/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkSLSPIRVCodeGenerator.h" #include "string.h" #include "GLSL.std.450.h" #include "ir/SkSLExpressionStatement.h" #include "ir/SkSLExtension.h" #include "ir/SkSLIndexExpression.h" #include "ir/SkSLVariableReference.h" namespace SkSL { #define SPIRV_DEBUG 0 static const int32_t SKSL_MAGIC = 0x0; // FIXME: we should probably register a magic number void SPIRVCodeGenerator::setupIntrinsics() { #define ALL_GLSL(x) std::make_tuple(kGLSL_STD_450_IntrinsicKind, GLSLstd450 ## x, GLSLstd450 ## x, \ GLSLstd450 ## x, GLSLstd450 ## x) #define BY_TYPE_GLSL(ifFloat, ifInt, ifUInt) std::make_tuple(kGLSL_STD_450_IntrinsicKind, \ GLSLstd450 ## ifFloat, \ GLSLstd450 ## ifInt, \ GLSLstd450 ## ifUInt, \ SpvOpUndef) #define SPECIAL(x) std::make_tuple(kSpecial_IntrinsicKind, k ## x ## _SpecialIntrinsic, \ k ## x ## _SpecialIntrinsic, k ## x ## _SpecialIntrinsic, \ k ## x ## _SpecialIntrinsic) fIntrinsicMap["round"] = ALL_GLSL(Round); fIntrinsicMap["roundEven"] = ALL_GLSL(RoundEven); fIntrinsicMap["trunc"] = ALL_GLSL(Trunc); fIntrinsicMap["abs"] = BY_TYPE_GLSL(FAbs, SAbs, SAbs); fIntrinsicMap["sign"] = BY_TYPE_GLSL(FSign, SSign, SSign); fIntrinsicMap["floor"] = ALL_GLSL(Floor); fIntrinsicMap["ceil"] = ALL_GLSL(Ceil); fIntrinsicMap["fract"] = ALL_GLSL(Fract); fIntrinsicMap["radians"] = ALL_GLSL(Radians); fIntrinsicMap["degrees"] = ALL_GLSL(Degrees); fIntrinsicMap["sin"] = ALL_GLSL(Sin); fIntrinsicMap["cos"] = ALL_GLSL(Cos); fIntrinsicMap["tan"] = ALL_GLSL(Tan); fIntrinsicMap["asin"] = ALL_GLSL(Asin); fIntrinsicMap["acos"] = ALL_GLSL(Acos); fIntrinsicMap["atan"] = SPECIAL(Atan); fIntrinsicMap["sinh"] = ALL_GLSL(Sinh); fIntrinsicMap["cosh"] = ALL_GLSL(Cosh); fIntrinsicMap["tanh"] = ALL_GLSL(Tanh); fIntrinsicMap["asinh"] = ALL_GLSL(Asinh); fIntrinsicMap["acosh"] = ALL_GLSL(Acosh); fIntrinsicMap["atanh"] = ALL_GLSL(Atanh); fIntrinsicMap["pow"] = ALL_GLSL(Pow); fIntrinsicMap["exp"] = ALL_GLSL(Exp); fIntrinsicMap["log"] = ALL_GLSL(Log); fIntrinsicMap["exp2"] = ALL_GLSL(Exp2); fIntrinsicMap["log2"] = ALL_GLSL(Log2); fIntrinsicMap["sqrt"] = ALL_GLSL(Sqrt); fIntrinsicMap["inversesqrt"] = ALL_GLSL(InverseSqrt); fIntrinsicMap["determinant"] = ALL_GLSL(Determinant); fIntrinsicMap["matrixInverse"] = ALL_GLSL(MatrixInverse); fIntrinsicMap["mod"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpFMod, SpvOpSMod, SpvOpUMod, SpvOpUndef); fIntrinsicMap["min"] = BY_TYPE_GLSL(FMin, SMin, UMin); fIntrinsicMap["max"] = BY_TYPE_GLSL(FMax, SMax, UMax); fIntrinsicMap["clamp"] = BY_TYPE_GLSL(FClamp, SClamp, UClamp); fIntrinsicMap["dot"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDot, SpvOpUndef, SpvOpUndef, SpvOpUndef); fIntrinsicMap["mix"] = ALL_GLSL(FMix); fIntrinsicMap["step"] = ALL_GLSL(Step); fIntrinsicMap["smoothstep"] = ALL_GLSL(SmoothStep); fIntrinsicMap["fma"] = ALL_GLSL(Fma); fIntrinsicMap["frexp"] = ALL_GLSL(Frexp); fIntrinsicMap["ldexp"] = ALL_GLSL(Ldexp); #define PACK(type) fIntrinsicMap["pack" #type] = ALL_GLSL(Pack ## type); \ fIntrinsicMap["unpack" #type] = ALL_GLSL(Unpack ## type) PACK(Snorm4x8); PACK(Unorm4x8); PACK(Snorm2x16); PACK(Unorm2x16); PACK(Half2x16); PACK(Double2x32); fIntrinsicMap["length"] = ALL_GLSL(Length); fIntrinsicMap["distance"] = ALL_GLSL(Distance); fIntrinsicMap["cross"] = ALL_GLSL(Cross); fIntrinsicMap["normalize"] = ALL_GLSL(Normalize); fIntrinsicMap["faceForward"] = ALL_GLSL(FaceForward); fIntrinsicMap["reflect"] = ALL_GLSL(Reflect); fIntrinsicMap["refract"] = ALL_GLSL(Refract); fIntrinsicMap["findLSB"] = ALL_GLSL(FindILsb); fIntrinsicMap["findMSB"] = BY_TYPE_GLSL(FindSMsb, FindSMsb, FindUMsb); fIntrinsicMap["dFdx"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdx, SpvOpUndef, SpvOpUndef, SpvOpUndef); fIntrinsicMap["dFdy"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdy, SpvOpUndef, SpvOpUndef, SpvOpUndef); fIntrinsicMap["dFdy"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdy, SpvOpUndef, SpvOpUndef, SpvOpUndef); fIntrinsicMap["texture"] = SPECIAL(Texture); fIntrinsicMap["texture2D"] = SPECIAL(Texture2D); fIntrinsicMap["textureProj"] = SPECIAL(TextureProj); fIntrinsicMap["any"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpUndef, SpvOpUndef, SpvOpUndef, SpvOpAny); fIntrinsicMap["all"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpUndef, SpvOpUndef, SpvOpUndef, SpvOpAll); fIntrinsicMap["equal"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpFOrdEqual, SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual); fIntrinsicMap["notEqual"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpFOrdNotEqual, SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual); fIntrinsicMap["lessThan"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpSLessThan, SpvOpULessThan, SpvOpFOrdLessThan, SpvOpUndef); fIntrinsicMap["lessThanEqual"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpSLessThanEqual, SpvOpULessThanEqual, SpvOpFOrdLessThanEqual, SpvOpUndef); fIntrinsicMap["greaterThan"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpSGreaterThan, SpvOpUGreaterThan, SpvOpFOrdGreaterThan, SpvOpUndef); fIntrinsicMap["greaterThanEqual"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpSGreaterThanEqual, SpvOpUGreaterThanEqual, SpvOpFOrdGreaterThanEqual, SpvOpUndef); // interpolateAt* not yet supported... } void SPIRVCodeGenerator::writeWord(int32_t word, std::ostream& out) { #if SPIRV_DEBUG out << "(" << word << ") "; #else out.write((const char*) &word, sizeof(word)); #endif } static bool is_float(const Context& context, const Type& type) { if (type.kind() == Type::kVector_Kind) { return is_float(context, type.componentType()); } return type == *context.fFloat_Type || type == *context.fDouble_Type; } static bool is_signed(const Context& context, const Type& type) { if (type.kind() == Type::kVector_Kind) { return is_signed(context, type.componentType()); } return type == *context.fInt_Type; } static bool is_unsigned(const Context& context, const Type& type) { if (type.kind() == Type::kVector_Kind) { return is_unsigned(context, type.componentType()); } return type == *context.fUInt_Type; } static bool is_bool(const Context& context, const Type& type) { if (type.kind() == Type::kVector_Kind) { return is_bool(context, type.componentType()); } return type == *context.fBool_Type; } static bool is_out(const Variable& var) { return (var.fModifiers.fFlags & Modifiers::kOut_Flag) != 0; } #if SPIRV_DEBUG static std::string opcode_text(SpvOp_ opCode) { switch (opCode) { case SpvOpNop: return "Nop"; case SpvOpUndef: return "Undef"; case SpvOpSourceContinued: return "SourceContinued"; case SpvOpSource: return "Source"; case SpvOpSourceExtension: return "SourceExtension"; case SpvOpName: return "Name"; case SpvOpMemberName: return "MemberName"; case SpvOpString: return "String"; case SpvOpLine: return "Line"; case SpvOpExtension: return "Extension"; case SpvOpExtInstImport: return "ExtInstImport"; case SpvOpExtInst: return "ExtInst"; case SpvOpMemoryModel: return "MemoryModel"; case SpvOpEntryPoint: return "EntryPoint"; case SpvOpExecutionMode: return "ExecutionMode"; case SpvOpCapability: return "Capability"; case SpvOpTypeVoid: return "TypeVoid"; case SpvOpTypeBool: return "TypeBool"; case SpvOpTypeInt: return "TypeInt"; case SpvOpTypeFloat: return "TypeFloat"; case SpvOpTypeVector: return "TypeVector"; case SpvOpTypeMatrix: return "TypeMatrix"; case SpvOpTypeImage: return "TypeImage"; case SpvOpTypeSampler: return "TypeSampler"; case SpvOpTypeSampledImage: return "TypeSampledImage"; case SpvOpTypeArray: return "TypeArray"; case SpvOpTypeRuntimeArray: return "TypeRuntimeArray"; case SpvOpTypeStruct: return "TypeStruct"; case SpvOpTypeOpaque: return "TypeOpaque"; case SpvOpTypePointer: return "TypePointer"; case SpvOpTypeFunction: return "TypeFunction"; case SpvOpTypeEvent: return "TypeEvent"; case SpvOpTypeDeviceEvent: return "TypeDeviceEvent"; case SpvOpTypeReserveId: return "TypeReserveId"; case SpvOpTypeQueue: return "TypeQueue"; case SpvOpTypePipe: return "TypePipe"; case SpvOpTypeForwardPointer: return "TypeForwardPointer"; case SpvOpConstantTrue: return "ConstantTrue"; case SpvOpConstantFalse: return "ConstantFalse"; case SpvOpConstant: return "Constant"; case SpvOpConstantComposite: return "ConstantComposite"; case SpvOpConstantSampler: return "ConstantSampler"; case SpvOpConstantNull: return "ConstantNull"; case SpvOpSpecConstantTrue: return "SpecConstantTrue"; case SpvOpSpecConstantFalse: return "SpecConstantFalse"; case SpvOpSpecConstant: return "SpecConstant"; case SpvOpSpecConstantComposite: return "SpecConstantComposite"; case SpvOpSpecConstantOp: return "SpecConstantOp"; case SpvOpFunction: return "Function"; case SpvOpFunctionParameter: return "FunctionParameter"; case SpvOpFunctionEnd: return "FunctionEnd"; case SpvOpFunctionCall: return "FunctionCall"; case SpvOpVariable: return "Variable"; case SpvOpImageTexelPointer: return "ImageTexelPointer"; case SpvOpLoad: return "Load"; case SpvOpStore: return "Store"; case SpvOpCopyMemory: return "CopyMemory"; case SpvOpCopyMemorySized: return "CopyMemorySized"; case SpvOpAccessChain: return "AccessChain"; case SpvOpInBoundsAccessChain: return "InBoundsAccessChain"; case SpvOpPtrAccessChain: return "PtrAccessChain"; case SpvOpArrayLength: return "ArrayLength"; case SpvOpGenericPtrMemSemantics: return "GenericPtrMemSemantics"; case SpvOpInBoundsPtrAccessChain: return "InBoundsPtrAccessChain"; case SpvOpDecorate: return "Decorate"; case SpvOpMemberDecorate: return "MemberDecorate"; case SpvOpDecorationGroup: return "DecorationGroup"; case SpvOpGroupDecorate: return "GroupDecorate"; case SpvOpGroupMemberDecorate: return "GroupMemberDecorate"; case SpvOpVectorExtractDynamic: return "VectorExtractDynamic"; case SpvOpVectorInsertDynamic: return "VectorInsertDynamic"; case SpvOpVectorShuffle: return "VectorShuffle"; case SpvOpCompositeConstruct: return "CompositeConstruct"; case SpvOpCompositeExtract: return "CompositeExtract"; case SpvOpCompositeInsert: return "CompositeInsert"; case SpvOpCopyObject: return "CopyObject"; case SpvOpTranspose: return "Transpose"; case SpvOpSampledImage: return "SampledImage"; case SpvOpImageSampleImplicitLod: return "ImageSampleImplicitLod"; case SpvOpImageSampleExplicitLod: return "ImageSampleExplicitLod"; case SpvOpImageSampleDrefImplicitLod: return "ImageSampleDrefImplicitLod"; case SpvOpImageSampleDrefExplicitLod: return "ImageSampleDrefExplicitLod"; case SpvOpImageSampleProjImplicitLod: return "ImageSampleProjImplicitLod"; case SpvOpImageSampleProjExplicitLod: return "ImageSampleProjExplicitLod"; case SpvOpImageSampleProjDrefImplicitLod: return "ImageSampleProjDrefImplicitLod"; case SpvOpImageSampleProjDrefExplicitLod: return "ImageSampleProjDrefExplicitLod"; case SpvOpImageFetch: return "ImageFetch"; case SpvOpImageGather: return "ImageGather"; case SpvOpImageDrefGather: return "ImageDrefGather"; case SpvOpImageRead: return "ImageRead"; case SpvOpImageWrite: return "ImageWrite"; case SpvOpImage: return "Image"; case SpvOpImageQueryFormat: return "ImageQueryFormat"; case SpvOpImageQueryOrder: return "ImageQueryOrder"; case SpvOpImageQuerySizeLod: return "ImageQuerySizeLod"; case SpvOpImageQuerySize: return "ImageQuerySize"; case SpvOpImageQueryLod: return "ImageQueryLod"; case SpvOpImageQueryLevels: return "ImageQueryLevels"; case SpvOpImageQuerySamples: return "ImageQuerySamples"; case SpvOpConvertFToU: return "ConvertFToU"; case SpvOpConvertFToS: return "ConvertFToS"; case SpvOpConvertSToF: return "ConvertSToF"; case SpvOpConvertUToF: return "ConvertUToF"; case SpvOpUConvert: return "UConvert"; case SpvOpSConvert: return "SConvert"; case SpvOpFConvert: return "FConvert"; case SpvOpQuantizeToF16: return "QuantizeToF16"; case SpvOpConvertPtrToU: return "ConvertPtrToU"; case SpvOpSatConvertSToU: return "SatConvertSToU"; case SpvOpSatConvertUToS: return "SatConvertUToS"; case SpvOpConvertUToPtr: return "ConvertUToPtr"; case SpvOpPtrCastToGeneric: return "PtrCastToGeneric"; case SpvOpGenericCastToPtr: return "GenericCastToPtr"; case SpvOpGenericCastToPtrExplicit: return "GenericCastToPtrExplicit"; case SpvOpBitcast: return "Bitcast"; case SpvOpSNegate: return "SNegate"; case SpvOpFNegate: return "FNegate"; case SpvOpIAdd: return "IAdd"; case SpvOpFAdd: return "FAdd"; case SpvOpISub: return "ISub"; case SpvOpFSub: return "FSub"; case SpvOpIMul: return "IMul"; case SpvOpFMul: return "FMul"; case SpvOpUDiv: return "UDiv"; case SpvOpSDiv: return "SDiv"; case SpvOpFDiv: return "FDiv"; case SpvOpUMod: return "UMod"; case SpvOpSRem: return "SRem"; case SpvOpSMod: return "SMod"; case SpvOpFRem: return "FRem"; case SpvOpFMod: return "FMod"; case SpvOpVectorTimesScalar: return "VectorTimesScalar"; case SpvOpMatrixTimesScalar: return "MatrixTimesScalar"; case SpvOpVectorTimesMatrix: return "VectorTimesMatrix"; case SpvOpMatrixTimesVector: return "MatrixTimesVector"; case SpvOpMatrixTimesMatrix: return "MatrixTimesMatrix"; case SpvOpOuterProduct: return "OuterProduct"; case SpvOpDot: return "Dot"; case SpvOpIAddCarry: return "IAddCarry"; case SpvOpISubBorrow: return "ISubBorrow"; case SpvOpUMulExtended: return "UMulExtended"; case SpvOpSMulExtended: return "SMulExtended"; case SpvOpAny: return "Any"; case SpvOpAll: return "All"; case SpvOpIsNan: return "IsNan"; case SpvOpIsInf: return "IsInf"; case SpvOpIsFinite: return "IsFinite"; case SpvOpIsNormal: return "IsNormal"; case SpvOpSignBitSet: return "SignBitSet"; case SpvOpLessOrGreater: return "LessOrGreater"; case SpvOpOrdered: return "Ordered"; case SpvOpUnordered: return "Unordered"; case SpvOpLogicalEqual: return "LogicalEqual"; case SpvOpLogicalNotEqual: return "LogicalNotEqual"; case SpvOpLogicalOr: return "LogicalOr"; case SpvOpLogicalAnd: return "LogicalAnd"; case SpvOpLogicalNot: return "LogicalNot"; case SpvOpSelect: return "Select"; case SpvOpIEqual: return "IEqual"; case SpvOpINotEqual: return "INotEqual"; case SpvOpUGreaterThan: return "UGreaterThan"; case SpvOpSGreaterThan: return "SGreaterThan"; case SpvOpUGreaterThanEqual: return "UGreaterThanEqual"; case SpvOpSGreaterThanEqual: return "SGreaterThanEqual"; case SpvOpULessThan: return "ULessThan"; case SpvOpSLessThan: return "SLessThan"; case SpvOpULessThanEqual: return "ULessThanEqual"; case SpvOpSLessThanEqual: return "SLessThanEqual"; case SpvOpFOrdEqual: return "FOrdEqual"; case SpvOpFUnordEqual: return "FUnordEqual"; case SpvOpFOrdNotEqual: return "FOrdNotEqual"; case SpvOpFUnordNotEqual: return "FUnordNotEqual"; case SpvOpFOrdLessThan: return "FOrdLessThan"; case SpvOpFUnordLessThan: return "FUnordLessThan"; case SpvOpFOrdGreaterThan: return "FOrdGreaterThan"; case SpvOpFUnordGreaterThan: return "FUnordGreaterThan"; case SpvOpFOrdLessThanEqual: return "FOrdLessThanEqual"; case SpvOpFUnordLessThanEqual: return "FUnordLessThanEqual"; case SpvOpFOrdGreaterThanEqual: return "FOrdGreaterThanEqual"; case SpvOpFUnordGreaterThanEqual: return "FUnordGreaterThanEqual"; case SpvOpShiftRightLogical: return "ShiftRightLogical"; case SpvOpShiftRightArithmetic: return "ShiftRightArithmetic"; case SpvOpShiftLeftLogical: return "ShiftLeftLogical"; case SpvOpBitwiseOr: return "BitwiseOr"; case SpvOpBitwiseXor: return "BitwiseXor"; case SpvOpBitwiseAnd: return "BitwiseAnd"; case SpvOpNot: return "Not"; case SpvOpBitFieldInsert: return "BitFieldInsert"; case SpvOpBitFieldSExtract: return "BitFieldSExtract"; case SpvOpBitFieldUExtract: return "BitFieldUExtract"; case SpvOpBitReverse: return "BitReverse"; case SpvOpBitCount: return "BitCount"; case SpvOpDPdx: return "DPdx"; case SpvOpDPdy: return "DPdy"; case SpvOpFwidth: return "Fwidth"; case SpvOpDPdxFine: return "DPdxFine"; case SpvOpDPdyFine: return "DPdyFine"; case SpvOpFwidthFine: return "FwidthFine"; case SpvOpDPdxCoarse: return "DPdxCoarse"; case SpvOpDPdyCoarse: return "DPdyCoarse"; case SpvOpFwidthCoarse: return "FwidthCoarse"; case SpvOpEmitVertex: return "EmitVertex"; case SpvOpEndPrimitive: return "EndPrimitive"; case SpvOpEmitStreamVertex: return "EmitStreamVertex"; case SpvOpEndStreamPrimitive: return "EndStreamPrimitive"; case SpvOpControlBarrier: return "ControlBarrier"; case SpvOpMemoryBarrier: return "MemoryBarrier"; case SpvOpAtomicLoad: return "AtomicLoad"; case SpvOpAtomicStore: return "AtomicStore"; case SpvOpAtomicExchange: return "AtomicExchange"; case SpvOpAtomicCompareExchange: return "AtomicCompareExchange"; case SpvOpAtomicCompareExchangeWeak: return "AtomicCompareExchangeWeak"; case SpvOpAtomicIIncrement: return "AtomicIIncrement"; case SpvOpAtomicIDecrement: return "AtomicIDecrement"; case SpvOpAtomicIAdd: return "AtomicIAdd"; case SpvOpAtomicISub: return "AtomicISub"; case SpvOpAtomicSMin: return "AtomicSMin"; case SpvOpAtomicUMin: return "AtomicUMin"; case SpvOpAtomicSMax: return "AtomicSMax"; case SpvOpAtomicUMax: return "AtomicUMax"; case SpvOpAtomicAnd: return "AtomicAnd"; case SpvOpAtomicOr: return "AtomicOr"; case SpvOpAtomicXor: return "AtomicXor"; case SpvOpPhi: return "Phi"; case SpvOpLoopMerge: return "LoopMerge"; case SpvOpSelectionMerge: return "SelectionMerge"; case SpvOpLabel: return "Label"; case SpvOpBranch: return "Branch"; case SpvOpBranchConditional: return "BranchConditional"; case SpvOpSwitch: return "Switch"; case SpvOpKill: return "Kill"; case SpvOpReturn: return "Return"; case SpvOpReturnValue: return "ReturnValue"; case SpvOpUnreachable: return "Unreachable"; case SpvOpLifetimeStart: return "LifetimeStart"; case SpvOpLifetimeStop: return "LifetimeStop"; case SpvOpGroupAsyncCopy: return "GroupAsyncCopy"; case SpvOpGroupWaitEvents: return "GroupWaitEvents"; case SpvOpGroupAll: return "GroupAll"; case SpvOpGroupAny: return "GroupAny"; case SpvOpGroupBroadcast: return "GroupBroadcast"; case SpvOpGroupIAdd: return "GroupIAdd"; case SpvOpGroupFAdd: return "GroupFAdd"; case SpvOpGroupFMin: return "GroupFMin"; case SpvOpGroupUMin: return "GroupUMin"; case SpvOpGroupSMin: return "GroupSMin"; case SpvOpGroupFMax: return "GroupFMax"; case SpvOpGroupUMax: return "GroupUMax"; case SpvOpGroupSMax: return "GroupSMax"; case SpvOpReadPipe: return "ReadPipe"; case SpvOpWritePipe: return "WritePipe"; case SpvOpReservedReadPipe: return "ReservedReadPipe"; case SpvOpReservedWritePipe: return "ReservedWritePipe"; case SpvOpReserveReadPipePackets: return "ReserveReadPipePackets"; case SpvOpReserveWritePipePackets: return "ReserveWritePipePackets"; case SpvOpCommitReadPipe: return "CommitReadPipe"; case SpvOpCommitWritePipe: return "CommitWritePipe"; case SpvOpIsValidReserveId: return "IsValidReserveId"; case SpvOpGetNumPipePackets: return "GetNumPipePackets"; case SpvOpGetMaxPipePackets: return "GetMaxPipePackets"; case SpvOpGroupReserveReadPipePackets: return "GroupReserveReadPipePackets"; case SpvOpGroupReserveWritePipePackets: return "GroupReserveWritePipePackets"; case SpvOpGroupCommitReadPipe: return "GroupCommitReadPipe"; case SpvOpGroupCommitWritePipe: return "GroupCommitWritePipe"; case SpvOpEnqueueMarker: return "EnqueueMarker"; case SpvOpEnqueueKernel: return "EnqueueKernel"; case SpvOpGetKernelNDrangeSubGroupCount: return "GetKernelNDrangeSubGroupCount"; case SpvOpGetKernelNDrangeMaxSubGroupSize: return "GetKernelNDrangeMaxSubGroupSize"; case SpvOpGetKernelWorkGroupSize: return "GetKernelWorkGroupSize"; case SpvOpGetKernelPreferredWorkGroupSizeMultiple: return "GetKernelPreferredWorkGroupSizeMultiple"; case SpvOpRetainEvent: return "RetainEvent"; case SpvOpReleaseEvent: return "ReleaseEvent"; case SpvOpCreateUserEvent: return "CreateUserEvent"; case SpvOpIsValidEvent: return "IsValidEvent"; case SpvOpSetUserEventStatus: return "SetUserEventStatus"; case SpvOpCaptureEventProfilingInfo: return "CaptureEventProfilingInfo"; case SpvOpGetDefaultQueue: return "GetDefaultQueue"; case SpvOpBuildNDRange: return "BuildNDRange"; case SpvOpImageSparseSampleImplicitLod: return "ImageSparseSampleImplicitLod"; case SpvOpImageSparseSampleExplicitLod: return "ImageSparseSampleExplicitLod"; case SpvOpImageSparseSampleDrefImplicitLod: return "ImageSparseSampleDrefImplicitLod"; case SpvOpImageSparseSampleDrefExplicitLod: return "ImageSparseSampleDrefExplicitLod"; case SpvOpImageSparseSampleProjImplicitLod: return "ImageSparseSampleProjImplicitLod"; case SpvOpImageSparseSampleProjExplicitLod: return "ImageSparseSampleProjExplicitLod"; case SpvOpImageSparseSampleProjDrefImplicitLod: return "ImageSparseSampleProjDrefImplicitLod"; case SpvOpImageSparseSampleProjDrefExplicitLod: return "ImageSparseSampleProjDrefExplicitLod"; case SpvOpImageSparseFetch: return "ImageSparseFetch"; case SpvOpImageSparseGather: return "ImageSparseGather"; case SpvOpImageSparseDrefGather: return "ImageSparseDrefGather"; case SpvOpImageSparseTexelsResident: return "ImageSparseTexelsResident"; case SpvOpNoLine: return "NoLine"; case SpvOpAtomicFlagTestAndSet: return "AtomicFlagTestAndSet"; case SpvOpAtomicFlagClear: return "AtomicFlagClear"; case SpvOpImageSparseRead: return "ImageSparseRead"; default: ABORT("unsupported SPIR-V op"); } } #endif void SPIRVCodeGenerator::writeOpCode(SpvOp_ opCode, int length, std::ostream& out) { ASSERT(opCode != SpvOpUndef); switch (opCode) { case SpvOpReturn: // fall through case SpvOpReturnValue: // fall through case SpvOpKill: // fall through case SpvOpBranch: // fall through case SpvOpBranchConditional: ASSERT(fCurrentBlock); fCurrentBlock = 0; break; case SpvOpConstant: // fall through case SpvOpConstantTrue: // fall through case SpvOpConstantFalse: // fall through case SpvOpConstantComposite: // fall through case SpvOpTypeVoid: // fall through case SpvOpTypeInt: // fall through case SpvOpTypeFloat: // fall through case SpvOpTypeBool: // fall through case SpvOpTypeVector: // fall through case SpvOpTypeMatrix: // fall through case SpvOpTypeArray: // fall through case SpvOpTypePointer: // fall through case SpvOpTypeFunction: // fall through case SpvOpTypeRuntimeArray: // fall through case SpvOpTypeStruct: // fall through case SpvOpTypeImage: // fall through case SpvOpTypeSampledImage: // fall through case SpvOpVariable: // fall through case SpvOpFunction: // fall through case SpvOpFunctionParameter: // fall through case SpvOpFunctionEnd: // fall through case SpvOpExecutionMode: // fall through case SpvOpMemoryModel: // fall through case SpvOpCapability: // fall through case SpvOpExtInstImport: // fall through case SpvOpEntryPoint: // fall through case SpvOpSource: // fall through case SpvOpSourceExtension: // fall through case SpvOpName: // fall through case SpvOpMemberName: // fall through case SpvOpDecorate: // fall through case SpvOpMemberDecorate: break; default: ASSERT(fCurrentBlock); } #if SPIRV_DEBUG out << std::endl << opcode_text(opCode) << " "; #else this->writeWord((length << 16) | opCode, out); #endif } void SPIRVCodeGenerator::writeLabel(SpvId label, std::ostream& out) { fCurrentBlock = label; this->writeInstruction(SpvOpLabel, label, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, std::ostream& out) { this->writeOpCode(opCode, 1, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, std::ostream& out) { this->writeOpCode(opCode, 2, out); this->writeWord(word1, out); } void SPIRVCodeGenerator::writeString(const char* string, std::ostream& out) { size_t length = strlen(string); out << string; switch (length % 4) { case 1: out << (char) 0; // fall through case 2: out << (char) 0; // fall through case 3: out << (char) 0; break; default: this->writeWord(0, out); } } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, const char* string, std::ostream& out) { int32_t length = (int32_t) strlen(string); this->writeOpCode(opCode, 1 + (length + 4) / 4, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, const char* string, std::ostream& out) { int32_t length = (int32_t) strlen(string); this->writeOpCode(opCode, 2 + (length + 4) / 4, out); this->writeWord(word1, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, const char* string, std::ostream& out) { int32_t length = (int32_t) strlen(string); this->writeOpCode(opCode, 3 + (length + 4) / 4, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeString(string, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, std::ostream& out) { this->writeOpCode(opCode, 3, out); this->writeWord(word1, out); this->writeWord(word2, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, std::ostream& out) { this->writeOpCode(opCode, 4, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, std::ostream& out) { this->writeOpCode(opCode, 5, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, std::ostream& out) { this->writeOpCode(opCode, 6, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, std::ostream& out) { this->writeOpCode(opCode, 7, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, std::ostream& out) { this->writeOpCode(opCode, 8, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); this->writeWord(word7, out); } void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, int32_t word3, int32_t word4, int32_t word5, int32_t word6, int32_t word7, int32_t word8, std::ostream& out) { this->writeOpCode(opCode, 9, out); this->writeWord(word1, out); this->writeWord(word2, out); this->writeWord(word3, out); this->writeWord(word4, out); this->writeWord(word5, out); this->writeWord(word6, out); this->writeWord(word7, out); this->writeWord(word8, out); } void SPIRVCodeGenerator::writeCapabilities(std::ostream& out) { for (uint64_t i = 0, bit = 1; i <= kLast_Capability; i++, bit <<= 1) { if (fCapabilities & bit) { this->writeInstruction(SpvOpCapability, (SpvId) i, out); } } } SpvId SPIRVCodeGenerator::nextId() { return fIdCount++; } void SPIRVCodeGenerator::writeStruct(const Type& type, SpvId resultId) { this->writeInstruction(SpvOpName, resultId, type.name().c_str(), fNameBuffer); // go ahead and write all of the field types, so we don't inadvertently write them while we're // in the middle of writing the struct instruction std::vector types; for (const auto& f : type.fields()) { types.push_back(this->getType(f.fType)); } this->writeOpCode(SpvOpTypeStruct, 2 + (int32_t) types.size(), fConstantBuffer); this->writeWord(resultId, fConstantBuffer); for (SpvId id : types) { this->writeWord(id, fConstantBuffer); } size_t offset = 0; for (int32_t i = 0; i < (int32_t) type.fields().size(); i++) { size_t size = type.fields()[i].fType.size(); size_t alignment = type.fields()[i].fType.alignment(); size_t mod = offset % alignment; if (mod != 0) { offset += alignment - mod; } this->writeInstruction(SpvOpMemberName, resultId, i, type.fields()[i].fName.c_str(), fNameBuffer); this->writeLayout(type.fields()[i].fModifiers.fLayout, resultId, i); if (type.fields()[i].fModifiers.fLayout.fBuiltin < 0) { this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationOffset, (SpvId) offset, fDecorationBuffer); } if (type.fields()[i].fType.kind() == Type::kMatrix_Kind) { this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationColMajor, fDecorationBuffer); this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationMatrixStride, (SpvId) type.fields()[i].fType.stride(), fDecorationBuffer); } offset += size; Type::Kind kind = type.fields()[i].fType.kind(); if ((kind == Type::kArray_Kind || kind == Type::kStruct_Kind) && offset % alignment != 0) { offset += alignment - offset % alignment; } ASSERT(offset % alignment == 0); } } SpvId SPIRVCodeGenerator::getType(const Type& type) { auto entry = fTypeMap.find(type.name()); if (entry == fTypeMap.end()) { SpvId result = this->nextId(); switch (type.kind()) { case Type::kScalar_Kind: if (type == *fContext.fBool_Type) { this->writeInstruction(SpvOpTypeBool, result, fConstantBuffer); } else if (type == *fContext.fInt_Type) { this->writeInstruction(SpvOpTypeInt, result, 32, 1, fConstantBuffer); } else if (type == *fContext.fUInt_Type) { this->writeInstruction(SpvOpTypeInt, result, 32, 0, fConstantBuffer); } else if (type == *fContext.fFloat_Type) { this->writeInstruction(SpvOpTypeFloat, result, 32, fConstantBuffer); } else if (type == *fContext.fDouble_Type) { this->writeInstruction(SpvOpTypeFloat, result, 64, fConstantBuffer); } else { ASSERT(false); } break; case Type::kVector_Kind: this->writeInstruction(SpvOpTypeVector, result, this->getType(type.componentType()), type.columns(), fConstantBuffer); break; case Type::kMatrix_Kind: this->writeInstruction(SpvOpTypeMatrix, result, this->getType(index_type(fContext, type)), type.columns(), fConstantBuffer); break; case Type::kStruct_Kind: this->writeStruct(type, result); break; case Type::kArray_Kind: { if (type.columns() > 0) { IntLiteral count(fContext, Position(), type.columns()); this->writeInstruction(SpvOpTypeArray, result, this->getType(type.componentType()), this->writeIntLiteral(count), fConstantBuffer); this->writeInstruction(SpvOpDecorate, result, SpvDecorationArrayStride, (int32_t) type.stride(), fDecorationBuffer); } else { ABORT("runtime-sized arrays are not yet supported"); this->writeInstruction(SpvOpTypeRuntimeArray, result, this->getType(type.componentType()), fConstantBuffer); } break; } case Type::kSampler_Kind: { SpvId image = this->nextId(); this->writeInstruction(SpvOpTypeImage, image, this->getType(*fContext.fFloat_Type), type.dimensions(), type.isDepth(), type.isArrayed(), type.isMultisampled(), type.isSampled(), SpvImageFormatUnknown, fConstantBuffer); this->writeInstruction(SpvOpTypeSampledImage, result, image, fConstantBuffer); break; } default: if (type == *fContext.fVoid_Type) { this->writeInstruction(SpvOpTypeVoid, result, fConstantBuffer); } else { ABORT("invalid type: %s", type.description().c_str()); } } fTypeMap[type.name()] = result; return result; } return entry->second; } SpvId SPIRVCodeGenerator::getFunctionType(const FunctionDeclaration& function) { std::string key = function.fReturnType.description() + "("; std::string separator = ""; for (size_t i = 0; i < function.fParameters.size(); i++) { key += separator; separator = ", "; key += function.fParameters[i]->fType.description(); } key += ")"; auto entry = fTypeMap.find(key); if (entry == fTypeMap.end()) { SpvId result = this->nextId(); int32_t length = 3 + (int32_t) function.fParameters.size(); SpvId returnType = this->getType(function.fReturnType); std::vector parameterTypes; for (size_t i = 0; i < function.fParameters.size(); i++) { // glslang seems to treat all function arguments as pointers whether they need to be or // not. I was initially puzzled by this until I ran bizarre failures with certain // patterns of function calls and control constructs, as exemplified by this minimal // failure case: // // void sphere(float x) { // } // // void map() { // sphere(1.0); // } // // void main() { // for (int i = 0; i < 1; i++) { // map(); // } // } // // As of this writing, compiling this in the "obvious" way (with sphere taking a float) // crashes. Making it take a float* and storing the argument in a temporary variable, // as glslang does, fixes it. It's entirely possible I simply missed whichever part of // the spec makes this make sense. // if (is_out(function->fParameters[i])) { parameterTypes.push_back(this->getPointerType(function.fParameters[i]->fType, SpvStorageClassFunction)); // } else { // parameterTypes.push_back(this->getType(function.fParameters[i]->fType)); // } } this->writeOpCode(SpvOpTypeFunction, length, fConstantBuffer); this->writeWord(result, fConstantBuffer); this->writeWord(returnType, fConstantBuffer); for (SpvId id : parameterTypes) { this->writeWord(id, fConstantBuffer); } fTypeMap[key] = result; return result; } return entry->second; } SpvId SPIRVCodeGenerator::getPointerType(const Type& type, SpvStorageClass_ storageClass) { std::string key = type.description() + "*" + to_string(storageClass); auto entry = fTypeMap.find(key); if (entry == fTypeMap.end()) { SpvId result = this->nextId(); this->writeInstruction(SpvOpTypePointer, result, storageClass, this->getType(type), fConstantBuffer); fTypeMap[key] = result; return result; } return entry->second; } SpvId SPIRVCodeGenerator::writeExpression(const Expression& expr, std::ostream& out) { switch (expr.fKind) { case Expression::kBinary_Kind: return this->writeBinaryExpression((BinaryExpression&) expr, out); case Expression::kBoolLiteral_Kind: return this->writeBoolLiteral((BoolLiteral&) expr); case Expression::kConstructor_Kind: return this->writeConstructor((Constructor&) expr, out); case Expression::kIntLiteral_Kind: return this->writeIntLiteral((IntLiteral&) expr); case Expression::kFieldAccess_Kind: return this->writeFieldAccess(((FieldAccess&) expr), out); case Expression::kFloatLiteral_Kind: return this->writeFloatLiteral(((FloatLiteral&) expr)); case Expression::kFunctionCall_Kind: return this->writeFunctionCall((FunctionCall&) expr, out); case Expression::kPrefix_Kind: return this->writePrefixExpression((PrefixExpression&) expr, out); case Expression::kPostfix_Kind: return this->writePostfixExpression((PostfixExpression&) expr, out); case Expression::kSwizzle_Kind: return this->writeSwizzle((Swizzle&) expr, out); case Expression::kVariableReference_Kind: return this->writeVariableReference((VariableReference&) expr, out); case Expression::kTernary_Kind: return this->writeTernaryExpression((TernaryExpression&) expr, out); case Expression::kIndex_Kind: return this->writeIndexExpression((IndexExpression&) expr, out); default: ABORT("unsupported expression: %s", expr.description().c_str()); } return -1; } SpvId SPIRVCodeGenerator::writeIntrinsicCall(const FunctionCall& c, std::ostream& out) { auto intrinsic = fIntrinsicMap.find(c.fFunction.fName); ASSERT(intrinsic != fIntrinsicMap.end()); const Type& type = c.fArguments[0]->fType; int32_t intrinsicId; if (std::get<0>(intrinsic->second) == kSpecial_IntrinsicKind || is_float(fContext, type)) { intrinsicId = std::get<1>(intrinsic->second); } else if (is_signed(fContext, type)) { intrinsicId = std::get<2>(intrinsic->second); } else if (is_unsigned(fContext, type)) { intrinsicId = std::get<3>(intrinsic->second); } else if (is_bool(fContext, type)) { intrinsicId = std::get<4>(intrinsic->second); } else { ABORT("invalid call %s, cannot operate on '%s'", c.description().c_str(), type.description().c_str()); } switch (std::get<0>(intrinsic->second)) { case kGLSL_STD_450_IntrinsicKind: { SpvId result = this->nextId(); std::vector arguments; for (size_t i = 0; i < c.fArguments.size(); i++) { arguments.push_back(this->writeExpression(*c.fArguments[i], out)); } this->writeOpCode(SpvOpExtInst, 5 + (int32_t) arguments.size(), out); this->writeWord(this->getType(c.fType), out); this->writeWord(result, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(intrinsicId, out); for (SpvId id : arguments) { this->writeWord(id, out); } return result; } case kSPIRV_IntrinsicKind: { SpvId result = this->nextId(); std::vector arguments; for (size_t i = 0; i < c.fArguments.size(); i++) { arguments.push_back(this->writeExpression(*c.fArguments[i], out)); } this->writeOpCode((SpvOp_) intrinsicId, 3 + (int32_t) arguments.size(), out); this->writeWord(this->getType(c.fType), out); this->writeWord(result, out); for (SpvId id : arguments) { this->writeWord(id, out); } return result; } case kSpecial_IntrinsicKind: return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId, out); default: ABORT("unsupported intrinsic kind"); } } SpvId SPIRVCodeGenerator::writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind, std::ostream& out) { SpvId result = this->nextId(); switch (kind) { case kAtan_SpecialIntrinsic: { std::vector arguments; for (size_t i = 0; i < c.fArguments.size(); i++) { arguments.push_back(this->writeExpression(*c.fArguments[i], out)); } this->writeOpCode(SpvOpExtInst, 5 + (int32_t) arguments.size(), out); this->writeWord(this->getType(c.fType), out); this->writeWord(result, out); this->writeWord(fGLSLExtendedInstructions, out); this->writeWord(arguments.size() == 2 ? GLSLstd450Atan2 : GLSLstd450Atan, out); for (SpvId id : arguments) { this->writeWord(id, out); } return result; } case kTexture_SpecialIntrinsic: { SpvId type = this->getType(c.fType); SpvId sampler = this->writeExpression(*c.fArguments[0], out); SpvId uv = this->writeExpression(*c.fArguments[1], out); if (c.fArguments.size() == 3) { this->writeInstruction(SpvOpImageSampleImplicitLod, type, result, sampler, uv, SpvImageOperandsBiasMask, this->writeExpression(*c.fArguments[2], out), out); } else { ASSERT(c.fArguments.size() == 2); this->writeInstruction(SpvOpImageSampleImplicitLod, type, result, sampler, uv, out); } break; } case kTextureProj_SpecialIntrinsic: { SpvId type = this->getType(c.fType); SpvId sampler = this->writeExpression(*c.fArguments[0], out); SpvId uv = this->writeExpression(*c.fArguments[1], out); if (c.fArguments.size() == 3) { this->writeInstruction(SpvOpImageSampleProjImplicitLod, type, result, sampler, uv, SpvImageOperandsBiasMask, this->writeExpression(*c.fArguments[2], out), out); } else { ASSERT(c.fArguments.size() == 2); this->writeInstruction(SpvOpImageSampleProjImplicitLod, type, result, sampler, uv, out); } break; } case kTexture2D_SpecialIntrinsic: { SpvId img = this->writeExpression(*c.fArguments[0], out); SpvId coords = this->writeExpression(*c.fArguments[1], out); this->writeInstruction(SpvOpImageSampleImplicitLod, this->getType(c.fType), result, img, coords, out); break; } } return result; } SpvId SPIRVCodeGenerator::writeFunctionCall(const FunctionCall& c, std::ostream& out) { const auto& entry = fFunctionMap.find(&c.fFunction); if (entry == fFunctionMap.end()) { return this->writeIntrinsicCall(c, out); } // stores (variable, type, lvalue) pairs to extract and save after the function call is complete std::vector>> lvalues; std::vector arguments; for (size_t i = 0; i < c.fArguments.size(); i++) { // id of temporary variable that we will use to hold this argument, or 0 if it is being // passed directly SpvId tmpVar; // if we need a temporary var to store this argument, this is the value to store in the var SpvId tmpValueId; if (is_out(*c.fFunction.fParameters[i])) { std::unique_ptr lv = this->getLValue(*c.fArguments[i], out); SpvId ptr = lv->getPointer(); if (ptr) { arguments.push_back(ptr); continue; } else { // lvalue cannot simply be read and written via a pointer (e.g. a swizzle). Need to // copy it into a temp, call the function, read the value out of the temp, and then // update the lvalue. tmpValueId = lv->load(out); tmpVar = this->nextId(); lvalues.push_back(std::make_tuple(tmpVar, this->getType(c.fArguments[i]->fType), std::move(lv))); } } else { // see getFunctionType for an explanation of why we're always using pointer parameters tmpValueId = this->writeExpression(*c.fArguments[i], out); tmpVar = this->nextId(); } this->writeInstruction(SpvOpVariable, this->getPointerType(c.fArguments[i]->fType, SpvStorageClassFunction), tmpVar, SpvStorageClassFunction, fVariableBuffer); this->writeInstruction(SpvOpStore, tmpVar, tmpValueId, out); arguments.push_back(tmpVar); } SpvId result = this->nextId(); this->writeOpCode(SpvOpFunctionCall, 4 + (int32_t) c.fArguments.size(), out); this->writeWord(this->getType(c.fType), out); this->writeWord(result, out); this->writeWord(entry->second, out); for (SpvId id : arguments) { this->writeWord(id, out); } // now that the call is complete, we may need to update some lvalues with the new values of out // arguments for (const auto& tuple : lvalues) { SpvId load = this->nextId(); this->writeInstruction(SpvOpLoad, std::get<1>(tuple), load, std::get<0>(tuple), out); std::get<2>(tuple)->store(load, out); } return result; } SpvId SPIRVCodeGenerator::writeConstantVector(const Constructor& c) { ASSERT(c.fType.kind() == Type::kVector_Kind && c.isConstant()); SpvId result = this->nextId(); std::vector arguments; for (size_t i = 0; i < c.fArguments.size(); i++) { arguments.push_back(this->writeExpression(*c.fArguments[i], fConstantBuffer)); } SpvId type = this->getType(c.fType); if (c.fArguments.size() == 1) { // with a single argument, a vector will have all of its entries equal to the argument this->writeOpCode(SpvOpConstantComposite, 3 + c.fType.columns(), fConstantBuffer); this->writeWord(type, fConstantBuffer); this->writeWord(result, fConstantBuffer); for (int i = 0; i < c.fType.columns(); i++) { this->writeWord(arguments[0], fConstantBuffer); } } else { this->writeOpCode(SpvOpConstantComposite, 3 + (int32_t) c.fArguments.size(), fConstantBuffer); this->writeWord(type, fConstantBuffer); this->writeWord(result, fConstantBuffer); for (SpvId id : arguments) { this->writeWord(id, fConstantBuffer); } } return result; } SpvId SPIRVCodeGenerator::writeFloatConstructor(const Constructor& c, std::ostream& out) { ASSERT(c.fType == *fContext.fFloat_Type); ASSERT(c.fArguments.size() == 1); ASSERT(c.fArguments[0]->fType.isNumber()); SpvId result = this->nextId(); SpvId parameter = this->writeExpression(*c.fArguments[0], out); if (c.fArguments[0]->fType == *fContext.fInt_Type) { this->writeInstruction(SpvOpConvertSToF, this->getType(c.fType), result, parameter, out); } else if (c.fArguments[0]->fType == *fContext.fUInt_Type) { this->writeInstruction(SpvOpConvertUToF, this->getType(c.fType), result, parameter, out); } else if (c.fArguments[0]->fType == *fContext.fFloat_Type) { return parameter; } return result; } SpvId SPIRVCodeGenerator::writeIntConstructor(const Constructor& c, std::ostream& out) { ASSERT(c.fType == *fContext.fInt_Type); ASSERT(c.fArguments.size() == 1); ASSERT(c.fArguments[0]->fType.isNumber()); SpvId result = this->nextId(); SpvId parameter = this->writeExpression(*c.fArguments[0], out); if (c.fArguments[0]->fType == *fContext.fFloat_Type) { this->writeInstruction(SpvOpConvertFToS, this->getType(c.fType), result, parameter, out); } else if (c.fArguments[0]->fType == *fContext.fUInt_Type) { this->writeInstruction(SpvOpSatConvertUToS, this->getType(c.fType), result, parameter, out); } else if (c.fArguments[0]->fType == *fContext.fInt_Type) { return parameter; } return result; } SpvId SPIRVCodeGenerator::writeMatrixConstructor(const Constructor& c, std::ostream& out) { ASSERT(c.fType.kind() == Type::kMatrix_Kind); // go ahead and write the arguments so we don't try to write new instructions in the middle of // an instruction std::vector arguments; for (size_t i = 0; i < c.fArguments.size(); i++) { arguments.push_back(this->writeExpression(*c.fArguments[i], out)); } SpvId result = this->nextId(); int rows = c.fType.rows(); int columns = c.fType.columns(); // FIXME this won't work to create a matrix from another matrix if (arguments.size() == 1) { // with a single argument, a matrix will have all of its diagonal entries equal to the // argument and its other values equal to zero // FIXME this won't work for int matrices FloatLiteral zero(fContext, Position(), 0); SpvId zeroId = this->writeFloatLiteral(zero); std::vector columnIds; for (int column = 0; column < columns; column++) { this->writeOpCode(SpvOpCompositeConstruct, 3 + c.fType.rows(), out); this->writeWord(this->getType(c.fType.componentType().toCompound(fContext, rows, 1)), out); SpvId columnId = this->nextId(); this->writeWord(columnId, out); columnIds.push_back(columnId); for (int row = 0; row < c.fType.columns(); row++) { this->writeWord(row == column ? arguments[0] : zeroId, out); } } this->writeOpCode(SpvOpCompositeConstruct, 3 + columns, out); this->writeWord(this->getType(c.fType), out); this->writeWord(result, out); for (SpvId id : columnIds) { this->writeWord(id, out); } } else { std::vector columnIds; int currentCount = 0; for (size_t i = 0; i < arguments.size(); i++) { if (c.fArguments[i]->fType.kind() == Type::kVector_Kind) { ASSERT(currentCount == 0); columnIds.push_back(arguments[i]); currentCount = 0; } else { ASSERT(c.fArguments[i]->fType.kind() == Type::kScalar_Kind); if (currentCount == 0) { this->writeOpCode(SpvOpCompositeConstruct, 3 + c.fType.rows(), out); this->writeWord(this->getType(c.fType.componentType().toCompound(fContext, rows, 1)), out); SpvId id = this->nextId(); this->writeWord(id, out); columnIds.push_back(id); } this->writeWord(arguments[i], out); currentCount = (currentCount + 1) % rows; } } ASSERT(columnIds.size() == (size_t) columns); this->writeOpCode(SpvOpCompositeConstruct, 3 + columns, out); this->writeWord(this->getType(c.fType), out); this->writeWord(result, out); for (SpvId id : columnIds) { this->writeWord(id, out); } } return result; } SpvId SPIRVCodeGenerator::writeVectorConstructor(const Constructor& c, std::ostream& out) { ASSERT(c.fType.kind() == Type::kVector_Kind); if (c.isConstant()) { return this->writeConstantVector(c); } // go ahead and write the arguments so we don't try to write new instructions in the middle of // an instruction std::vector arguments; for (size_t i = 0; i < c.fArguments.size(); i++) { arguments.push_back(this->writeExpression(*c.fArguments[i], out)); } SpvId result = this->nextId(); if (arguments.size() == 1 && c.fArguments[0]->fType.kind() == Type::kScalar_Kind) { this->writeOpCode(SpvOpCompositeConstruct, 3 + c.fType.columns(), out); this->writeWord(this->getType(c.fType), out); this->writeWord(result, out); for (int i = 0; i < c.fType.columns(); i++) { this->writeWord(arguments[0], out); } } else { this->writeOpCode(SpvOpCompositeConstruct, 3 + (int32_t) c.fArguments.size(), out); this->writeWord(this->getType(c.fType), out); this->writeWord(result, out); for (SpvId id : arguments) { this->writeWord(id, out); } } return result; } SpvId SPIRVCodeGenerator::writeConstructor(const Constructor& c, std::ostream& out) { if (c.fType == *fContext.fFloat_Type) { return this->writeFloatConstructor(c, out); } else if (c.fType == *fContext.fInt_Type) { return this->writeIntConstructor(c, out); } switch (c.fType.kind()) { case Type::kVector_Kind: return this->writeVectorConstructor(c, out); case Type::kMatrix_Kind: return this->writeMatrixConstructor(c, out); default: ABORT("unsupported constructor: %s", c.description().c_str()); } } SpvStorageClass_ get_storage_class(const Modifiers& modifiers) { if (modifiers.fFlags & Modifiers::kIn_Flag) { return SpvStorageClassInput; } else if (modifiers.fFlags & Modifiers::kOut_Flag) { return SpvStorageClassOutput; } else if (modifiers.fFlags & Modifiers::kUniform_Flag) { return SpvStorageClassUniform; } else { return SpvStorageClassFunction; } } SpvStorageClass_ get_storage_class(const Expression& expr) { switch (expr.fKind) { case Expression::kVariableReference_Kind: return get_storage_class(((VariableReference&) expr).fVariable.fModifiers); case Expression::kFieldAccess_Kind: return get_storage_class(*((FieldAccess&) expr).fBase); case Expression::kIndex_Kind: return get_storage_class(*((IndexExpression&) expr).fBase); default: return SpvStorageClassFunction; } } std::vector SPIRVCodeGenerator::getAccessChain(const Expression& expr, std::ostream& out) { std::vector chain; switch (expr.fKind) { case Expression::kIndex_Kind: { IndexExpression& indexExpr = (IndexExpression&) expr; chain = this->getAccessChain(*indexExpr.fBase, out); chain.push_back(this->writeExpression(*indexExpr.fIndex, out)); break; } case Expression::kFieldAccess_Kind: { FieldAccess& fieldExpr = (FieldAccess&) expr; chain = this->getAccessChain(*fieldExpr.fBase, out); IntLiteral index(fContext, Position(), fieldExpr.fFieldIndex); chain.push_back(this->writeIntLiteral(index)); break; } default: chain.push_back(this->getLValue(expr, out)->getPointer()); } return chain; } class PointerLValue : public SPIRVCodeGenerator::LValue { public: PointerLValue(SPIRVCodeGenerator& gen, SpvId pointer, SpvId type) : fGen(gen) , fPointer(pointer) , fType(type) {} virtual SpvId getPointer() override { return fPointer; } virtual SpvId load(std::ostream& out) override { SpvId result = fGen.nextId(); fGen.writeInstruction(SpvOpLoad, fType, result, fPointer, out); return result; } virtual void store(SpvId value, std::ostream& out) override { fGen.writeInstruction(SpvOpStore, fPointer, value, out); } private: SPIRVCodeGenerator& fGen; const SpvId fPointer; const SpvId fType; }; class SwizzleLValue : public SPIRVCodeGenerator::LValue { public: SwizzleLValue(SPIRVCodeGenerator& gen, SpvId vecPointer, const std::vector& components, const Type& baseType, const Type& swizzleType) : fGen(gen) , fVecPointer(vecPointer) , fComponents(components) , fBaseType(baseType) , fSwizzleType(swizzleType) {} virtual SpvId getPointer() override { return 0; } virtual SpvId load(std::ostream& out) override { SpvId base = fGen.nextId(); fGen.writeInstruction(SpvOpLoad, fGen.getType(fBaseType), base, fVecPointer, out); SpvId result = fGen.nextId(); fGen.writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) fComponents.size(), out); fGen.writeWord(fGen.getType(fSwizzleType), out); fGen.writeWord(result, out); fGen.writeWord(base, out); fGen.writeWord(base, out); for (int component : fComponents) { fGen.writeWord(component, out); } return result; } virtual void store(SpvId value, std::ostream& out) override { // use OpVectorShuffle to mix and match the vector components. We effectively create // a virtual vector out of the concatenation of the left and right vectors, and then // select components from this virtual vector to make the result vector. For // instance, given: // vec3 L = ...; // vec3 R = ...; // L.xz = R.xy; // we end up with the virtual vector (L.x, L.y, L.z, R.x, R.y, R.z). Then we want // our result vector to look like (R.x, L.y, R.y), so we need to select indices // (3, 1, 4). SpvId base = fGen.nextId(); fGen.writeInstruction(SpvOpLoad, fGen.getType(fBaseType), base, fVecPointer, out); SpvId shuffle = fGen.nextId(); fGen.writeOpCode(SpvOpVectorShuffle, 5 + fBaseType.columns(), out); fGen.writeWord(fGen.getType(fBaseType), out); fGen.writeWord(shuffle, out); fGen.writeWord(base, out); fGen.writeWord(value, out); for (int i = 0; i < fBaseType.columns(); i++) { // current offset into the virtual vector, defaults to pulling the unmodified // value from the left side int offset = i; // check to see if we are writing this component for (size_t j = 0; j < fComponents.size(); j++) { if (fComponents[j] == i) { // we're writing to this component, so adjust the offset to pull from // the correct component of the right side instead of preserving the // value from the left offset = (int) (j + fBaseType.columns()); break; } } fGen.writeWord(offset, out); } fGen.writeInstruction(SpvOpStore, fVecPointer, shuffle, out); } private: SPIRVCodeGenerator& fGen; const SpvId fVecPointer; const std::vector& fComponents; const Type& fBaseType; const Type& fSwizzleType; }; std::unique_ptr SPIRVCodeGenerator::getLValue(const Expression& expr, std::ostream& out) { switch (expr.fKind) { case Expression::kVariableReference_Kind: { const Variable& var = ((VariableReference&) expr).fVariable; auto entry = fVariableMap.find(&var); ASSERT(entry != fVariableMap.end()); return std::unique_ptr(new PointerLValue( *this, entry->second, this->getType(expr.fType))); } case Expression::kIndex_Kind: // fall through case Expression::kFieldAccess_Kind: { std::vector chain = this->getAccessChain(expr, out); SpvId member = this->nextId(); this->writeOpCode(SpvOpAccessChain, (SpvId) (3 + chain.size()), out); this->writeWord(this->getPointerType(expr.fType, get_storage_class(expr)), out); this->writeWord(member, out); for (SpvId idx : chain) { this->writeWord(idx, out); } return std::unique_ptr(new PointerLValue( *this, member, this->getType(expr.fType))); } case Expression::kSwizzle_Kind: { Swizzle& swizzle = (Swizzle&) expr; size_t count = swizzle.fComponents.size(); SpvId base = this->getLValue(*swizzle.fBase, out)->getPointer(); ASSERT(base); if (count == 1) { IntLiteral index(fContext, Position(), swizzle.fComponents[0]); SpvId member = this->nextId(); this->writeInstruction(SpvOpAccessChain, this->getPointerType(swizzle.fType, get_storage_class(*swizzle.fBase)), member, base, this->writeIntLiteral(index), out); return std::unique_ptr(new PointerLValue( *this, member, this->getType(expr.fType))); } else { return std::unique_ptr(new SwizzleLValue( *this, base, swizzle.fComponents, swizzle.fBase->fType, expr.fType)); } } default: // expr isn't actually an lvalue, create a dummy variable for it. This case happens due // to the need to store values in temporary variables during function calls (see // comments in getFunctionType); erroneous uses of rvalues as lvalues should have been // caught by IRGenerator SpvId result = this->nextId(); SpvId type = this->getPointerType(expr.fType, SpvStorageClassFunction); this->writeInstruction(SpvOpVariable, type, result, SpvStorageClassFunction, fVariableBuffer); this->writeInstruction(SpvOpStore, result, this->writeExpression(expr, out), out); return std::unique_ptr(new PointerLValue( *this, result, this->getType(expr.fType))); } } SpvId SPIRVCodeGenerator::writeVariableReference(const VariableReference& ref, std::ostream& out) { auto entry = fVariableMap.find(&ref.fVariable); ASSERT(entry != fVariableMap.end()); SpvId var = entry->second; SpvId result = this->nextId(); this->writeInstruction(SpvOpLoad, this->getType(ref.fVariable.fType), result, var, out); return result; } SpvId SPIRVCodeGenerator::writeIndexExpression(const IndexExpression& expr, std::ostream& out) { return getLValue(expr, out)->load(out); } SpvId SPIRVCodeGenerator::writeFieldAccess(const FieldAccess& f, std::ostream& out) { return getLValue(f, out)->load(out); } SpvId SPIRVCodeGenerator::writeSwizzle(const Swizzle& swizzle, std::ostream& out) { SpvId base = this->writeExpression(*swizzle.fBase, out); SpvId result = this->nextId(); size_t count = swizzle.fComponents.size(); if (count == 1) { this->writeInstruction(SpvOpCompositeExtract, this->getType(swizzle.fType), result, base, swizzle.fComponents[0], out); } else { this->writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) count, out); this->writeWord(this->getType(swizzle.fType), out); this->writeWord(result, out); this->writeWord(base, out); this->writeWord(base, out); for (int component : swizzle.fComponents) { this->writeWord(component, out); } } return result; } SpvId SPIRVCodeGenerator::writeBinaryOperation(const Type& resultType, const Type& operandType, SpvId lhs, SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt, SpvOp_ ifUInt, SpvOp_ ifBool, std::ostream& out) { SpvId result = this->nextId(); if (is_float(fContext, operandType)) { this->writeInstruction(ifFloat, this->getType(resultType), result, lhs, rhs, out); } else if (is_signed(fContext, operandType)) { this->writeInstruction(ifInt, this->getType(resultType), result, lhs, rhs, out); } else if (is_unsigned(fContext, operandType)) { this->writeInstruction(ifUInt, this->getType(resultType), result, lhs, rhs, out); } else if (operandType == *fContext.fBool_Type) { this->writeInstruction(ifBool, this->getType(resultType), result, lhs, rhs, out); } else { ABORT("invalid operandType: %s", operandType.description().c_str()); } return result; } bool is_assignment(Token::Kind op) { switch (op) { case Token::EQ: // fall through case Token::PLUSEQ: // fall through case Token::MINUSEQ: // fall through case Token::STAREQ: // fall through case Token::SLASHEQ: // fall through case Token::PERCENTEQ: // fall through case Token::SHLEQ: // fall through case Token::SHREQ: // fall through case Token::BITWISEOREQ: // fall through case Token::BITWISEXOREQ: // fall through case Token::BITWISEANDEQ: // fall through case Token::LOGICALOREQ: // fall through case Token::LOGICALXOREQ: // fall through case Token::LOGICALANDEQ: return true; default: return false; } } SpvId SPIRVCodeGenerator::writeBinaryExpression(const BinaryExpression& b, std::ostream& out) { // handle cases where we don't necessarily evaluate both LHS and RHS switch (b.fOperator) { case Token::EQ: { SpvId rhs = this->writeExpression(*b.fRight, out); this->getLValue(*b.fLeft, out)->store(rhs, out); return rhs; } case Token::LOGICALAND: return this->writeLogicalAnd(b, out); case Token::LOGICALOR: return this->writeLogicalOr(b, out); default: break; } // "normal" operators const Type& resultType = b.fType; std::unique_ptr lvalue; SpvId lhs; if (is_assignment(b.fOperator)) { lvalue = this->getLValue(*b.fLeft, out); lhs = lvalue->load(out); } else { lvalue = nullptr; lhs = this->writeExpression(*b.fLeft, out); } SpvId rhs = this->writeExpression(*b.fRight, out); // component type we are operating on: float, int, uint const Type* operandType; // IR allows mismatched types in expressions (e.g. vec2 * float), but they need special handling // in SPIR-V if (b.fLeft->fType != b.fRight->fType) { if (b.fLeft->fType.kind() == Type::kVector_Kind && b.fRight->fType.isNumber()) { // promote number to vector SpvId vec = this->nextId(); this->writeOpCode(SpvOpCompositeConstruct, 3 + b.fType.columns(), out); this->writeWord(this->getType(resultType), out); this->writeWord(vec, out); for (int i = 0; i < resultType.columns(); i++) { this->writeWord(rhs, out); } rhs = vec; operandType = &b.fRight->fType; } else if (b.fRight->fType.kind() == Type::kVector_Kind && b.fLeft->fType.isNumber()) { // promote number to vector SpvId vec = this->nextId(); this->writeOpCode(SpvOpCompositeConstruct, 3 + b.fType.columns(), out); this->writeWord(this->getType(resultType), out); this->writeWord(vec, out); for (int i = 0; i < resultType.columns(); i++) { this->writeWord(lhs, out); } lhs = vec; ASSERT(!lvalue); operandType = &b.fLeft->fType; } else if (b.fLeft->fType.kind() == Type::kMatrix_Kind) { SpvOp_ op; if (b.fRight->fType.kind() == Type::kMatrix_Kind) { op = SpvOpMatrixTimesMatrix; } else if (b.fRight->fType.kind() == Type::kVector_Kind) { op = SpvOpMatrixTimesVector; } else { ASSERT(b.fRight->fType.kind() == Type::kScalar_Kind); op = SpvOpMatrixTimesScalar; } SpvId result = this->nextId(); this->writeInstruction(op, this->getType(b.fType), result, lhs, rhs, out); if (b.fOperator == Token::STAREQ) { lvalue->store(result, out); } else { ASSERT(b.fOperator == Token::STAR); } return result; } else if (b.fRight->fType.kind() == Type::kMatrix_Kind) { SpvId result = this->nextId(); if (b.fLeft->fType.kind() == Type::kVector_Kind) { this->writeInstruction(SpvOpVectorTimesMatrix, this->getType(b.fType), result, lhs, rhs, out); } else { ASSERT(b.fLeft->fType.kind() == Type::kScalar_Kind); this->writeInstruction(SpvOpMatrixTimesScalar, this->getType(b.fType), result, rhs, lhs, out); } if (b.fOperator == Token::STAREQ) { lvalue->store(result, out); } else { ASSERT(b.fOperator == Token::STAR); } return result; } else { ABORT("unsupported binary expression: %s", b.description().c_str()); } } else { operandType = &b.fLeft->fType; ASSERT(*operandType == b.fRight->fType); } switch (b.fOperator) { case Token::EQEQ: ASSERT(resultType == *fContext.fBool_Type); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdEqual, SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual, out); case Token::NEQ: ASSERT(resultType == *fContext.fBool_Type); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdNotEqual, SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual, out); case Token::GT: ASSERT(resultType == *fContext.fBool_Type); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdGreaterThan, SpvOpSGreaterThan, SpvOpUGreaterThan, SpvOpUndef, out); case Token::LT: ASSERT(resultType == *fContext.fBool_Type); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThan, SpvOpSLessThan, SpvOpULessThan, SpvOpUndef, out); case Token::GTEQ: ASSERT(resultType == *fContext.fBool_Type); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual, SpvOpUGreaterThanEqual, SpvOpUndef, out); case Token::LTEQ: ASSERT(resultType == *fContext.fBool_Type); return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual, SpvOpULessThanEqual, SpvOpUndef, out); case Token::PLUS: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); case Token::MINUS: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); case Token::STAR: if (b.fLeft->fType.kind() == Type::kMatrix_Kind && b.fRight->fType.kind() == Type::kMatrix_Kind) { // matrix multiply SpvId result = this->nextId(); this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result, lhs, rhs, out); return result; } return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul, SpvOpIMul, SpvOpIMul, SpvOpUndef, out); case Token::SLASH: return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFDiv, SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out); case Token::PLUSEQ: { SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); ASSERT(lvalue); lvalue->store(result, out); return result; } case Token::MINUSEQ: { SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); ASSERT(lvalue); lvalue->store(result, out); return result; } case Token::STAREQ: { if (b.fLeft->fType.kind() == Type::kMatrix_Kind && b.fRight->fType.kind() == Type::kMatrix_Kind) { // matrix multiply SpvId result = this->nextId(); this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result, lhs, rhs, out); ASSERT(lvalue); lvalue->store(result, out); return result; } SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul, SpvOpIMul, SpvOpIMul, SpvOpUndef, out); ASSERT(lvalue); lvalue->store(result, out); return result; } case Token::SLASHEQ: { SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFDiv, SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out); ASSERT(lvalue); lvalue->store(result, out); return result; } default: // FIXME: missing support for some operators (bitwise, &&=, ||=, shift...) ABORT("unsupported binary expression: %s", b.description().c_str()); } } SpvId SPIRVCodeGenerator::writeLogicalAnd(const BinaryExpression& a, std::ostream& out) { ASSERT(a.fOperator == Token::LOGICALAND); BoolLiteral falseLiteral(fContext, Position(), false); SpvId falseConstant = this->writeBoolLiteral(falseLiteral); SpvId lhs = this->writeExpression(*a.fLeft, out); SpvId rhsLabel = this->nextId(); SpvId end = this->nextId(); SpvId lhsBlock = fCurrentBlock; this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, lhs, rhsLabel, end, out); this->writeLabel(rhsLabel, out); SpvId rhs = this->writeExpression(*a.fRight, out); SpvId rhsBlock = fCurrentBlock; this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, out); SpvId result = this->nextId(); this->writeInstruction(SpvOpPhi, this->getType(*fContext.fBool_Type), result, falseConstant, lhsBlock, rhs, rhsBlock, out); return result; } SpvId SPIRVCodeGenerator::writeLogicalOr(const BinaryExpression& o, std::ostream& out) { ASSERT(o.fOperator == Token::LOGICALOR); BoolLiteral trueLiteral(fContext, Position(), true); SpvId trueConstant = this->writeBoolLiteral(trueLiteral); SpvId lhs = this->writeExpression(*o.fLeft, out); SpvId rhsLabel = this->nextId(); SpvId end = this->nextId(); SpvId lhsBlock = fCurrentBlock; this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, lhs, end, rhsLabel, out); this->writeLabel(rhsLabel, out); SpvId rhs = this->writeExpression(*o.fRight, out); SpvId rhsBlock = fCurrentBlock; this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, out); SpvId result = this->nextId(); this->writeInstruction(SpvOpPhi, this->getType(*fContext.fBool_Type), result, trueConstant, lhsBlock, rhs, rhsBlock, out); return result; } SpvId SPIRVCodeGenerator::writeTernaryExpression(const TernaryExpression& t, std::ostream& out) { SpvId test = this->writeExpression(*t.fTest, out); if (t.fIfTrue->isConstant() && t.fIfFalse->isConstant()) { // both true and false are constants, can just use OpSelect SpvId result = this->nextId(); SpvId trueId = this->writeExpression(*t.fIfTrue, out); SpvId falseId = this->writeExpression(*t.fIfFalse, out); this->writeInstruction(SpvOpSelect, this->getType(t.fType), result, test, trueId, falseId, out); return result; } // was originally using OpPhi to choose the result, but for some reason that is crashing on // Adreno. Switched to storing the result in a temp variable as glslang does. SpvId var = this->nextId(); this->writeInstruction(SpvOpVariable, this->getPointerType(t.fType, SpvStorageClassFunction), var, SpvStorageClassFunction, fVariableBuffer); SpvId trueLabel = this->nextId(); SpvId falseLabel = this->nextId(); SpvId end = this->nextId(); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, trueLabel, falseLabel, out); this->writeLabel(trueLabel, out); this->writeInstruction(SpvOpStore, var, this->writeExpression(*t.fIfTrue, out), out); this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(falseLabel, out); this->writeInstruction(SpvOpStore, var, this->writeExpression(*t.fIfFalse, out), out); this->writeInstruction(SpvOpBranch, end, out); this->writeLabel(end, out); SpvId result = this->nextId(); this->writeInstruction(SpvOpLoad, this->getType(t.fType), result, var, out); return result; } std::unique_ptr create_literal_1(const Context& context, const Type& type) { if (type == *context.fInt_Type) { return std::unique_ptr(new IntLiteral(context, Position(), 1)); } else if (type == *context.fFloat_Type) { return std::unique_ptr(new FloatLiteral(context, Position(), 1.0)); } else { ABORT("math is unsupported on type '%s'") } } SpvId SPIRVCodeGenerator::writePrefixExpression(const PrefixExpression& p, std::ostream& out) { if (p.fOperator == Token::MINUS) { SpvId result = this->nextId(); SpvId typeId = this->getType(p.fType); SpvId expr = this->writeExpression(*p.fOperand, out); if (is_float(fContext, p.fType)) { this->writeInstruction(SpvOpFNegate, typeId, result, expr, out); } else if (is_signed(fContext, p.fType)) { this->writeInstruction(SpvOpSNegate, typeId, result, expr, out); } else { ABORT("unsupported prefix expression %s", p.description().c_str()); }; return result; } switch (p.fOperator) { case Token::PLUS: return this->writeExpression(*p.fOperand, out); case Token::PLUSPLUS: { std::unique_ptr lv = this->getLValue(*p.fOperand, out); SpvId one = this->writeExpression(*create_literal_1(fContext, p.fType), out); SpvId result = this->writeBinaryOperation(p.fType, p.fType, lv->load(out), one, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); lv->store(result, out); return result; } case Token::MINUSMINUS: { std::unique_ptr lv = this->getLValue(*p.fOperand, out); SpvId one = this->writeExpression(*create_literal_1(fContext, p.fType), out); SpvId result = this->writeBinaryOperation(p.fType, p.fType, lv->load(out), one, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); lv->store(result, out); return result; } case Token::NOT: { ASSERT(p.fOperand->fType == *fContext.fBool_Type); SpvId result = this->nextId(); this->writeInstruction(SpvOpLogicalNot, this->getType(p.fOperand->fType), result, this->writeExpression(*p.fOperand, out), out); return result; } default: ABORT("unsupported prefix expression: %s", p.description().c_str()); } } SpvId SPIRVCodeGenerator::writePostfixExpression(const PostfixExpression& p, std::ostream& out) { std::unique_ptr lv = this->getLValue(*p.fOperand, out); SpvId result = lv->load(out); SpvId one = this->writeExpression(*create_literal_1(fContext, p.fType), out); switch (p.fOperator) { case Token::PLUSPLUS: { SpvId temp = this->writeBinaryOperation(p.fType, p.fType, result, one, SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out); lv->store(temp, out); return result; } case Token::MINUSMINUS: { SpvId temp = this->writeBinaryOperation(p.fType, p.fType, result, one, SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef, out); lv->store(temp, out); return result; } default: ABORT("unsupported postfix expression %s", p.description().c_str()); } } SpvId SPIRVCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { if (b.fValue) { if (fBoolTrue == 0) { fBoolTrue = this->nextId(); this->writeInstruction(SpvOpConstantTrue, this->getType(b.fType), fBoolTrue, fConstantBuffer); } return fBoolTrue; } else { if (fBoolFalse == 0) { fBoolFalse = this->nextId(); this->writeInstruction(SpvOpConstantFalse, this->getType(b.fType), fBoolFalse, fConstantBuffer); } return fBoolFalse; } } SpvId SPIRVCodeGenerator::writeIntLiteral(const IntLiteral& i) { if (i.fType == *fContext.fInt_Type) { auto entry = fIntConstants.find(i.fValue); if (entry == fIntConstants.end()) { SpvId result = this->nextId(); this->writeInstruction(SpvOpConstant, this->getType(i.fType), result, (SpvId) i.fValue, fConstantBuffer); fIntConstants[i.fValue] = result; return result; } return entry->second; } else { ASSERT(i.fType == *fContext.fUInt_Type); auto entry = fUIntConstants.find(i.fValue); if (entry == fUIntConstants.end()) { SpvId result = this->nextId(); this->writeInstruction(SpvOpConstant, this->getType(i.fType), result, (SpvId) i.fValue, fConstantBuffer); fUIntConstants[i.fValue] = result; return result; } return entry->second; } } SpvId SPIRVCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { if (f.fType == *fContext.fFloat_Type) { float value = (float) f.fValue; auto entry = fFloatConstants.find(value); if (entry == fFloatConstants.end()) { SpvId result = this->nextId(); uint32_t bits; ASSERT(sizeof(bits) == sizeof(value)); memcpy(&bits, &value, sizeof(bits)); this->writeInstruction(SpvOpConstant, this->getType(f.fType), result, bits, fConstantBuffer); fFloatConstants[value] = result; return result; } return entry->second; } else { ASSERT(f.fType == *fContext.fDouble_Type); auto entry = fDoubleConstants.find(f.fValue); if (entry == fDoubleConstants.end()) { SpvId result = this->nextId(); uint64_t bits; ASSERT(sizeof(bits) == sizeof(f.fValue)); memcpy(&bits, &f.fValue, sizeof(bits)); this->writeInstruction(SpvOpConstant, this->getType(f.fType), result, bits & 0xffffffff, bits >> 32, fConstantBuffer); fDoubleConstants[f.fValue] = result; return result; } return entry->second; } } SpvId SPIRVCodeGenerator::writeFunctionStart(const FunctionDeclaration& f, std::ostream& out) { SpvId result = fFunctionMap[&f]; this->writeInstruction(SpvOpFunction, this->getType(f.fReturnType), result, SpvFunctionControlMaskNone, this->getFunctionType(f), out); this->writeInstruction(SpvOpName, result, f.fName.c_str(), fNameBuffer); for (size_t i = 0; i < f.fParameters.size(); i++) { SpvId id = this->nextId(); fVariableMap[f.fParameters[i]] = id; SpvId type; type = this->getPointerType(f.fParameters[i]->fType, SpvStorageClassFunction); this->writeInstruction(SpvOpFunctionParameter, type, id, out); } return result; } SpvId SPIRVCodeGenerator::writeFunction(const FunctionDefinition& f, std::ostream& out) { SpvId result = this->writeFunctionStart(f.fDeclaration, out); this->writeLabel(this->nextId(), out); if (f.fDeclaration.fName == "main") { out << fGlobalInitializersBuffer.str(); } std::stringstream bodyBuffer; this->writeBlock(*f.fBody, bodyBuffer); out << fVariableBuffer.str(); fVariableBuffer.str(""); out << bodyBuffer.str(); if (fCurrentBlock) { this->writeInstruction(SpvOpReturn, out); } this->writeInstruction(SpvOpFunctionEnd, out); return result; } void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target) { if (layout.fLocation >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationLocation, layout.fLocation, fDecorationBuffer); } if (layout.fBinding >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationBinding, layout.fBinding, fDecorationBuffer); } if (layout.fIndex >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationIndex, layout.fIndex, fDecorationBuffer); } if (layout.fSet >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationDescriptorSet, layout.fSet, fDecorationBuffer); } if (layout.fBuiltin >= 0) { this->writeInstruction(SpvOpDecorate, target, SpvDecorationBuiltIn, layout.fBuiltin, fDecorationBuffer); } } void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target, int member) { if (layout.fLocation >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationLocation, layout.fLocation, fDecorationBuffer); } if (layout.fBinding >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBinding, layout.fBinding, fDecorationBuffer); } if (layout.fIndex >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationIndex, layout.fIndex, fDecorationBuffer); } if (layout.fSet >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationDescriptorSet, layout.fSet, fDecorationBuffer); } if (layout.fBuiltin >= 0) { this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBuiltIn, layout.fBuiltin, fDecorationBuffer); } } SpvId SPIRVCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) { SpvId type = this->getType(intf.fVariable.fType); SpvId result = this->nextId(); this->writeInstruction(SpvOpDecorate, type, SpvDecorationBlock, fDecorationBuffer); SpvStorageClass_ storageClass = get_storage_class(intf.fVariable.fModifiers); SpvId ptrType = this->nextId(); this->writeInstruction(SpvOpTypePointer, ptrType, storageClass, type, fConstantBuffer); this->writeInstruction(SpvOpVariable, ptrType, result, storageClass, fConstantBuffer); this->writeLayout(intf.fVariable.fModifiers.fLayout, result); fVariableMap[&intf.fVariable] = result; return result; } void SPIRVCodeGenerator::writeGlobalVars(const VarDeclaration& decl, std::ostream& out) { for (size_t i = 0; i < decl.fVars.size(); i++) { if (!decl.fVars[i]->fIsReadFrom && !decl.fVars[i]->fIsWrittenTo && !(decl.fVars[i]->fModifiers.fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag))) { // variable is dead and not an input / output var (the Vulkan debug layers complain if // we elide an interface var, even if it's dead) continue; } SpvStorageClass_ storageClass; if (decl.fVars[i]->fModifiers.fFlags & Modifiers::kIn_Flag) { storageClass = SpvStorageClassInput; } else if (decl.fVars[i]->fModifiers.fFlags & Modifiers::kOut_Flag) { storageClass = SpvStorageClassOutput; } else if (decl.fVars[i]->fModifiers.fFlags & Modifiers::kUniform_Flag) { if (decl.fVars[i]->fType.kind() == Type::kSampler_Kind) { storageClass = SpvStorageClassUniformConstant; } else { storageClass = SpvStorageClassUniform; } } else { storageClass = SpvStorageClassPrivate; } SpvId id = this->nextId(); fVariableMap[decl.fVars[i]] = id; SpvId type = this->getPointerType(decl.fVars[i]->fType, storageClass); this->writeInstruction(SpvOpVariable, type, id, storageClass, fConstantBuffer); this->writeInstruction(SpvOpName, id, decl.fVars[i]->fName.c_str(), fNameBuffer); if (decl.fVars[i]->fType.kind() == Type::kMatrix_Kind) { this->writeInstruction(SpvOpMemberDecorate, id, (SpvId) i, SpvDecorationColMajor, fDecorationBuffer); this->writeInstruction(SpvOpMemberDecorate, id, (SpvId) i, SpvDecorationMatrixStride, (SpvId) decl.fVars[i]->fType.stride(), fDecorationBuffer); } if (decl.fValues[i]) { ASSERT(!fCurrentBlock); fCurrentBlock = -1; SpvId value = this->writeExpression(*decl.fValues[i], fGlobalInitializersBuffer); this->writeInstruction(SpvOpStore, id, value, fGlobalInitializersBuffer); fCurrentBlock = 0; } this->writeLayout(decl.fVars[i]->fModifiers.fLayout, id); } } void SPIRVCodeGenerator::writeVarDeclaration(const VarDeclaration& decl, std::ostream& out) { for (size_t i = 0; i < decl.fVars.size(); i++) { SpvId id = this->nextId(); fVariableMap[decl.fVars[i]] = id; SpvId type = this->getPointerType(decl.fVars[i]->fType, SpvStorageClassFunction); this->writeInstruction(SpvOpVariable, type, id, SpvStorageClassFunction, fVariableBuffer); this->writeInstruction(SpvOpName, id, decl.fVars[i]->fName.c_str(), fNameBuffer); if (decl.fValues[i]) { SpvId value = this->writeExpression(*decl.fValues[i], out); this->writeInstruction(SpvOpStore, id, value, out); } } } void SPIRVCodeGenerator::writeStatement(const Statement& s, std::ostream& out) { switch (s.fKind) { case Statement::kBlock_Kind: this->writeBlock((Block&) s, out); break; case Statement::kExpression_Kind: this->writeExpression(*((ExpressionStatement&) s).fExpression, out); break; case Statement::kReturn_Kind: this->writeReturnStatement((ReturnStatement&) s, out); break; case Statement::kVarDeclaration_Kind: this->writeVarDeclaration(*((VarDeclarationStatement&) s).fDeclaration, out); break; case Statement::kIf_Kind: this->writeIfStatement((IfStatement&) s, out); break; case Statement::kFor_Kind: this->writeForStatement((ForStatement&) s, out); break; case Statement::kBreak_Kind: this->writeInstruction(SpvOpBranch, fBreakTarget.top(), out); break; case Statement::kContinue_Kind: this->writeInstruction(SpvOpBranch, fContinueTarget.top(), out); break; case Statement::kDiscard_Kind: this->writeInstruction(SpvOpKill, out); break; default: ABORT("unsupported statement: %s", s.description().c_str()); } } void SPIRVCodeGenerator::writeBlock(const Block& b, std::ostream& out) { for (size_t i = 0; i < b.fStatements.size(); i++) { this->writeStatement(*b.fStatements[i], out); } } void SPIRVCodeGenerator::writeIfStatement(const IfStatement& stmt, std::ostream& out) { SpvId test = this->writeExpression(*stmt.fTest, out); SpvId ifTrue = this->nextId(); SpvId ifFalse = this->nextId(); if (stmt.fIfFalse) { SpvId end = this->nextId(); this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out); this->writeLabel(ifTrue, out); this->writeStatement(*stmt.fIfTrue, out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, end, out); } this->writeLabel(ifFalse, out); this->writeStatement(*stmt.fIfFalse, out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, end, out); } this->writeLabel(end, out); } else { this->writeInstruction(SpvOpSelectionMerge, ifFalse, SpvSelectionControlMaskNone, out); this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out); this->writeLabel(ifTrue, out); this->writeStatement(*stmt.fIfTrue, out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, ifFalse, out); } this->writeLabel(ifFalse, out); } } void SPIRVCodeGenerator::writeForStatement(const ForStatement& f, std::ostream& out) { if (f.fInitializer) { this->writeStatement(*f.fInitializer, out); } SpvId header = this->nextId(); SpvId start = this->nextId(); SpvId body = this->nextId(); SpvId next = this->nextId(); fContinueTarget.push(next); SpvId end = this->nextId(); fBreakTarget.push(end); this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(header, out); this->writeInstruction(SpvOpLoopMerge, end, next, SpvLoopControlMaskNone, out); this->writeInstruction(SpvOpBranch, start, out); this->writeLabel(start, out); SpvId test = this->writeExpression(*f.fTest, out); this->writeInstruction(SpvOpBranchConditional, test, body, end, out); this->writeLabel(body, out); this->writeStatement(*f.fStatement, out); if (fCurrentBlock) { this->writeInstruction(SpvOpBranch, next, out); } this->writeLabel(next, out); if (f.fNext) { this->writeExpression(*f.fNext, out); } this->writeInstruction(SpvOpBranch, header, out); this->writeLabel(end, out); fBreakTarget.pop(); fContinueTarget.pop(); } void SPIRVCodeGenerator::writeReturnStatement(const ReturnStatement& r, std::ostream& out) { if (r.fExpression) { this->writeInstruction(SpvOpReturnValue, this->writeExpression(*r.fExpression, out), out); } else { this->writeInstruction(SpvOpReturn, out); } } void SPIRVCodeGenerator::writeInstructions(const Program& program, std::ostream& out) { fGLSLExtendedInstructions = this->nextId(); std::stringstream body; std::vector interfaceVars; // assign IDs to functions for (size_t i = 0; i < program.fElements.size(); i++) { if (program.fElements[i]->fKind == ProgramElement::kFunction_Kind) { FunctionDefinition& f = (FunctionDefinition&) *program.fElements[i]; fFunctionMap[&f.fDeclaration] = this->nextId(); } } for (size_t i = 0; i < program.fElements.size(); i++) { if (program.fElements[i]->fKind == ProgramElement::kInterfaceBlock_Kind) { InterfaceBlock& intf = (InterfaceBlock&) *program.fElements[i]; SpvId id = this->writeInterfaceBlock(intf); if ((intf.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) || (intf.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag)) { interfaceVars.push_back(id); } } } for (size_t i = 0; i < program.fElements.size(); i++) { if (program.fElements[i]->fKind == ProgramElement::kVar_Kind) { this->writeGlobalVars(((VarDeclaration&) *program.fElements[i]), body); } } for (size_t i = 0; i < program.fElements.size(); i++) { if (program.fElements[i]->fKind == ProgramElement::kFunction_Kind) { this->writeFunction(((FunctionDefinition&) *program.fElements[i]), body); } } const FunctionDeclaration* main = nullptr; for (auto entry : fFunctionMap) { if (entry.first->fName == "main") { main = entry.first; } } ASSERT(main); for (auto entry : fVariableMap) { const Variable* var = entry.first; if (var->fStorage == Variable::kGlobal_Storage && ((var->fModifiers.fFlags & Modifiers::kIn_Flag) || (var->fModifiers.fFlags & Modifiers::kOut_Flag))) { interfaceVars.push_back(entry.second); } } this->writeCapabilities(out); this->writeInstruction(SpvOpExtInstImport, fGLSLExtendedInstructions, "GLSL.std.450", out); this->writeInstruction(SpvOpMemoryModel, SpvAddressingModelLogical, SpvMemoryModelGLSL450, out); this->writeOpCode(SpvOpEntryPoint, (SpvId) (3 + (strlen(main->fName.c_str()) + 4) / 4) + (int32_t) interfaceVars.size(), out); switch (program.fKind) { case Program::kVertex_Kind: this->writeWord(SpvExecutionModelVertex, out); break; case Program::kFragment_Kind: this->writeWord(SpvExecutionModelFragment, out); break; } this->writeWord(fFunctionMap[main], out); this->writeString(main->fName.c_str(), out); for (int var : interfaceVars) { this->writeWord(var, out); } if (program.fKind == Program::kFragment_Kind) { this->writeInstruction(SpvOpExecutionMode, fFunctionMap[main], SpvExecutionModeOriginUpperLeft, out); } for (size_t i = 0; i < program.fElements.size(); i++) { if (program.fElements[i]->fKind == ProgramElement::kExtension_Kind) { this->writeInstruction(SpvOpSourceExtension, ((Extension&) *program.fElements[i]).fName.c_str(), out); } } out << fNameBuffer.str(); out << fDecorationBuffer.str(); out << fConstantBuffer.str(); out << fExternalFunctionsBuffer.str(); out << body.str(); } void SPIRVCodeGenerator::generateCode(const Program& program, std::ostream& out) { this->writeWord(SpvMagicNumber, out); this->writeWord(SpvVersion, out); this->writeWord(SKSL_MAGIC, out); std::stringstream buffer; this->writeInstructions(program, buffer); this->writeWord(fIdCount, out); this->writeWord(0, out); // reserved, always zero out << buffer.str(); } }