/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. * * The following code is based on the description in RFC 3174. * http://www.ietf.org/rfc/rfc3174.txt */ #include "SkTypes.h" #include "SkSHA1.h" #include /** SHA1 basic transformation. Transforms state based on block. */ static void transform(uint32_t state[5], const uint8_t block[64]); /** Encodes input into output (5 big endian 32 bit values). */ static void encode(uint8_t output[20], const uint32_t input[5]); /** Encodes input into output (big endian 64 bit value). */ static void encode(uint8_t output[8], const uint64_t input); SkSHA1::SkSHA1() : byteCount(0) { // These are magic numbers from the specification. The first four are the same as MD5. this->state[0] = 0x67452301; this->state[1] = 0xefcdab89; this->state[2] = 0x98badcfe; this->state[3] = 0x10325476; this->state[4] = 0xc3d2e1f0; } void SkSHA1::update(const uint8_t* input, size_t inputLength) { unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); unsigned int bufferAvailable = 64 - bufferIndex; unsigned int inputIndex; if (inputLength >= bufferAvailable) { if (bufferIndex) { memcpy(&this->buffer[bufferIndex], input, bufferAvailable); transform(this->state, this->buffer); inputIndex = bufferAvailable; } else { inputIndex = 0; } for (; inputIndex + 63 < inputLength; inputIndex += 64) { transform(this->state, &input[inputIndex]); } bufferIndex = 0; } else { inputIndex = 0; } memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); this->byteCount += inputLength; } void SkSHA1::finish(Digest& digest) { // Get the number of bits before padding. uint8_t bits[8]; encode(bits, this->byteCount << 3); // Pad out to 56 mod 64. unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); static uint8_t PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; this->update(PADDING, paddingLength); // Append length (length before padding, will cause final update). this->update(bits, 8); // Write out digest. encode(digest.data, this->state); #if defined(SK_SHA1_CLEAR_DATA) // Clear state. memset(this, 0, sizeof(*this)); #endif } struct F1 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { return (B & C) | ((~B) & D); //return D ^ (B & (C ^ D)); //return (B & C) ^ ((~B) & D); //return (B & C) + ((~B) & D); //return _mm_or_ps(_mm_andnot_ps(B, D), _mm_and_ps(B, C)); //SSE2 //return vec_sel(D, C, B); //PPC }}; struct F2 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { return B ^ C ^ D; }}; struct F3 { uint32_t operator()(uint32_t B, uint32_t C, uint32_t D) { return (B & C) | (B & D) | (C & D); //return (B & C) | (D & (B | C)); //return (B & C) | (D & (B ^ C)); //return (B & C) + (D & (B ^ C)); //return (B & C) ^ (B & D) ^ (C & D); }}; /** Rotates x left n bits. */ static inline uint32_t rotate_left(uint32_t x, uint8_t n) { return (x << n) | (x >> (32 - n)); } template static inline void operation(T operation, uint32_t A, uint32_t& B, uint32_t C, uint32_t D, uint32_t& E, uint32_t w, uint32_t k) { E += rotate_left(A, 5) + operation(B, C, D) + w + k; B = rotate_left(B, 30); } static void transform(uint32_t state[5], const uint8_t block[64]) { uint32_t A = state[0], B = state[1], C = state[2], D = state[3], E = state[4]; // Round constants defined in SHA-1. static const uint32_t K[] = { 0x5A827999, //sqrt(2) * 2^30 0x6ED9EBA1, //sqrt(3) * 2^30 0x8F1BBCDC, //sqrt(5) * 2^30 0xCA62C1D6, //sqrt(10) * 2^30 }; uint32_t W[80]; // Initialize the array W. size_t i = 0; for (size_t j = 0; i < 16; ++i, j += 4) { W[i] = (((uint32_t)block[j ]) << 24) | (((uint32_t)block[j+1]) << 16) | (((uint32_t)block[j+2]) << 8) | (((uint32_t)block[j+3]) ); } for (; i < 80; ++i) { W[i] = rotate_left(W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16], 1); //The following is equivelent and speeds up SSE implementations, but slows non-SSE. //W[i] = rotate_left(W[i-6] ^ W[i-16] ^ W[i-28] ^ W[i-32], 2); } // Round 1 operation(F1(), A, B, C, D, E, W[ 0], K[0]); operation(F1(), E, A, B, C, D, W[ 1], K[0]); operation(F1(), D, E, A, B, C, W[ 2], K[0]); operation(F1(), C, D, E, A, B, W[ 3], K[0]); operation(F1(), B, C, D, E, A, W[ 4], K[0]); operation(F1(), A, B, C, D, E, W[ 5], K[0]); operation(F1(), E, A, B, C, D, W[ 6], K[0]); operation(F1(), D, E, A, B, C, W[ 7], K[0]); operation(F1(), C, D, E, A, B, W[ 8], K[0]); operation(F1(), B, C, D, E, A, W[ 9], K[0]); operation(F1(), A, B, C, D, E, W[10], K[0]); operation(F1(), E, A, B, C, D, W[11], K[0]); operation(F1(), D, E, A, B, C, W[12], K[0]); operation(F1(), C, D, E, A, B, W[13], K[0]); operation(F1(), B, C, D, E, A, W[14], K[0]); operation(F1(), A, B, C, D, E, W[15], K[0]); operation(F1(), E, A, B, C, D, W[16], K[0]); operation(F1(), D, E, A, B, C, W[17], K[0]); operation(F1(), C, D, E, A, B, W[18], K[0]); operation(F1(), B, C, D, E, A, W[19], K[0]); // Round 2 operation(F2(), A, B, C, D, E, W[20], K[1]); operation(F2(), E, A, B, C, D, W[21], K[1]); operation(F2(), D, E, A, B, C, W[22], K[1]); operation(F2(), C, D, E, A, B, W[23], K[1]); operation(F2(), B, C, D, E, A, W[24], K[1]); operation(F2(), A, B, C, D, E, W[25], K[1]); operation(F2(), E, A, B, C, D, W[26], K[1]); operation(F2(), D, E, A, B, C, W[27], K[1]); operation(F2(), C, D, E, A, B, W[28], K[1]); operation(F2(), B, C, D, E, A, W[29], K[1]); operation(F2(), A, B, C, D, E, W[30], K[1]); operation(F2(), E, A, B, C, D, W[31], K[1]); operation(F2(), D, E, A, B, C, W[32], K[1]); operation(F2(), C, D, E, A, B, W[33], K[1]); operation(F2(), B, C, D, E, A, W[34], K[1]); operation(F2(), A, B, C, D, E, W[35], K[1]); operation(F2(), E, A, B, C, D, W[36], K[1]); operation(F2(), D, E, A, B, C, W[37], K[1]); operation(F2(), C, D, E, A, B, W[38], K[1]); operation(F2(), B, C, D, E, A, W[39], K[1]); // Round 3 operation(F3(), A, B, C, D, E, W[40], K[2]); operation(F3(), E, A, B, C, D, W[41], K[2]); operation(F3(), D, E, A, B, C, W[42], K[2]); operation(F3(), C, D, E, A, B, W[43], K[2]); operation(F3(), B, C, D, E, A, W[44], K[2]); operation(F3(), A, B, C, D, E, W[45], K[2]); operation(F3(), E, A, B, C, D, W[46], K[2]); operation(F3(), D, E, A, B, C, W[47], K[2]); operation(F3(), C, D, E, A, B, W[48], K[2]); operation(F3(), B, C, D, E, A, W[49], K[2]); operation(F3(), A, B, C, D, E, W[50], K[2]); operation(F3(), E, A, B, C, D, W[51], K[2]); operation(F3(), D, E, A, B, C, W[52], K[2]); operation(F3(), C, D, E, A, B, W[53], K[2]); operation(F3(), B, C, D, E, A, W[54], K[2]); operation(F3(), A, B, C, D, E, W[55], K[2]); operation(F3(), E, A, B, C, D, W[56], K[2]); operation(F3(), D, E, A, B, C, W[57], K[2]); operation(F3(), C, D, E, A, B, W[58], K[2]); operation(F3(), B, C, D, E, A, W[59], K[2]); // Round 4 operation(F2(), A, B, C, D, E, W[60], K[3]); operation(F2(), E, A, B, C, D, W[61], K[3]); operation(F2(), D, E, A, B, C, W[62], K[3]); operation(F2(), C, D, E, A, B, W[63], K[3]); operation(F2(), B, C, D, E, A, W[64], K[3]); operation(F2(), A, B, C, D, E, W[65], K[3]); operation(F2(), E, A, B, C, D, W[66], K[3]); operation(F2(), D, E, A, B, C, W[67], K[3]); operation(F2(), C, D, E, A, B, W[68], K[3]); operation(F2(), B, C, D, E, A, W[69], K[3]); operation(F2(), A, B, C, D, E, W[70], K[3]); operation(F2(), E, A, B, C, D, W[71], K[3]); operation(F2(), D, E, A, B, C, W[72], K[3]); operation(F2(), C, D, E, A, B, W[73], K[3]); operation(F2(), B, C, D, E, A, W[74], K[3]); operation(F2(), A, B, C, D, E, W[75], K[3]); operation(F2(), E, A, B, C, D, W[76], K[3]); operation(F2(), D, E, A, B, C, W[77], K[3]); operation(F2(), C, D, E, A, B, W[78], K[3]); operation(F2(), B, C, D, E, A, W[79], K[3]); state[0] += A; state[1] += B; state[2] += C; state[3] += D; state[4] += E; #if defined(SK_SHA1_CLEAR_DATA) // Clear sensitive information. memset(W, 0, sizeof(W)); #endif } static void encode(uint8_t output[20], const uint32_t input[5]) { for (size_t i = 0, j = 0; i < 5; i++, j += 4) { output[j ] = (uint8_t)((input[i] >> 24) & 0xff); output[j+1] = (uint8_t)((input[i] >> 16) & 0xff); output[j+2] = (uint8_t)((input[i] >> 8) & 0xff); output[j+3] = (uint8_t)((input[i] ) & 0xff); } } static void encode(uint8_t output[8], const uint64_t input) { output[0] = (uint8_t)((input >> 56) & 0xff); output[1] = (uint8_t)((input >> 48) & 0xff); output[2] = (uint8_t)((input >> 40) & 0xff); output[3] = (uint8_t)((input >> 32) & 0xff); output[4] = (uint8_t)((input >> 24) & 0xff); output[5] = (uint8_t)((input >> 16) & 0xff); output[6] = (uint8_t)((input >> 8) & 0xff); output[7] = (uint8_t)((input ) & 0xff); }