/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDeferredCanvas.h" #include "SkBitmapDevice.h" #include "SkChunkAlloc.h" #include "SkColorFilter.h" #include "SkDrawFilter.h" #include "SkGPipe.h" #include "SkPaint.h" #include "SkPaintPriv.h" #include "SkRRect.h" #include "SkShader.h" #include "SkSurface.h" enum { // Deferred canvas will auto-flush when recording reaches this limit kDefaultMaxRecordingStorageBytes = 64*1024*1024, kDeferredCanvasBitmapSizeThreshold = ~0U, // Disables this feature }; enum PlaybackMode { kNormal_PlaybackMode, kSilent_PlaybackMode, }; static bool should_draw_immediately(const SkBitmap* bitmap, const SkPaint* paint, size_t bitmapSizeThreshold) { if (bitmap && ((bitmap->getTexture() && !bitmap->isImmutable()) || (bitmap->getSize() > bitmapSizeThreshold))) { return true; } if (paint) { SkShader* shader = paint->getShader(); // Here we detect the case where the shader is an SkBitmapProcShader // with a gpu texture attached. Checking this without RTTI // requires making the assumption that only gradient shaders // and SkBitmapProcShader implement asABitmap(). The following // code may need to be revised if that assumption is ever broken. if (shader && !shader->asAGradient(NULL)) { SkBitmap bm; if (shader->asABitmap(&bm, NULL, NULL) && NULL != bm.getTexture()) { return true; } } } return false; } //----------------------------------------------------------------------------- // DeferredPipeController //----------------------------------------------------------------------------- class DeferredPipeController : public SkGPipeController { public: DeferredPipeController(); void setPlaybackCanvas(SkCanvas*); virtual ~DeferredPipeController(); virtual void* requestBlock(size_t minRequest, size_t* actual) SK_OVERRIDE; virtual void notifyWritten(size_t bytes) SK_OVERRIDE; void playback(bool silent); bool hasPendingCommands() const { return fAllocator.blockCount() != 0; } size_t storageAllocatedForRecording() const { return fAllocator.totalCapacity(); } private: enum { kMinBlockSize = 4096 }; struct PipeBlock { PipeBlock(void* block, size_t size) { fBlock = block, fSize = size; } void* fBlock; size_t fSize; }; void* fBlock; size_t fBytesWritten; SkChunkAlloc fAllocator; SkTDArray fBlockList; SkGPipeReader fReader; }; DeferredPipeController::DeferredPipeController() : fAllocator(kMinBlockSize) { fBlock = NULL; fBytesWritten = 0; } DeferredPipeController::~DeferredPipeController() { fAllocator.reset(); } void DeferredPipeController::setPlaybackCanvas(SkCanvas* canvas) { fReader.setCanvas(canvas); } void* DeferredPipeController::requestBlock(size_t minRequest, size_t *actual) { if (fBlock) { // Save the previous block for later PipeBlock previousBloc(fBlock, fBytesWritten); fBlockList.push(previousBloc); } size_t blockSize = SkTMax(minRequest, kMinBlockSize); fBlock = fAllocator.allocThrow(blockSize); fBytesWritten = 0; *actual = blockSize; return fBlock; } void DeferredPipeController::notifyWritten(size_t bytes) { fBytesWritten += bytes; } void DeferredPipeController::playback(bool silent) { uint32_t flags = silent ? SkGPipeReader::kSilent_PlaybackFlag : 0; for (int currentBlock = 0; currentBlock < fBlockList.count(); currentBlock++ ) { fReader.playback(fBlockList[currentBlock].fBlock, fBlockList[currentBlock].fSize, flags); } fBlockList.reset(); if (fBlock) { fReader.playback(fBlock, fBytesWritten, flags); fBlock = NULL; } // Release all allocated blocks fAllocator.reset(); } //----------------------------------------------------------------------------- // SkDeferredDevice //----------------------------------------------------------------------------- class SkDeferredDevice : public SkBaseDevice { public: explicit SkDeferredDevice(SkSurface* surface); ~SkDeferredDevice(); void setNotificationClient(SkDeferredCanvas::NotificationClient* notificationClient); SkCanvas* recordingCanvas(); SkCanvas* immediateCanvas() const {return fImmediateCanvas;} SkBaseDevice* immediateDevice() const {return fImmediateCanvas->getTopDevice();} SkImage* newImageSnapshot(); void setSurface(SkSurface* surface); bool isFreshFrame(); bool hasPendingCommands(); size_t storageAllocatedForRecording() const; size_t freeMemoryIfPossible(size_t bytesToFree); void flushPendingCommands(PlaybackMode); void skipPendingCommands(); void setMaxRecordingStorage(size_t); void recordedDrawCommand(); virtual SkImageInfo imageInfo() const SK_OVERRIDE; virtual GrRenderTarget* accessRenderTarget() SK_OVERRIDE; virtual SkBaseDevice* onCreateDevice(const SkImageInfo&, Usage) SK_OVERRIDE; virtual SkSurface* newSurface(const SkImageInfo&) SK_OVERRIDE; protected: virtual const SkBitmap& onAccessBitmap() SK_OVERRIDE; virtual bool onReadPixels(const SkImageInfo&, void*, size_t, int x, int y) SK_OVERRIDE; virtual bool onWritePixels(const SkImageInfo&, const void*, size_t, int x, int y) SK_OVERRIDE; // The following methods are no-ops on a deferred device virtual bool filterTextFlags(const SkPaint& paint, TextFlags*) SK_OVERRIDE { return false; } // None of the following drawing methods should ever get called on the // deferred device virtual void clear(SkColor color) SK_OVERRIDE {SkASSERT(0);} virtual void drawPaint(const SkDraw&, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawPoints(const SkDraw&, SkCanvas::PointMode mode, size_t count, const SkPoint[], const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawRect(const SkDraw&, const SkRect& r, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawOval(const SkDraw&, const SkRect&, const SkPaint&) SK_OVERRIDE {SkASSERT(0);} virtual void drawRRect(const SkDraw&, const SkRRect& rr, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawPath(const SkDraw&, const SkPath& path, const SkPaint& paint, const SkMatrix* prePathMatrix = NULL, bool pathIsMutable = false) SK_OVERRIDE {SkASSERT(0);} virtual void drawBitmap(const SkDraw&, const SkBitmap& bitmap, const SkMatrix& matrix, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawBitmapRect(const SkDraw&, const SkBitmap&, const SkRect*, const SkRect&, const SkPaint&, SkCanvas::DrawBitmapRectFlags) SK_OVERRIDE {SkASSERT(0);} virtual void drawSprite(const SkDraw&, const SkBitmap& bitmap, int x, int y, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawText(const SkDraw&, const void* text, size_t len, SkScalar x, SkScalar y, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawPosText(const SkDraw&, const void* text, size_t len, const SkScalar pos[], SkScalar constY, int scalarsPerPos, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawTextOnPath(const SkDraw&, const void* text, size_t len, const SkPath& path, const SkMatrix* matrix, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawVertices(const SkDraw&, SkCanvas::VertexMode, int vertexCount, const SkPoint verts[], const SkPoint texs[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawPatch(const SkDraw&, const SkPatch& patch, const SkPaint& paint) SK_OVERRIDE {SkASSERT(0);} virtual void drawDevice(const SkDraw&, SkBaseDevice*, int x, int y, const SkPaint&) SK_OVERRIDE {SkASSERT(0);} virtual void lockPixels() SK_OVERRIDE {} virtual void unlockPixels() SK_OVERRIDE {} virtual bool allowImageFilter(const SkImageFilter*) SK_OVERRIDE { return false; } virtual bool canHandleImageFilter(const SkImageFilter*) SK_OVERRIDE { return false; } virtual bool filterImage(const SkImageFilter*, const SkBitmap&, const SkImageFilter::Context&, SkBitmap*, SkIPoint*) SK_OVERRIDE { return false; } private: virtual void flush() SK_OVERRIDE; virtual void replaceBitmapBackendForRasterSurface(const SkBitmap&) SK_OVERRIDE {} void beginRecording(); void init(); void aboutToDraw(); void prepareForImmediatePixelWrite(); DeferredPipeController fPipeController; SkGPipeWriter fPipeWriter; SkCanvas* fImmediateCanvas; SkCanvas* fRecordingCanvas; SkSurface* fSurface; SkDeferredCanvas::NotificationClient* fNotificationClient; bool fFreshFrame; bool fCanDiscardCanvasContents; size_t fMaxRecordingStorageBytes; size_t fPreviousStorageAllocated; }; SkDeferredDevice::SkDeferredDevice(SkSurface* surface) { fMaxRecordingStorageBytes = kDefaultMaxRecordingStorageBytes; fNotificationClient = NULL; fImmediateCanvas = NULL; fSurface = NULL; this->setSurface(surface); this->init(); } void SkDeferredDevice::setSurface(SkSurface* surface) { SkRefCnt_SafeAssign(fImmediateCanvas, surface->getCanvas()); SkRefCnt_SafeAssign(fSurface, surface); fPipeController.setPlaybackCanvas(fImmediateCanvas); } void SkDeferredDevice::init() { fRecordingCanvas = NULL; fFreshFrame = true; fCanDiscardCanvasContents = false; fPreviousStorageAllocated = 0; fMaxRecordingStorageBytes = kDefaultMaxRecordingStorageBytes; fNotificationClient = NULL; this->beginRecording(); } SkDeferredDevice::~SkDeferredDevice() { this->flushPendingCommands(kSilent_PlaybackMode); SkSafeUnref(fImmediateCanvas); SkSafeUnref(fSurface); } void SkDeferredDevice::setMaxRecordingStorage(size_t maxStorage) { fMaxRecordingStorageBytes = maxStorage; this->recordingCanvas(); // Accessing the recording canvas applies the new limit. } void SkDeferredDevice::beginRecording() { SkASSERT(NULL == fRecordingCanvas); fRecordingCanvas = fPipeWriter.startRecording(&fPipeController, 0, immediateDevice()->width(), immediateDevice()->height()); } void SkDeferredDevice::setNotificationClient( SkDeferredCanvas::NotificationClient* notificationClient) { fNotificationClient = notificationClient; } void SkDeferredDevice::skipPendingCommands() { if (!fRecordingCanvas->isDrawingToLayer()) { fCanDiscardCanvasContents = true; if (fPipeController.hasPendingCommands()) { fFreshFrame = true; flushPendingCommands(kSilent_PlaybackMode); } } } bool SkDeferredDevice::isFreshFrame() { bool ret = fFreshFrame; fFreshFrame = false; return ret; } bool SkDeferredDevice::hasPendingCommands() { return fPipeController.hasPendingCommands(); } void SkDeferredDevice::aboutToDraw() { if (NULL != fNotificationClient) { fNotificationClient->prepareForDraw(); } if (fCanDiscardCanvasContents) { if (NULL != fSurface) { fSurface->notifyContentWillChange(SkSurface::kDiscard_ContentChangeMode); } fCanDiscardCanvasContents = false; } } void SkDeferredDevice::flushPendingCommands(PlaybackMode playbackMode) { if (!fPipeController.hasPendingCommands()) { return; } if (playbackMode == kNormal_PlaybackMode) { aboutToDraw(); } fPipeWriter.flushRecording(true); fPipeController.playback(kSilent_PlaybackMode == playbackMode); if (fNotificationClient) { if (playbackMode == kSilent_PlaybackMode) { fNotificationClient->skippedPendingDrawCommands(); } else { fNotificationClient->flushedDrawCommands(); } } fPreviousStorageAllocated = storageAllocatedForRecording(); } void SkDeferredDevice::flush() { this->flushPendingCommands(kNormal_PlaybackMode); fImmediateCanvas->flush(); } size_t SkDeferredDevice::freeMemoryIfPossible(size_t bytesToFree) { size_t val = fPipeWriter.freeMemoryIfPossible(bytesToFree); fPreviousStorageAllocated = storageAllocatedForRecording(); return val; } size_t SkDeferredDevice::storageAllocatedForRecording() const { return (fPipeController.storageAllocatedForRecording() + fPipeWriter.storageAllocatedForRecording()); } void SkDeferredDevice::recordedDrawCommand() { size_t storageAllocated = this->storageAllocatedForRecording(); if (storageAllocated > fMaxRecordingStorageBytes) { // First, attempt to reduce cache without flushing size_t tryFree = storageAllocated - fMaxRecordingStorageBytes; if (this->freeMemoryIfPossible(tryFree) < tryFree) { // Flush is necessary to free more space. this->flushPendingCommands(kNormal_PlaybackMode); // Free as much as possible to avoid oscillating around fMaxRecordingStorageBytes // which could cause a high flushing frequency. this->freeMemoryIfPossible(~0U); } storageAllocated = this->storageAllocatedForRecording(); } if (fNotificationClient && storageAllocated != fPreviousStorageAllocated) { fPreviousStorageAllocated = storageAllocated; fNotificationClient->storageAllocatedForRecordingChanged(storageAllocated); } } SkCanvas* SkDeferredDevice::recordingCanvas() { return fRecordingCanvas; } SkImage* SkDeferredDevice::newImageSnapshot() { this->flush(); return fSurface ? fSurface->newImageSnapshot() : NULL; } SkImageInfo SkDeferredDevice::imageInfo() const { return immediateDevice()->imageInfo(); } GrRenderTarget* SkDeferredDevice::accessRenderTarget() { this->flushPendingCommands(kNormal_PlaybackMode); return immediateDevice()->accessRenderTarget(); } void SkDeferredDevice::prepareForImmediatePixelWrite() { // The purpose of the following code is to make sure commands are flushed, that // aboutToDraw() is called and that notifyContentWillChange is called, without // calling anything redundantly. if (fPipeController.hasPendingCommands()) { this->flushPendingCommands(kNormal_PlaybackMode); } else { bool mustNotifyDirectly = !fCanDiscardCanvasContents; this->aboutToDraw(); if (mustNotifyDirectly) { fSurface->notifyContentWillChange(SkSurface::kRetain_ContentChangeMode); } } fImmediateCanvas->flush(); } bool SkDeferredDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes, int x, int y) { SkASSERT(x >= 0 && y >= 0); SkASSERT(x + info.width() <= width()); SkASSERT(y + info.height() <= height()); this->flushPendingCommands(kNormal_PlaybackMode); const SkImageInfo deviceInfo = this->imageInfo(); if (info.width() == deviceInfo.width() && info.height() == deviceInfo.height()) { this->skipPendingCommands(); } this->prepareForImmediatePixelWrite(); return immediateDevice()->onWritePixels(info, pixels, rowBytes, x, y); } const SkBitmap& SkDeferredDevice::onAccessBitmap() { this->flushPendingCommands(kNormal_PlaybackMode); return immediateDevice()->accessBitmap(false); } SkBaseDevice* SkDeferredDevice::onCreateDevice(const SkImageInfo& info, Usage usage) { // Save layer usage not supported, and not required by SkDeferredCanvas. SkASSERT(usage != kSaveLayer_Usage); // Create a compatible non-deferred device. // We do not create a deferred device because we know the new device // will not be used with a deferred canvas (there is no API for that). // And connecting a SkDeferredDevice to non-deferred canvas can result // in unpredictable behavior. return immediateDevice()->createCompatibleDevice(info); } SkSurface* SkDeferredDevice::newSurface(const SkImageInfo& info) { return this->immediateDevice()->newSurface(info); } bool SkDeferredDevice::onReadPixels(const SkImageInfo& info, void* pixels, size_t rowBytes, int x, int y) { this->flushPendingCommands(kNormal_PlaybackMode); return fImmediateCanvas->readPixels(info, pixels, rowBytes, x, y); } class AutoImmediateDrawIfNeeded { public: AutoImmediateDrawIfNeeded(SkDeferredCanvas& canvas, const SkBitmap* bitmap, const SkPaint* paint) { this->init(canvas, bitmap, paint); } AutoImmediateDrawIfNeeded(SkDeferredCanvas& canvas, const SkPaint* paint) { this->init(canvas, NULL, paint); } ~AutoImmediateDrawIfNeeded() { if (fCanvas) { fCanvas->setDeferredDrawing(true); } } private: void init(SkDeferredCanvas& canvas, const SkBitmap* bitmap, const SkPaint* paint) { if (canvas.isDeferredDrawing() && should_draw_immediately(bitmap, paint, canvas.getBitmapSizeThreshold())) { canvas.setDeferredDrawing(false); fCanvas = &canvas; } else { fCanvas = NULL; } } SkDeferredCanvas* fCanvas; }; SkDeferredCanvas* SkDeferredCanvas::Create(SkSurface* surface) { SkAutoTUnref deferredDevice(SkNEW_ARGS(SkDeferredDevice, (surface))); return SkNEW_ARGS(SkDeferredCanvas, (deferredDevice)); } SkDeferredCanvas::SkDeferredCanvas(SkDeferredDevice* device) : SkCanvas (device) { this->init(); } void SkDeferredCanvas::init() { fBitmapSizeThreshold = kDeferredCanvasBitmapSizeThreshold; fDeferredDrawing = true; // On by default } void SkDeferredCanvas::setMaxRecordingStorage(size_t maxStorage) { this->validate(); this->getDeferredDevice()->setMaxRecordingStorage(maxStorage); } size_t SkDeferredCanvas::storageAllocatedForRecording() const { return this->getDeferredDevice()->storageAllocatedForRecording(); } size_t SkDeferredCanvas::freeMemoryIfPossible(size_t bytesToFree) { return this->getDeferredDevice()->freeMemoryIfPossible(bytesToFree); } void SkDeferredCanvas::setBitmapSizeThreshold(size_t sizeThreshold) { fBitmapSizeThreshold = sizeThreshold; } void SkDeferredCanvas::recordedDrawCommand() { if (fDeferredDrawing) { this->getDeferredDevice()->recordedDrawCommand(); } } void SkDeferredCanvas::validate() const { SkASSERT(this->getDevice()); } SkCanvas* SkDeferredCanvas::drawingCanvas() const { this->validate(); return fDeferredDrawing ? this->getDeferredDevice()->recordingCanvas() : this->getDeferredDevice()->immediateCanvas(); } SkCanvas* SkDeferredCanvas::immediateCanvas() const { this->validate(); return this->getDeferredDevice()->immediateCanvas(); } SkDeferredDevice* SkDeferredCanvas::getDeferredDevice() const { return static_cast(this->getDevice()); } void SkDeferredCanvas::setDeferredDrawing(bool val) { this->validate(); // Must set device before calling this method if (val != fDeferredDrawing) { if (fDeferredDrawing) { // Going live. this->getDeferredDevice()->flushPendingCommands(kNormal_PlaybackMode); } fDeferredDrawing = val; } } bool SkDeferredCanvas::isDeferredDrawing() const { return fDeferredDrawing; } bool SkDeferredCanvas::isFreshFrame() const { return this->getDeferredDevice()->isFreshFrame(); } bool SkDeferredCanvas::hasPendingCommands() const { return this->getDeferredDevice()->hasPendingCommands(); } void SkDeferredCanvas::silentFlush() { if (fDeferredDrawing) { this->getDeferredDevice()->flushPendingCommands(kSilent_PlaybackMode); } } SkDeferredCanvas::~SkDeferredCanvas() { } SkSurface* SkDeferredCanvas::setSurface(SkSurface* surface) { SkDeferredDevice* deferredDevice = this->getDeferredDevice(); SkASSERT(NULL != deferredDevice); // By swapping the surface into the existing device, we preserve // all pending commands, which can help to seamlessly recover from // a lost accelerated graphics context. deferredDevice->setSurface(surface); return surface; } SkDeferredCanvas::NotificationClient* SkDeferredCanvas::setNotificationClient( NotificationClient* notificationClient) { SkDeferredDevice* deferredDevice = this->getDeferredDevice(); SkASSERT(deferredDevice); if (deferredDevice) { deferredDevice->setNotificationClient(notificationClient); } return notificationClient; } SkImage* SkDeferredCanvas::newImageSnapshot() { SkDeferredDevice* deferredDevice = this->getDeferredDevice(); SkASSERT(deferredDevice); return deferredDevice ? deferredDevice->newImageSnapshot() : NULL; } bool SkDeferredCanvas::isFullFrame(const SkRect* rect, const SkPaint* paint) const { SkCanvas* canvas = this->drawingCanvas(); SkISize canvasSize = this->getDeviceSize(); if (rect) { if (!canvas->getTotalMatrix().rectStaysRect()) { return false; // conservative } SkRect transformedRect; canvas->getTotalMatrix().mapRect(&transformedRect, *rect); if (paint) { SkPaint::Style paintStyle = paint->getStyle(); if (!(paintStyle == SkPaint::kFill_Style || paintStyle == SkPaint::kStrokeAndFill_Style)) { return false; } if (paint->getMaskFilter() || paint->getLooper() || paint->getPathEffect() || paint->getImageFilter()) { return false; // conservative } } // The following test holds with AA enabled, and is conservative // by a 0.5 pixel margin with AA disabled if (transformedRect.fLeft > SkIntToScalar(0) || transformedRect.fTop > SkIntToScalar(0) || transformedRect.fRight < SkIntToScalar(canvasSize.fWidth) || transformedRect.fBottom < SkIntToScalar(canvasSize.fHeight)) { return false; } } return this->getClipStack()->quickContains(SkRect::MakeXYWH(0, 0, SkIntToScalar(canvasSize.fWidth), SkIntToScalar(canvasSize.fHeight))); } void SkDeferredCanvas::willSave() { this->drawingCanvas()->save(); this->recordedDrawCommand(); this->INHERITED::willSave(); } SkCanvas::SaveLayerStrategy SkDeferredCanvas::willSaveLayer(const SkRect* bounds, const SkPaint* paint, SaveFlags flags) { this->drawingCanvas()->saveLayer(bounds, paint, flags); this->recordedDrawCommand(); this->INHERITED::willSaveLayer(bounds, paint, flags); // No need for a full layer. return kNoLayer_SaveLayerStrategy; } void SkDeferredCanvas::willRestore() { this->drawingCanvas()->restore(); this->recordedDrawCommand(); this->INHERITED::willRestore(); } bool SkDeferredCanvas::isDrawingToLayer() const { return this->drawingCanvas()->isDrawingToLayer(); } void SkDeferredCanvas::didConcat(const SkMatrix& matrix) { this->drawingCanvas()->concat(matrix); this->recordedDrawCommand(); this->INHERITED::didConcat(matrix); } void SkDeferredCanvas::didSetMatrix(const SkMatrix& matrix) { this->drawingCanvas()->setMatrix(matrix); this->recordedDrawCommand(); this->INHERITED::didSetMatrix(matrix); } void SkDeferredCanvas::onClipRect(const SkRect& rect, SkRegion::Op op, ClipEdgeStyle edgeStyle) { this->drawingCanvas()->clipRect(rect, op, kSoft_ClipEdgeStyle == edgeStyle); this->INHERITED::onClipRect(rect, op, edgeStyle); this->recordedDrawCommand(); } void SkDeferredCanvas::onClipRRect(const SkRRect& rrect, SkRegion::Op op, ClipEdgeStyle edgeStyle) { this->drawingCanvas()->clipRRect(rrect, op, kSoft_ClipEdgeStyle == edgeStyle); this->INHERITED::onClipRRect(rrect, op, edgeStyle); this->recordedDrawCommand(); } void SkDeferredCanvas::onClipPath(const SkPath& path, SkRegion::Op op, ClipEdgeStyle edgeStyle) { this->drawingCanvas()->clipPath(path, op, kSoft_ClipEdgeStyle == edgeStyle); this->INHERITED::onClipPath(path, op, edgeStyle); this->recordedDrawCommand(); } void SkDeferredCanvas::onClipRegion(const SkRegion& deviceRgn, SkRegion::Op op) { this->drawingCanvas()->clipRegion(deviceRgn, op); this->INHERITED::onClipRegion(deviceRgn, op); this->recordedDrawCommand(); } void SkDeferredCanvas::clear(SkColor color) { // purge pending commands if (fDeferredDrawing) { this->getDeferredDevice()->skipPendingCommands(); } this->drawingCanvas()->clear(color); this->recordedDrawCommand(); } void SkDeferredCanvas::drawPaint(const SkPaint& paint) { if (fDeferredDrawing && this->isFullFrame(NULL, &paint) && isPaintOpaque(&paint)) { this->getDeferredDevice()->skipPendingCommands(); } AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawPaint(paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawPoints(mode, count, pts, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawOval(const SkRect& rect, const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawOval(rect, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawRect(const SkRect& rect, const SkPaint& paint) { if (fDeferredDrawing && this->isFullFrame(&rect, &paint) && isPaintOpaque(&paint)) { this->getDeferredDevice()->skipPendingCommands(); } AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawRect(rect, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawRRect(const SkRRect& rrect, const SkPaint& paint) { if (rrect.isRect()) { this->SkDeferredCanvas::drawRect(rrect.getBounds(), paint); } else if (rrect.isOval()) { this->SkDeferredCanvas::drawOval(rrect.getBounds(), paint); } else { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawRRect(rrect, paint); this->recordedDrawCommand(); } } void SkDeferredCanvas::onDrawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawDRRect(outer, inner, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawPath(const SkPath& path, const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawPath(path, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawBitmap(const SkBitmap& bitmap, SkScalar left, SkScalar top, const SkPaint* paint) { SkRect bitmapRect = SkRect::MakeXYWH(left, top, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); if (fDeferredDrawing && this->isFullFrame(&bitmapRect, paint) && isPaintOpaque(paint, &bitmap)) { this->getDeferredDevice()->skipPendingCommands(); } AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint); this->drawingCanvas()->drawBitmap(bitmap, left, top, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawBitmapRectToRect(const SkBitmap& bitmap, const SkRect* src, const SkRect& dst, const SkPaint* paint, DrawBitmapRectFlags flags) { if (fDeferredDrawing && this->isFullFrame(&dst, paint) && isPaintOpaque(paint, &bitmap)) { this->getDeferredDevice()->skipPendingCommands(); } AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint); this->drawingCanvas()->drawBitmapRectToRect(bitmap, src, dst, paint, flags); this->recordedDrawCommand(); } void SkDeferredCanvas::drawBitmapMatrix(const SkBitmap& bitmap, const SkMatrix& m, const SkPaint* paint) { // TODO: reset recording canvas if paint+bitmap is opaque and clip rect // covers canvas entirely and transformed bitmap covers canvas entirely AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint); this->drawingCanvas()->drawBitmapMatrix(bitmap, m, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst, const SkPaint* paint) { // TODO: reset recording canvas if paint+bitmap is opaque and clip rect // covers canvas entirely and dst covers canvas entirely AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint); this->drawingCanvas()->drawBitmapNine(bitmap, center, dst, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawSprite(const SkBitmap& bitmap, int left, int top, const SkPaint* paint) { SkRect bitmapRect = SkRect::MakeXYWH( SkIntToScalar(left), SkIntToScalar(top), SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height())); if (fDeferredDrawing && this->isFullFrame(&bitmapRect, paint) && isPaintOpaque(paint, &bitmap)) { this->getDeferredDevice()->skipPendingCommands(); } AutoImmediateDrawIfNeeded autoDraw(*this, &bitmap, paint); this->drawingCanvas()->drawSprite(bitmap, left, top, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::onDrawText(const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawText(text, byteLength, x, y, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::onDrawPosText(const void* text, size_t byteLength, const SkPoint pos[], const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawPosText(text, byteLength, pos, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::onDrawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[], SkScalar constY, const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawPosTextH(text, byteLength, xpos, constY, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::onDrawTextOnPath(const void* text, size_t byteLength, const SkPath& path, const SkMatrix* matrix, const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawTextOnPath(text, byteLength, path, matrix, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::onDrawPicture(const SkPicture* picture) { this->drawingCanvas()->drawPicture(picture); this->recordedDrawCommand(); } void SkDeferredCanvas::drawVertices(VertexMode vmode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode* xmode, const uint16_t indices[], int indexCount, const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawVertices(vmode, vertexCount, vertices, texs, colors, xmode, indices, indexCount, paint); this->recordedDrawCommand(); } void SkDeferredCanvas::drawPatch(const SkPatch& patch, const SkPaint& paint) { AutoImmediateDrawIfNeeded autoDraw(*this, &paint); this->drawingCanvas()->drawPatch(patch, paint); this->recordedDrawCommand(); } SkDrawFilter* SkDeferredCanvas::setDrawFilter(SkDrawFilter* filter) { this->drawingCanvas()->setDrawFilter(filter); this->INHERITED::setDrawFilter(filter); this->recordedDrawCommand(); return filter; } SkCanvas* SkDeferredCanvas::canvasForDrawIter() { return this->drawingCanvas(); }