/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkOffsetPolygon.h" #include "SkPointPriv.h" #include "SkTArray.h" #include "SkTemplates.h" #include "SkTDPQueue.h" struct OffsetSegment { SkPoint fP0; SkPoint fP1; }; // Computes perpDot for point compared to segment. // A positive value means the point is to the left of the segment, // negative is to the right, 0 is collinear. static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) { SkVector v0 = s1 - s0; SkVector v1 = p - s0; SkScalar perpDot = v0.cross(v1); if (!SkScalarNearlyZero(perpDot)) { return ((perpDot > 0) ? 1 : -1); } return 0; } // returns 1 for ccw, -1 for cw and 0 if degenerate static int get_winding(const SkPoint* polygonVerts, int polygonSize) { SkPoint p0 = polygonVerts[0]; SkPoint p1 = polygonVerts[1]; for (int i = 2; i < polygonSize; ++i) { SkPoint p2 = polygonVerts[i]; // determine if cw or ccw int side = compute_side(p0, p1, p2); if (0 != side) { return ((side > 0) ? 1 : -1); } // if nearly collinear, treat as straight line and continue p1 = p2; } return 0; } // Helper function to compute the individual vector for non-equal offsets inline void compute_offset(SkScalar d, const SkPoint& polyPoint, int side, const SkPoint& outerTangentIntersect, SkVector* v) { SkScalar dsq = d * d; SkVector dP = outerTangentIntersect - polyPoint; SkScalar dPlenSq = SkPointPriv::LengthSqd(dP); if (SkScalarNearlyZero(dPlenSq)) { v->set(0, 0); } else { SkScalar discrim = SkScalarSqrt(dPlenSq - dsq); v->fX = (dsq*dP.fX - side * d*dP.fY*discrim) / dPlenSq; v->fY = (dsq*dP.fY + side * d*dP.fX*discrim) / dPlenSq; } } // Compute difference vector to offset p0-p1 'd0' and 'd1' units in direction specified by 'side' bool compute_offset_vectors(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1, int side, SkPoint* vector0, SkPoint* vector1) { SkASSERT(side == -1 || side == 1); if (SkScalarNearlyEqual(d0, d1)) { // if distances are equal, can just outset by the perpendicular SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX); perp.setLength(d0*side); *vector0 = perp; *vector1 = perp; } else { SkScalar d0abs = SkTAbs(d0); SkScalar d1abs = SkTAbs(d1); // Otherwise we need to compute the outer tangent. // See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm if (d0abs < d1abs) { side = -side; } SkScalar dD = d0abs - d1abs; // if one circle is inside another, we can't compute an offset if (dD*dD >= SkPointPriv::DistanceToSqd(p0, p1)) { return false; } SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0abs - p0.fX*d1abs) / dD, (p1.fY*d0abs - p0.fY*d1abs) / dD); compute_offset(d0, p0, side, outerTangentIntersect, vector0); compute_offset(d1, p1, side, outerTangentIntersect, vector1); } return true; } // Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side' bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1, int side, SkPoint* offset0, SkPoint* offset1) { SkVector v0, v1; if (!compute_offset_vectors(p0, p1, d0, d1, side, &v0, &v1)) { return false; } *offset0 = p0 + v0; *offset1 = p1 + v1; return true; } // Compute the intersection 'p' between segments s0 and s1, if any. // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'. // Returns false if there is no intersection. static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1, SkPoint* p, SkScalar* s, SkScalar* t) { // Common cases for polygon chains -- check if endpoints are touching if (SkPointPriv::EqualsWithinTolerance(s0.fP1, s1.fP0)) { *p = s0.fP1; *s = SK_Scalar1; *t = 0; return true; } if (SkPointPriv::EqualsWithinTolerance(s1.fP1, s0.fP0)) { *p = s1.fP1; *s = 0; *t = SK_Scalar1; return true; } SkVector v0 = s0.fP1 - s0.fP0; SkVector v1 = s1.fP1 - s1.fP0; // We should have culled coincident points before this SkASSERT(!SkPointPriv::EqualsWithinTolerance(s0.fP0, s0.fP1)); SkASSERT(!SkPointPriv::EqualsWithinTolerance(s1.fP0, s1.fP1)); SkVector d = s1.fP0 - s0.fP0; SkScalar perpDot = v0.cross(v1); SkScalar localS, localT; if (SkScalarNearlyZero(perpDot)) { // segments are parallel, but not collinear if (!SkScalarNearlyZero(d.dot(d), SK_ScalarNearlyZero*SK_ScalarNearlyZero)) { return false; } // project segment1's endpoints onto segment0 localS = d.fX / v0.fX; localT = 0; if (localS < 0 || localS > SK_Scalar1) { // the first endpoint doesn't lie on segment0, try the other one SkScalar oldLocalS = localS; localS = (s1.fP1.fX - s0.fP0.fX) / v0.fX; localT = SK_Scalar1; if (localS < 0 || localS > SK_Scalar1) { // it's possible that segment1's interval surrounds segment0 // this is false if the params have the same signs, and in that case no collision if (localS*oldLocalS > 0) { return false; } // otherwise project segment0's endpoint onto segment1 instead localS = 0; localT = -d.fX / v1.fX; } } } else { localS = d.cross(v1) / perpDot; if (localS < 0 || localS > SK_Scalar1) { return false; } localT = d.cross(v0) / perpDot; if (localT < 0 || localT > SK_Scalar1) { return false; } } v0 *= localS; *p = s0.fP0 + v0; *s = localS; *t = localT; return true; } // computes the line intersection and then the distance to s0's endpoint static SkScalar compute_crossing_distance(const OffsetSegment& s0, const OffsetSegment& s1) { SkVector v0 = s0.fP1 - s0.fP0; SkVector v1 = s1.fP1 - s1.fP0; SkScalar perpDot = v0.cross(v1); if (SkScalarNearlyZero(perpDot)) { // segments are parallel return SK_ScalarMax; } SkVector d = s1.fP0 - s0.fP0; SkScalar localS = d.cross(v1) / perpDot; if (localS < 0) { localS = -localS; } else { localS -= SK_Scalar1; } localS *= v0.length(); return localS; } static bool is_convex(const SkTDArray& poly) { if (poly.count() <= 3) { return true; } SkVector v0 = poly[0] - poly[poly.count() - 1]; SkVector v1 = poly[1] - poly[poly.count() - 1]; SkScalar winding = v0.cross(v1); for (int i = 0; i < poly.count() - 1; ++i) { int j = i + 1; int k = (i + 2) % poly.count(); SkVector v0 = poly[j] - poly[i]; SkVector v1 = poly[k] - poly[i]; SkScalar perpDot = v0.cross(v1); if (winding*perpDot < 0) { return false; } } return true; } struct EdgeData { OffsetSegment fInset; SkPoint fIntersection; SkScalar fTValue; uint16_t fStart; uint16_t fEnd; uint16_t fIndex; bool fValid; void init() { fIntersection = fInset.fP0; fTValue = SK_ScalarMin; fStart = 0; fEnd = 0; fIndex = 0; fValid = true; } void init(uint16_t start, uint16_t end) { fIntersection = fInset.fP0; fTValue = SK_ScalarMin; fStart = start; fEnd = end; fIndex = start; fValid = true; } }; // The objective here is to inset all of the edges by the given distance, and then // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon, // we should only be making left-hand turns (for cw polygons, we use the winding // parameter to reverse this). We detect this by checking whether the second intersection // on an edge is closer to its tail than the first one. // // We might also have the case that there is no intersection between two neighboring inset edges. // In this case, one edge will lie to the right of the other and should be discarded along with // its previous intersection (if any). // // Note: the assumption is that inputPolygon is convex and has no coincident points. // bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, std::function insetDistanceFunc, SkTDArray* insetPolygon) { if (inputPolygonSize < 3) { return false; } int winding = get_winding(inputPolygonVerts, inputPolygonSize); if (0 == winding) { return false; } // set up SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize); for (int i = 0; i < inputPolygonSize; ++i) { int j = (i + 1) % inputPolygonSize; int k = (i + 2) % inputPolygonSize; // check for convexity just to be sure if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j], inputPolygonVerts[k])*winding < 0) { return false; } if (!SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j], insetDistanceFunc(inputPolygonVerts[i]), insetDistanceFunc(inputPolygonVerts[j]), winding, &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1)) { return false; } edgeData[i].init(); } int prevIndex = inputPolygonSize - 1; int currIndex = 0; int insetVertexCount = inputPolygonSize; int iterations = 0; while (prevIndex != currIndex) { ++iterations; if (iterations > inputPolygonSize*inputPolygonSize) { return false; } if (!edgeData[prevIndex].fValid) { prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; continue; } SkScalar s, t; SkPoint intersection; if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset, &intersection, &s, &t)) { // if new intersection is further back on previous inset from the prior intersection if (s < edgeData[prevIndex].fTValue) { // no point in considering this one again edgeData[prevIndex].fValid = false; --insetVertexCount; // go back one segment prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; // we've already considered this intersection, we're done } else if (edgeData[currIndex].fTValue > SK_ScalarMin && SkPointPriv::EqualsWithinTolerance(intersection, edgeData[currIndex].fIntersection, 1.0e-6f)) { break; } else { // add intersection edgeData[currIndex].fIntersection = intersection; edgeData[currIndex].fTValue = t; // go to next segment prevIndex = currIndex; currIndex = (currIndex + 1) % inputPolygonSize; } } else { // if prev to right side of curr int side = winding*compute_side(edgeData[currIndex].fInset.fP0, edgeData[currIndex].fInset.fP1, edgeData[prevIndex].fInset.fP1); if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0, edgeData[currIndex].fInset.fP1, edgeData[prevIndex].fInset.fP0)) { // no point in considering this one again edgeData[prevIndex].fValid = false; --insetVertexCount; // go back one segment prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; } else { // move to next segment edgeData[currIndex].fValid = false; --insetVertexCount; currIndex = (currIndex + 1) % inputPolygonSize; } } } // store all the valid intersections that aren't nearly coincident // TODO: look at the main algorithm and see if we can detect these better static constexpr SkScalar kCleanupTolerance = 0.01f; insetPolygon->reset(); if (insetVertexCount >= 0) { insetPolygon->setReserve(insetVertexCount); } currIndex = -1; for (int i = 0; i < inputPolygonSize; ++i) { if (edgeData[i].fValid && (currIndex == -1 || !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection, (*insetPolygon)[currIndex], kCleanupTolerance))) { *insetPolygon->push() = edgeData[i].fIntersection; currIndex++; } } // make sure the first and last points aren't coincident if (currIndex >= 1 && SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex], kCleanupTolerance)) { insetPolygon->pop(); } return (insetPolygon->count() >= 3 && is_convex(*insetPolygon)); } // compute the number of points needed for a circular join when offsetting a reflex vertex static void compute_radial_steps(const SkVector& v1, const SkVector& v2, SkScalar r, SkScalar* rotSin, SkScalar* rotCos, int* n) { const SkScalar kRecipPixelsPerArcSegment = 0.25f; SkScalar rCos = v1.dot(v2); SkScalar rSin = v1.cross(v2); SkScalar theta = SkScalarATan2(rSin, rCos); int steps = SkScalarRoundToInt(SkScalarAbs(r*theta*kRecipPixelsPerArcSegment)); SkScalar dTheta = theta / steps; *rotSin = SkScalarSinCos(dTheta, rotCos); *n = steps; } // tolerant less-than comparison static inline bool nearly_lt(SkScalar a, SkScalar b, SkScalar tolerance = SK_ScalarNearlyZero) { return a < b - tolerance; } // a point is "left" to another if its x coordinate is less, or if equal, its y coordinate static bool left(const SkPoint& p0, const SkPoint& p1) { return nearly_lt(p0.fX, p1.fX) || (SkScalarNearlyEqual(p0.fX, p1.fX) && nearly_lt(p0.fY, p1.fY)); } struct Vertex { static bool Left(const Vertex& qv0, const Vertex& qv1) { return left(qv0.fPosition, qv1.fPosition); } // packed to fit into 16 bytes (one cache line) SkPoint fPosition; uint16_t fIndex; // index in unsorted polygon uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon uint16_t fNextIndex; uint16_t fFlags; }; enum VertexFlags { kPrevLeft_VertexFlag = 0x1, kNextLeft_VertexFlag = 0x2, }; struct Edge { // returns true if "this" is above "that" bool above(const Edge& that, SkScalar tolerance = SK_ScalarNearlyZero) { SkASSERT(nearly_lt(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance) || SkScalarNearlyEqual(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance)); // The idea here is that if the vector between the origins of the two segments (dv) // rotates counterclockwise up to the vector representing the "this" segment (u), // then we know that "this" is above that. If the result is clockwise we say it's below. SkVector dv = that.fSegment.fP0 - this->fSegment.fP0; SkVector u = this->fSegment.fP1 - this->fSegment.fP0; SkScalar cross = dv.cross(u); if (cross > tolerance) { return true; } else if (cross < -tolerance) { return false; } // If the result is 0 then either the two origins are equal or the origin of "that" // lies on dv. So then we try the same for the vector from the tail of "this" // to the head of "that". Again, ccw means "this" is above "that". dv = that.fSegment.fP1 - this->fSegment.fP0; return (dv.cross(u) > tolerance); } bool intersect(const Edge& that) const { SkPoint intersection; SkScalar s, t; // check first to see if these edges are neighbors in the polygon if (this->fIndex0 == that.fIndex0 || this->fIndex1 == that.fIndex0 || this->fIndex0 == that.fIndex1 || this->fIndex1 == that.fIndex1) { return false; } return compute_intersection(this->fSegment, that.fSegment, &intersection, &s, &t); } bool operator==(const Edge& that) const { return (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1); } bool operator!=(const Edge& that) const { return !operator==(that); } OffsetSegment fSegment; int32_t fIndex0; // indices for previous and next vertex int32_t fIndex1; }; class EdgeList { public: void reserve(int count) { fEdges.reserve(count); } bool insert(const Edge& newEdge) { // linear search for now (expected case is very few active edges) int insertIndex = 0; while (insertIndex < fEdges.count() && fEdges[insertIndex].above(newEdge)) { ++insertIndex; } // if we intersect with the existing edge above or below us // then we know this polygon is not simple, so don't insert, just fail if (insertIndex > 0 && newEdge.intersect(fEdges[insertIndex - 1])) { return false; } if (insertIndex < fEdges.count() && newEdge.intersect(fEdges[insertIndex])) { return false; } fEdges.push_back(); for (int i = fEdges.count() - 1; i > insertIndex; --i) { fEdges[i] = fEdges[i - 1]; } fEdges[insertIndex] = newEdge; return true; } bool remove(const Edge& edge) { SkASSERT(fEdges.count() > 0); // linear search for now (expected case is very few active edges) int removeIndex = 0; while (removeIndex < fEdges.count() && fEdges[removeIndex] != edge) { ++removeIndex; } // we'd better find it or something is wrong SkASSERT(removeIndex < fEdges.count()); // if we intersect with the edge above or below us // then we know this polygon is not simple, so don't remove, just fail if (removeIndex > 0 && fEdges[removeIndex].intersect(fEdges[removeIndex-1])) { return false; } if (removeIndex < fEdges.count()-1) { if (fEdges[removeIndex].intersect(fEdges[removeIndex + 1])) { return false; } // copy over the old entry memmove(&fEdges[removeIndex], &fEdges[removeIndex + 1], sizeof(Edge)*(fEdges.count() - removeIndex - 1)); } fEdges.pop_back(); return true; } private: SkSTArray<1, Edge> fEdges; }; // Here we implement a sweep line algorithm to determine whether the provided points // represent a simple polygon, i.e., the polygon is non-self-intersecting. // We first insert the vertices into a priority queue sorting horizontally from left to right. // Then as we pop the vertices from the queue we generate events which indicate that an edge // should be added or removed from an edge list. If any intersections are detected in the edge // list, then we know the polygon is self-intersecting and hence not simple. static bool is_simple_polygon(const SkPoint* polygon, int polygonSize) { SkTDPQueue vertexQueue; EdgeList sweepLine; sweepLine.reserve(polygonSize); for (int i = 0; i < polygonSize; ++i) { Vertex newVertex; newVertex.fPosition = polygon[i]; newVertex.fIndex = i; newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize; newVertex.fNextIndex = (i + 1) % polygonSize; newVertex.fFlags = 0; if (left(polygon[newVertex.fPrevIndex], polygon[i])) { newVertex.fFlags |= kPrevLeft_VertexFlag; } if (left(polygon[newVertex.fNextIndex], polygon[i])) { newVertex.fFlags |= kNextLeft_VertexFlag; } vertexQueue.insert(newVertex); } // pop each vertex from the queue and generate events depending on // where it lies relative to its neighboring edges while (vertexQueue.count() > 0) { const Vertex& v = vertexQueue.peek(); // check edge to previous vertex if (v.fFlags & kPrevLeft_VertexFlag) { Edge edge{ { polygon[v.fPrevIndex], v.fPosition }, v.fPrevIndex, v.fIndex }; if (!sweepLine.remove(edge)) { break; } } else { Edge edge{ { v.fPosition, polygon[v.fPrevIndex] }, v.fIndex, v.fPrevIndex }; if (!sweepLine.insert(edge)) { break; } } // check edge to next vertex if (v.fFlags & kNextLeft_VertexFlag) { Edge edge{ { polygon[v.fNextIndex], v.fPosition }, v.fNextIndex, v.fIndex }; if (!sweepLine.remove(edge)) { break; } } else { Edge edge{ { v.fPosition, polygon[v.fNextIndex] }, v.fIndex, v.fNextIndex }; if (!sweepLine.insert(edge)) { break; } } vertexQueue.pop(); } return (vertexQueue.count() == 0); } // TODO: assuming a constant offset here -- do we want to support variable offset? bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, std::function offsetDistanceFunc, SkTDArray* offsetPolygon, SkTDArray* polygonIndices) { if (inputPolygonSize < 3) { return false; } if (!is_simple_polygon(inputPolygonVerts, inputPolygonSize)) { return false; } // compute area and use sign to determine winding SkScalar quadArea = 0; for (int curr = 0; curr < inputPolygonSize; ++curr) { int next = (curr + 1) % inputPolygonSize; quadArea += inputPolygonVerts[curr].cross(inputPolygonVerts[next]); } if (SkScalarNearlyZero(quadArea)) { return false; } // 1 == ccw, -1 == cw int winding = (quadArea > 0) ? 1 : -1; // build normals SkAutoSTMalloc<64, SkVector> normal0(inputPolygonSize); SkAutoSTMalloc<64, SkVector> normal1(inputPolygonSize); SkScalar currOffset = offsetDistanceFunc(inputPolygonVerts[0]); for (int curr = 0; curr < inputPolygonSize; ++curr) { int next = (curr + 1) % inputPolygonSize; SkScalar nextOffset = offsetDistanceFunc(inputPolygonVerts[next]); if (!compute_offset_vectors(inputPolygonVerts[curr], inputPolygonVerts[next], currOffset, nextOffset, winding, &normal0[curr], &normal1[next])) { return false; } currOffset = nextOffset; } // build initial offset edge list SkSTArray<64, EdgeData> edgeData(inputPolygonSize); int prevIndex = inputPolygonSize - 1; int currIndex = 0; int nextIndex = 1; while (currIndex < inputPolygonSize) { int side = compute_side(inputPolygonVerts[prevIndex], inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex]); SkScalar offset = offsetDistanceFunc(inputPolygonVerts[currIndex]); // if reflex point, fill in curve if (side*winding*offset < 0) { SkScalar rotSin, rotCos; int numSteps; SkVector prevNormal = normal1[currIndex]; compute_radial_steps(prevNormal, normal0[currIndex], SkScalarAbs(offset), &rotSin, &rotCos, &numSteps); for (int i = 0; i < numSteps - 1; ++i) { SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin, prevNormal.fY*rotCos + prevNormal.fX*rotSin); EdgeData& edge = edgeData.push_back(); edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal; edge.fInset.fP1 = inputPolygonVerts[currIndex] + currNormal; edge.init(currIndex, currIndex); prevNormal = currNormal; } EdgeData& edge = edgeData.push_back(); edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal; edge.fInset.fP1 = inputPolygonVerts[currIndex] + normal0[currIndex]; edge.init(currIndex, currIndex); } // Add the edge EdgeData& edge = edgeData.push_back(); edge.fInset.fP0 = inputPolygonVerts[currIndex] + normal0[currIndex]; edge.fInset.fP1 = inputPolygonVerts[nextIndex] + normal1[nextIndex]; edge.init(currIndex, nextIndex); prevIndex = currIndex; currIndex++; nextIndex = (nextIndex + 1) % inputPolygonSize; } int edgeDataSize = edgeData.count(); prevIndex = edgeDataSize - 1; currIndex = 0; int insetVertexCount = edgeDataSize; while (prevIndex != currIndex) { if (!edgeData[prevIndex].fValid) { prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize; continue; } if (!edgeData[currIndex].fValid) { currIndex = (currIndex + 1) % edgeDataSize; continue; } SkScalar s, t; SkPoint intersection; if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset, &intersection, &s, &t)) { // if new intersection is further back on previous inset from the prior intersection if (s < edgeData[prevIndex].fTValue) { // no point in considering this one again edgeData[prevIndex].fValid = false; --insetVertexCount; // go back one segment prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize; // we've already considered this intersection, we're done } else if (edgeData[currIndex].fTValue > SK_ScalarMin && SkPointPriv::EqualsWithinTolerance(intersection, edgeData[currIndex].fIntersection, 1.0e-6f)) { break; } else { // add intersection edgeData[currIndex].fIntersection = intersection; edgeData[currIndex].fTValue = t; edgeData[currIndex].fIndex = edgeData[prevIndex].fEnd; // go to next segment prevIndex = currIndex; currIndex = (currIndex + 1) % edgeDataSize; } } else { // If there is no intersection, we want to minimize the distance between // the point where the segment lines cross and the segments themselves. SkScalar prevPrevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize; SkScalar currNextIndex = (currIndex + 1) % edgeDataSize; SkScalar dist0 = compute_crossing_distance(edgeData[currIndex].fInset, edgeData[prevPrevIndex].fInset); SkScalar dist1 = compute_crossing_distance(edgeData[prevIndex].fInset, edgeData[currNextIndex].fInset); if (dist0 < dist1) { edgeData[prevIndex].fValid = false; prevIndex = prevPrevIndex; } else { edgeData[currIndex].fValid = false; currIndex = currNextIndex; } --insetVertexCount; } } // store all the valid intersections that aren't nearly coincident // TODO: look at the main algorithm and see if we can detect these better static constexpr SkScalar kCleanupTolerance = 0.01f; offsetPolygon->reset(); offsetPolygon->setReserve(insetVertexCount); currIndex = -1; for (int i = 0; i < edgeData.count(); ++i) { if (edgeData[i].fValid && (currIndex == -1 || !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection, (*offsetPolygon)[currIndex], kCleanupTolerance))) { *offsetPolygon->push() = edgeData[i].fIntersection; if (polygonIndices) { *polygonIndices->push() = edgeData[i].fIndex; } currIndex++; } } // make sure the first and last points aren't coincident if (currIndex >= 1 && SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex], kCleanupTolerance)) { offsetPolygon->pop(); if (polygonIndices) { polygonIndices->pop(); } } // compute signed area to check winding (it should be same as the original polygon) quadArea = 0; for (int curr = 0; curr < offsetPolygon->count(); ++curr) { int next = (curr + 1) % offsetPolygon->count(); quadArea += (*offsetPolygon)[curr].cross((*offsetPolygon)[next]); } return (winding*quadArea > 0 && is_simple_polygon(offsetPolygon->begin(), offsetPolygon->count())); }