/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkCamera.h" static SkScalar SkScalarDotDiv(int count, const SkScalar a[], int step_a, const SkScalar b[], int step_b, SkScalar denom) { SkScalar prod = 0; for (int i = 0; i < count; i++) { prod += a[0] * b[0]; a += step_a; b += step_b; } return prod / denom; } static SkScalar SkScalarDot(int count, const SkScalar a[], int step_a, const SkScalar b[], int step_b) { SkScalar prod = 0; for (int i = 0; i < count; i++) { prod += a[0] * b[0]; a += step_a; b += step_b; } return prod; } /////////////////////////////////////////////////////////////////////////////// SkScalar SkPoint3D::normalize(SkUnit3D* unit) const { SkScalar mag = SkScalarSqrt(fX*fX + fY*fY + fZ*fZ); if (mag) { SkScalar scale = SkScalarInvert(mag); unit->fX = fX * scale; unit->fY = fY * scale; unit->fZ = fZ * scale; } else { unit->fX = unit->fY = unit->fZ = 0; } return mag; } SkScalar SkUnit3D::Dot(const SkUnit3D& a, const SkUnit3D& b) { return a.fX * b.fX + a.fY * b.fY + a.fZ * b.fZ; } void SkUnit3D::Cross(const SkUnit3D& a, const SkUnit3D& b, SkUnit3D* cross) { SkASSERT(cross); // use x,y,z, in case &a == cross or &b == cross SkScalar x = a.fY * b.fZ - a.fZ * b.fY; SkScalar y = a.fZ * b.fX - a.fX * b.fY; SkScalar z = a.fX * b.fY - a.fY * b.fX; cross->set(x, y, z); } /////////////////////////////////////////////////////////////////////////////// SkPatch3D::SkPatch3D() { this->reset(); } void SkPatch3D::reset() { fOrigin.set(0, 0, 0); fU.set(SK_Scalar1, 0, 0); fV.set(0, -SK_Scalar1, 0); } void SkPatch3D::transform(const SkMatrix3D& m, SkPatch3D* dst) const { if (dst == nullptr) { dst = (SkPatch3D*)this; } m.mapVector(fU, &dst->fU); m.mapVector(fV, &dst->fV); m.mapPoint(fOrigin, &dst->fOrigin); } SkScalar SkPatch3D::dotWith(SkScalar dx, SkScalar dy, SkScalar dz) const { SkScalar cx = fU.fY * fV.fZ - fU.fZ * fV.fY; SkScalar cy = fU.fZ * fV.fX - fU.fX * fV.fY; SkScalar cz = fU.fX * fV.fY - fU.fY * fV.fX; return cx * dx + cy * dy + cz * dz; } /////////////////////////////////////////////////////////////////////////////// void SkMatrix3D::reset() { memset(fMat, 0, sizeof(fMat)); fMat[0][0] = fMat[1][1] = fMat[2][2] = SK_Scalar1; } void SkMatrix3D::setTranslate(SkScalar x, SkScalar y, SkScalar z) { memset(fMat, 0, sizeof(fMat)); fMat[0][0] = x; fMat[1][1] = y; fMat[2][2] = z; } void SkMatrix3D::setRotateX(SkScalar degX) { SkScalar s, c; s = SkScalarSinCos(SkDegreesToRadians(degX), &c); this->setRow(0, SK_Scalar1, 0, 0); this->setRow(1, 0, c, -s); this->setRow(2, 0, s, c); } void SkMatrix3D::setRotateY(SkScalar degY) { SkScalar s, c; s = SkScalarSinCos(SkDegreesToRadians(degY), &c); this->setRow(0, c, 0, -s); this->setRow(1, 0, SK_Scalar1, 0); this->setRow(2, s, 0, c); } void SkMatrix3D::setRotateZ(SkScalar degZ) { SkScalar s, c; s = SkScalarSinCos(SkDegreesToRadians(degZ), &c); this->setRow(0, c, -s, 0); this->setRow(1, s, c, 0); this->setRow(2, 0, 0, SK_Scalar1); } void SkMatrix3D::preTranslate(SkScalar x, SkScalar y, SkScalar z) { SkScalar col[3] = { x, y, z}; for (int i = 0; i < 3; i++) { fMat[i][3] += SkScalarDot(3, &fMat[i][0], 1, col, 1); } } void SkMatrix3D::preRotateX(SkScalar degX) { SkMatrix3D m; m.setRotateX(degX); this->setConcat(*this, m); } void SkMatrix3D::preRotateY(SkScalar degY) { SkMatrix3D m; m.setRotateY(degY); this->setConcat(*this, m); } void SkMatrix3D::preRotateZ(SkScalar degZ) { SkMatrix3D m; m.setRotateZ(degZ); this->setConcat(*this, m); } void SkMatrix3D::setConcat(const SkMatrix3D& a, const SkMatrix3D& b) { SkMatrix3D tmp; SkMatrix3D* c = this; if (this == &a || this == &b) { c = &tmp; } for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { c->fMat[i][j] = SkScalarDot(3, &a.fMat[i][0], 1, &b.fMat[0][j], 4); } c->fMat[i][3] = SkScalarDot(3, &a.fMat[i][0], 1, &b.fMat[0][3], 4) + a.fMat[i][3]; } if (c == &tmp) { *this = tmp; } } void SkMatrix3D::mapPoint(const SkPoint3D& src, SkPoint3D* dst) const { SkScalar x = SkScalarDot(3, &fMat[0][0], 1, &src.fX, 1) + fMat[0][3]; SkScalar y = SkScalarDot(3, &fMat[1][0], 1, &src.fX, 1) + fMat[1][3]; SkScalar z = SkScalarDot(3, &fMat[2][0], 1, &src.fX, 1) + fMat[2][3]; dst->set(x, y, z); } void SkMatrix3D::mapVector(const SkVector3D& src, SkVector3D* dst) const { SkScalar x = SkScalarDot(3, &fMat[0][0], 1, &src.fX, 1); SkScalar y = SkScalarDot(3, &fMat[1][0], 1, &src.fX, 1); SkScalar z = SkScalarDot(3, &fMat[2][0], 1, &src.fX, 1); dst->set(x, y, z); } /////////////////////////////////////////////////////////////////////////////// SkCamera3D::SkCamera3D() { this->reset(); } void SkCamera3D::reset() { fLocation.set(0, 0, -SkIntToScalar(576)); // 8 inches backward fAxis.set(0, 0, SK_Scalar1); // forward fZenith.set(0, -SK_Scalar1, 0); // up fObserver.set(0, 0, fLocation.fZ); fNeedToUpdate = true; } void SkCamera3D::update() { fNeedToUpdate = true; } void SkCamera3D::doUpdate() const { SkUnit3D axis, zenith, cross; // construct a orthonormal basis of cross (x), zenith (y), and axis (z) fAxis.normalize(&axis); { SkScalar dot = SkUnit3D::Dot(SkUnit3D{fZenith.fX, fZenith.fY, fZenith.fZ}, axis); zenith.fX = fZenith.fX - dot * axis.fX; zenith.fY = fZenith.fY - dot * axis.fY; zenith.fZ = fZenith.fZ - dot * axis.fZ; SkPoint3D{zenith.fX, zenith.fY, zenith.fZ}.normalize(&zenith); } SkUnit3D::Cross(axis, zenith, &cross); { SkMatrix* orien = &fOrientation; SkScalar x = fObserver.fX; SkScalar y = fObserver.fY; SkScalar z = fObserver.fZ; // Looking along the view axis we have: // // /|\ zenith // | // | // | * observer (projected on XY plane) // | // |____________\ cross // / // // So this does a z-shear along the view axis based on the observer's x and y values, // and scales in x and y relative to the negative of the observer's z value // (the observer is in the negative z direction). orien->set(SkMatrix::kMScaleX, x * axis.fX - z * cross.fX); orien->set(SkMatrix::kMSkewX, x * axis.fY - z * cross.fY); orien->set(SkMatrix::kMTransX, x * axis.fZ - z * cross.fZ); orien->set(SkMatrix::kMSkewY, y * axis.fX - z * zenith.fX); orien->set(SkMatrix::kMScaleY, y * axis.fY - z * zenith.fY); orien->set(SkMatrix::kMTransY, y * axis.fZ - z * zenith.fZ); orien->set(SkMatrix::kMPersp0, axis.fX); orien->set(SkMatrix::kMPersp1, axis.fY); orien->set(SkMatrix::kMPersp2, axis.fZ); } } void SkCamera3D::patchToMatrix(const SkPatch3D& quilt, SkMatrix* matrix) const { if (fNeedToUpdate) { this->doUpdate(); fNeedToUpdate = false; } const SkScalar* mapPtr = (const SkScalar*)(const void*)&fOrientation; const SkScalar* patchPtr; SkPoint3D diff; SkScalar dot; diff.fX = quilt.fOrigin.fX - fLocation.fX; diff.fY = quilt.fOrigin.fY - fLocation.fY; diff.fZ = quilt.fOrigin.fZ - fLocation.fZ; dot = SkUnit3D::Dot(SkUnit3D{diff.fX, diff.fY, diff.fZ}, SkUnit3D{mapPtr[6], mapPtr[7], mapPtr[8]}); // This multiplies fOrientation by the matrix [quilt.fU quilt.fV diff] -- U, V, and diff are // column vectors in the matrix -- then divides by the length of the projection of diff onto // the view axis (which is 'dot'). This transforms the patch (which transforms from local path // space to world space) into view space (since fOrientation transforms from world space to // view space). // // The divide by 'dot' isn't strictly necessary as the homogeneous divide would do much the // same thing (it's just scaling the entire matrix by 1/dot). It looks like it's normalizing // the matrix into some canonical space. patchPtr = (const SkScalar*)&quilt; matrix->set(SkMatrix::kMScaleX, SkScalarDotDiv(3, patchPtr, 1, mapPtr, 1, dot)); matrix->set(SkMatrix::kMSkewY, SkScalarDotDiv(3, patchPtr, 1, mapPtr+3, 1, dot)); matrix->set(SkMatrix::kMPersp0, SkScalarDotDiv(3, patchPtr, 1, mapPtr+6, 1, dot)); patchPtr += 3; matrix->set(SkMatrix::kMSkewX, SkScalarDotDiv(3, patchPtr, 1, mapPtr, 1, dot)); matrix->set(SkMatrix::kMScaleY, SkScalarDotDiv(3, patchPtr, 1, mapPtr+3, 1, dot)); matrix->set(SkMatrix::kMPersp1, SkScalarDotDiv(3, patchPtr, 1, mapPtr+6, 1, dot)); patchPtr = (const SkScalar*)(const void*)&diff; matrix->set(SkMatrix::kMTransX, SkScalarDotDiv(3, patchPtr, 1, mapPtr, 1, dot)); matrix->set(SkMatrix::kMTransY, SkScalarDotDiv(3, patchPtr, 1, mapPtr+3, 1, dot)); matrix->set(SkMatrix::kMPersp2, SK_Scalar1); } /////////////////////////////////////////////////////////////////////////////// Sk3DView::Sk3DView() { fInitialRec.fMatrix.reset(); fRec = &fInitialRec; } Sk3DView::~Sk3DView() { Rec* rec = fRec; while (rec != &fInitialRec) { Rec* next = rec->fNext; delete rec; rec = next; } } void Sk3DView::save() { Rec* rec = new Rec; rec->fNext = fRec; rec->fMatrix = fRec->fMatrix; fRec = rec; } void Sk3DView::restore() { SkASSERT(fRec != &fInitialRec); Rec* next = fRec->fNext; delete fRec; fRec = next; } #ifdef SK_BUILD_FOR_ANDROID void Sk3DView::setCameraLocation(SkScalar x, SkScalar y, SkScalar z) { // the camera location is passed in inches, set in pt SkScalar lz = z * 72.0f; fCamera.fLocation.set(x * 72.0f, y * 72.0f, lz); fCamera.fObserver.set(0, 0, lz); fCamera.update(); } SkScalar Sk3DView::getCameraLocationX() { return fCamera.fLocation.fX / 72.0f; } SkScalar Sk3DView::getCameraLocationY() { return fCamera.fLocation.fY / 72.0f; } SkScalar Sk3DView::getCameraLocationZ() { return fCamera.fLocation.fZ / 72.0f; } #endif void Sk3DView::translate(SkScalar x, SkScalar y, SkScalar z) { fRec->fMatrix.preTranslate(x, y, z); } void Sk3DView::rotateX(SkScalar deg) { fRec->fMatrix.preRotateX(deg); } void Sk3DView::rotateY(SkScalar deg) { fRec->fMatrix.preRotateY(deg); } void Sk3DView::rotateZ(SkScalar deg) { fRec->fMatrix.preRotateZ(deg); } SkScalar Sk3DView::dotWithNormal(SkScalar x, SkScalar y, SkScalar z) const { SkPatch3D patch; patch.transform(fRec->fMatrix); return patch.dotWith(x, y, z); } void Sk3DView::getMatrix(SkMatrix* matrix) const { if (matrix != nullptr) { SkPatch3D patch; patch.transform(fRec->fMatrix); fCamera.patchToMatrix(patch, matrix); } } #include "SkCanvas.h" void Sk3DView::applyToCanvas(SkCanvas* canvas) const { SkMatrix matrix; this->getMatrix(&matrix); canvas->concat(matrix); }