fX, devLightPos.fY); SkDrawShadowRec rec; rec.fZPlaneParams = zPlaneParams; rec.fLightPos = { pt.fX, pt.fY, devLightPos.fZ }; rec.fLightRadius = lightRadius; rec.fAmbientAlpha = SkScalarToFloat(ambientAlpha); rec.fSpotAlpha = SkScalarToFloat(spotAlpha); rec.fColor = color; rec.fFlags = flags; canvas->private_draw_shadow_rec(path, rec); } void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) { auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint, SkScalar tx, SkScalar ty) { SkAutoDeviceCTMRestore adr(this, SkMatrix::Concat(this->ctm(), SkMatrix::MakeTrans(tx, ty))); this->drawVertices(vertices, mode, paint); }; SkMatrix viewMatrix = this->ctm(); SkAutoDeviceCTMRestore adr(this, SkMatrix::I()); ShadowedPath shadowedPath(&path, &viewMatrix); bool tiltZPlane = tilted(rec.fZPlaneParams); bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag); bool uncached = tiltZPlane || path.isVolatile(); SkColor color = rec.fColor; SkPoint3 zPlaneParams = rec.fZPlaneParams; SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos); float lightRadius = rec.fLightRadius; float ambientAlpha = rec.fAmbientAlpha; if (ambientAlpha > 0) { ambientAlpha = SkTMin(ambientAlpha, 1.f); if (uncached) { sk_sp vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix, zPlaneParams, transparent); SkColor renderColor = compute_render_color(color, ambientAlpha); SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the grayscale // result of that against our 'color' param. paint.setColorFilter(SkColorFilter::MakeComposeFilter( SkColorFilter::MakeModeFilter(renderColor, SkBlendMode::kModulate), SkGaussianColorFilter::Make())); this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint); } else { AmbientVerticesFactory factory; factory.fOccluderHeight = zPlaneParams.fZ; factory.fTransparent = transparent; SkColor renderColor = compute_render_color(color, ambientAlpha); draw_shadow(factory, drawVertsProc, shadowedPath, renderColor); } } float spotAlpha = rec.fSpotAlpha; if (spotAlpha > 0) { spotAlpha = SkTMin(spotAlpha, 1.f); if (uncached) { sk_sp vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, zPlaneParams, devLightPos, lightRadius, transparent); SkColor renderColor = compute_render_color(color, spotAlpha); SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the grayscale // result of that against our 'color' param. paint.setColorFilter(SkColorFilter::MakeComposeFilter( SkColorFilter::MakeModeFilter(renderColor, SkBlendMode::kModulate), SkGaussianColorFilter::Make())); this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint); } else { SpotVerticesFactory factory; SkScalar occluderHeight = zPlaneParams.fZ; float zRatio = SkTPin(occluderHeight / (devLightPos.fZ - occluderHeight), 0.0f, 0.95f); SkScalar radius = lightRadius * zRatio; // Compute the scale and translation for the spot shadow. SkScalar scale = devLightPos.fZ / (devLightPos.fZ - occluderHeight); SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY()); viewMatrix.mapPoints(¢er, 1); factory.fOffset = SkVector::Make(zRatio * (center.fX - devLightPos.fX), zRatio * (center.fY - devLightPos.fY)); factory.fOccluderHeight = occluderHeight; factory.fDevLightPos = devLightPos; factory.fLightRadius = lightRadius; SkRect devBounds; viewMatrix.mapRect(&devBounds, path.getBounds()); if (transparent) { factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; } else if (SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() || SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) { // if the translation of the shadow is big enough we're going to end up // filling the entire umbra, so we can treat these as all the same factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueFullUmbra; } else if (factory.fOffset.length()*scale + scale < radius) { // if we don't translate more than the blur distance, can assume umbra is covered factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra; } else { factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra; } #ifdef DEBUG_SHADOW_CHECKS switch (factory.fOccluderType) { case SpotVerticesFactory::OccluderType::kTransparent: color = 0xFFD2B48C; // tan for transparent break; case SpotVerticesFactory::OccluderType::kOpaqueFullUmbra: color = 0xFF614126; // brown for umBra break; case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra: color = 0xFFFFA500; // orange for opaque break; case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra: color = 0xFFE5E500; // corn yellow for covered break; } #endif SkColor renderColor = compute_render_color(color, spotAlpha); draw_shadow(factory, drawVertsProc, shadowedPath, renderColor); } } }