/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkSLIRGenerator.h" #include "limits.h" #include #include "SkSLCompiler.h" #include "ast/SkSLASTBoolLiteral.h" #include "ast/SkSLASTFieldSuffix.h" #include "ast/SkSLASTFloatLiteral.h" #include "ast/SkSLASTIndexSuffix.h" #include "ast/SkSLASTIntLiteral.h" #include "ir/SkSLBinaryExpression.h" #include "ir/SkSLBoolLiteral.h" #include "ir/SkSLBreakStatement.h" #include "ir/SkSLConstructor.h" #include "ir/SkSLContinueStatement.h" #include "ir/SkSLDiscardStatement.h" #include "ir/SkSLDoStatement.h" #include "ir/SkSLExpressionStatement.h" #include "ir/SkSLField.h" #include "ir/SkSLFieldAccess.h" #include "ir/SkSLFloatLiteral.h" #include "ir/SkSLForStatement.h" #include "ir/SkSLFunctionCall.h" #include "ir/SkSLFunctionDeclaration.h" #include "ir/SkSLFunctionDefinition.h" #include "ir/SkSLFunctionReference.h" #include "ir/SkSLIfStatement.h" #include "ir/SkSLIndexExpression.h" #include "ir/SkSLInterfaceBlock.h" #include "ir/SkSLIntLiteral.h" #include "ir/SkSLLayout.h" #include "ir/SkSLPostfixExpression.h" #include "ir/SkSLPrefixExpression.h" #include "ir/SkSLReturnStatement.h" #include "ir/SkSLSwitchCase.h" #include "ir/SkSLSwitchStatement.h" #include "ir/SkSLSwizzle.h" #include "ir/SkSLTernaryExpression.h" #include "ir/SkSLUnresolvedFunction.h" #include "ir/SkSLVariable.h" #include "ir/SkSLVarDeclarations.h" #include "ir/SkSLVarDeclarationsStatement.h" #include "ir/SkSLVariableReference.h" #include "ir/SkSLWhileStatement.h" namespace SkSL { class AutoSymbolTable { public: AutoSymbolTable(IRGenerator* ir) : fIR(ir) , fPrevious(fIR->fSymbolTable) { fIR->pushSymbolTable(); } ~AutoSymbolTable() { fIR->popSymbolTable(); ASSERT(fPrevious == fIR->fSymbolTable); } IRGenerator* fIR; std::shared_ptr fPrevious; }; class AutoLoopLevel { public: AutoLoopLevel(IRGenerator* ir) : fIR(ir) { fIR->fLoopLevel++; } ~AutoLoopLevel() { fIR->fLoopLevel--; } IRGenerator* fIR; }; class AutoSwitchLevel { public: AutoSwitchLevel(IRGenerator* ir) : fIR(ir) { fIR->fSwitchLevel++; } ~AutoSwitchLevel() { fIR->fSwitchLevel--; } IRGenerator* fIR; }; IRGenerator::IRGenerator(const Context* context, std::shared_ptr symbolTable, ErrorReporter& errorReporter) : fContext(*context) , fCurrentFunction(nullptr) , fSymbolTable(std::move(symbolTable)) , fLoopLevel(0) , fSwitchLevel(0) , fErrors(errorReporter) {} void IRGenerator::pushSymbolTable() { fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), &fErrors)); } void IRGenerator::popSymbolTable() { fSymbolTable = fSymbolTable->fParent; } static void fill_caps(const SKSL_CAPS_CLASS& caps, std::unordered_map* capsMap) { #define CAP(name) capsMap->insert(std::make_pair(String(#name), CapValue(caps.name()))); CAP(fbFetchSupport); CAP(fbFetchNeedsCustomOutput); CAP(bindlessTextureSupport); CAP(dropsTileOnZeroDivide); CAP(flatInterpolationSupport); CAP(noperspectiveInterpolationSupport); CAP(multisampleInterpolationSupport); CAP(sampleVariablesSupport); CAP(sampleMaskOverrideCoverageSupport); CAP(externalTextureSupport); CAP(texelFetchSupport); CAP(imageLoadStoreSupport); CAP(mustEnableAdvBlendEqs); CAP(mustEnableSpecificAdvBlendEqs); CAP(mustDeclareFragmentShaderOutput); CAP(canUseAnyFunctionInShader); #undef CAP } void IRGenerator::start(const Program::Settings* settings) { fSettings = settings; fCapsMap.clear(); if (settings->fCaps) { fill_caps(*settings->fCaps, &fCapsMap); } this->pushSymbolTable(); fInputs.reset(); } void IRGenerator::finish() { this->popSymbolTable(); fSettings = nullptr; } std::unique_ptr IRGenerator::convertExtension(const ASTExtension& extension) { return std::unique_ptr(new Extension(extension.fPosition, extension.fName)); } std::unique_ptr IRGenerator::convertStatement(const ASTStatement& statement) { switch (statement.fKind) { case ASTStatement::kBlock_Kind: return this->convertBlock((ASTBlock&) statement); case ASTStatement::kVarDeclaration_Kind: return this->convertVarDeclarationStatement((ASTVarDeclarationStatement&) statement); case ASTStatement::kExpression_Kind: return this->convertExpressionStatement((ASTExpressionStatement&) statement); case ASTStatement::kIf_Kind: return this->convertIf((ASTIfStatement&) statement); case ASTStatement::kFor_Kind: return this->convertFor((ASTForStatement&) statement); case ASTStatement::kWhile_Kind: return this->convertWhile((ASTWhileStatement&) statement); case ASTStatement::kDo_Kind: return this->convertDo((ASTDoStatement&) statement); case ASTStatement::kSwitch_Kind: return this->convertSwitch((ASTSwitchStatement&) statement); case ASTStatement::kReturn_Kind: return this->convertReturn((ASTReturnStatement&) statement); case ASTStatement::kBreak_Kind: return this->convertBreak((ASTBreakStatement&) statement); case ASTStatement::kContinue_Kind: return this->convertContinue((ASTContinueStatement&) statement); case ASTStatement::kDiscard_Kind: return this->convertDiscard((ASTDiscardStatement&) statement); default: ABORT("unsupported statement type: %d\n", statement.fKind); } } std::unique_ptr IRGenerator::convertBlock(const ASTBlock& block) { AutoSymbolTable table(this); std::vector> statements; for (size_t i = 0; i < block.fStatements.size(); i++) { std::unique_ptr statement = this->convertStatement(*block.fStatements[i]); if (!statement) { return nullptr; } statements.push_back(std::move(statement)); } return std::unique_ptr(new Block(block.fPosition, std::move(statements), fSymbolTable)); } std::unique_ptr IRGenerator::convertVarDeclarationStatement( const ASTVarDeclarationStatement& s) { auto decl = this->convertVarDeclarations(*s.fDeclarations, Variable::kLocal_Storage); if (!decl) { return nullptr; } return std::unique_ptr(new VarDeclarationsStatement(std::move(decl))); } std::unique_ptr IRGenerator::convertVarDeclarations(const ASTVarDeclarations& decl, Variable::Storage storage) { std::vector> variables; const Type* baseType = this->convertType(*decl.fType); if (!baseType) { return nullptr; } for (const auto& varDecl : decl.fVars) { const Type* type = baseType; std::vector> sizes; for (const auto& rawSize : varDecl.fSizes) { if (rawSize) { auto size = this->coerce(this->convertExpression(*rawSize), *fContext.fInt_Type); if (!size) { return nullptr; } String name = type->fName; int64_t count; if (size->fKind == Expression::kIntLiteral_Kind) { count = ((IntLiteral&) *size).fValue; if (count <= 0) { fErrors.error(size->fPosition, "array size must be positive"); } name += "[" + to_string(count) + "]"; } else { count = -1; name += "[]"; } type = new Type(name, Type::kArray_Kind, *type, (int) count); fSymbolTable->takeOwnership((Type*) type); sizes.push_back(std::move(size)); } else { type = new Type(type->fName + "[]", Type::kArray_Kind, *type, -1); fSymbolTable->takeOwnership((Type*) type); sizes.push_back(nullptr); } } auto var = std::unique_ptr(new Variable(decl.fPosition, decl.fModifiers, varDecl.fName, *type, storage)); std::unique_ptr value; if (varDecl.fValue) { value = this->convertExpression(*varDecl.fValue); if (!value) { return nullptr; } value = this->coerce(std::move(value), *type); var->fWriteCount = 1; } if (storage == Variable::kGlobal_Storage && varDecl.fName == String("sk_FragColor") && (*fSymbolTable)[varDecl.fName]) { // already defined, ignore } else if (storage == Variable::kGlobal_Storage && (*fSymbolTable)[varDecl.fName] && (*fSymbolTable)[varDecl.fName]->fKind == Symbol::kVariable_Kind && ((Variable*) (*fSymbolTable)[varDecl.fName])->fModifiers.fLayout.fBuiltin >= 0) { // already defined, just update the modifiers Variable* old = (Variable*) (*fSymbolTable)[varDecl.fName]; old->fModifiers = var->fModifiers; } else { variables.emplace_back(new VarDeclaration(var.get(), std::move(sizes), std::move(value))); fSymbolTable->add(varDecl.fName, std::move(var)); } } return std::unique_ptr(new VarDeclarations(decl.fPosition, baseType, std::move(variables))); } std::unique_ptr IRGenerator::convertModifiersDeclaration( const ASTModifiersDeclaration& m) { return std::unique_ptr(new ModifiersDeclaration(m.fModifiers)); } std::unique_ptr IRGenerator::convertIf(const ASTIfStatement& s) { std::unique_ptr test = this->coerce(this->convertExpression(*s.fTest), *fContext.fBool_Type); if (!test) { return nullptr; } std::unique_ptr ifTrue = this->convertStatement(*s.fIfTrue); if (!ifTrue) { return nullptr; } std::unique_ptr ifFalse; if (s.fIfFalse) { ifFalse = this->convertStatement(*s.fIfFalse); if (!ifFalse) { return nullptr; } } if (test->fKind == Expression::kBoolLiteral_Kind) { // static boolean value, fold down to a single branch if (((BoolLiteral&) *test).fValue) { return ifTrue; } else if (s.fIfFalse) { return ifFalse; } else { // False & no else clause. Not an error, so don't return null! std::vector> empty; return std::unique_ptr(new Block(s.fPosition, std::move(empty), fSymbolTable)); } } return std::unique_ptr(new IfStatement(s.fPosition, s.fIsStatic, std::move(test), std::move(ifTrue), std::move(ifFalse))); } std::unique_ptr IRGenerator::convertFor(const ASTForStatement& f) { AutoLoopLevel level(this); AutoSymbolTable table(this); std::unique_ptr initializer; if (f.fInitializer) { initializer = this->convertStatement(*f.fInitializer); if (!initializer) { return nullptr; } } std::unique_ptr test; if (f.fTest) { test = this->coerce(this->convertExpression(*f.fTest), *fContext.fBool_Type); if (!test) { return nullptr; } } std::unique_ptr next; if (f.fNext) { next = this->convertExpression(*f.fNext); if (!next) { return nullptr; } this->checkValid(*next); } std::unique_ptr statement = this->convertStatement(*f.fStatement); if (!statement) { return nullptr; } return std::unique_ptr(new ForStatement(f.fPosition, std::move(initializer), std::move(test), std::move(next), std::move(statement), fSymbolTable)); } std::unique_ptr IRGenerator::convertWhile(const ASTWhileStatement& w) { AutoLoopLevel level(this); std::unique_ptr test = this->coerce(this->convertExpression(*w.fTest), *fContext.fBool_Type); if (!test) { return nullptr; } std::unique_ptr statement = this->convertStatement(*w.fStatement); if (!statement) { return nullptr; } return std::unique_ptr(new WhileStatement(w.fPosition, std::move(test), std::move(statement))); } std::unique_ptr IRGenerator::convertDo(const ASTDoStatement& d) { AutoLoopLevel level(this); std::unique_ptr test = this->coerce(this->convertExpression(*d.fTest), *fContext.fBool_Type); if (!test) { return nullptr; } std::unique_ptr statement = this->convertStatement(*d.fStatement); if (!statement) { return nullptr; } return std::unique_ptr(new DoStatement(d.fPosition, std::move(statement), std::move(test))); } std::unique_ptr IRGenerator::convertSwitch(const ASTSwitchStatement& s) { AutoSwitchLevel level(this); std::unique_ptr value = this->convertExpression(*s.fValue); if (!value) { return nullptr; } if (value->fType != *fContext.fUInt_Type) { value = this->coerce(std::move(value), *fContext.fInt_Type); if (!value) { return nullptr; } } AutoSymbolTable table(this); std::unordered_set caseValues; std::vector> cases; for (const auto& c : s.fCases) { std::unique_ptr caseValue; if (c->fValue) { caseValue = this->convertExpression(*c->fValue); if (!caseValue) { return nullptr; } if (caseValue->fType != *fContext.fUInt_Type) { caseValue = this->coerce(std::move(caseValue), *fContext.fInt_Type); if (!caseValue) { return nullptr; } } if (!caseValue->isConstant()) { fErrors.error(caseValue->fPosition, "case value must be a constant"); return nullptr; } ASSERT(caseValue->fKind == Expression::kIntLiteral_Kind); int64_t v = ((IntLiteral&) *caseValue).fValue; if (caseValues.find(v) != caseValues.end()) { fErrors.error(caseValue->fPosition, "duplicate case value"); } caseValues.insert(v); } std::vector> statements; for (const auto& s : c->fStatements) { std::unique_ptr converted = this->convertStatement(*s); if (!converted) { return nullptr; } statements.push_back(std::move(converted)); } cases.emplace_back(new SwitchCase(c->fPosition, std::move(caseValue), std::move(statements))); } return std::unique_ptr(new SwitchStatement(s.fPosition, s.fIsStatic, std::move(value), std::move(cases))); } std::unique_ptr IRGenerator::convertExpressionStatement( const ASTExpressionStatement& s) { std::unique_ptr e = this->convertExpression(*s.fExpression); if (!e) { return nullptr; } this->checkValid(*e); return std::unique_ptr(new ExpressionStatement(std::move(e))); } std::unique_ptr IRGenerator::convertReturn(const ASTReturnStatement& r) { ASSERT(fCurrentFunction); if (r.fExpression) { std::unique_ptr result = this->convertExpression(*r.fExpression); if (!result) { return nullptr; } if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) { fErrors.error(result->fPosition, "may not return a value from a void function"); } else { result = this->coerce(std::move(result), fCurrentFunction->fReturnType); if (!result) { return nullptr; } } return std::unique_ptr(new ReturnStatement(std::move(result))); } else { if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) { fErrors.error(r.fPosition, "expected function to return '" + fCurrentFunction->fReturnType.description() + "'"); } return std::unique_ptr(new ReturnStatement(r.fPosition)); } } std::unique_ptr IRGenerator::convertBreak(const ASTBreakStatement& b) { if (fLoopLevel > 0 || fSwitchLevel > 0) { return std::unique_ptr(new BreakStatement(b.fPosition)); } else { fErrors.error(b.fPosition, "break statement must be inside a loop or switch"); return nullptr; } } std::unique_ptr IRGenerator::convertContinue(const ASTContinueStatement& c) { if (fLoopLevel > 0) { return std::unique_ptr(new ContinueStatement(c.fPosition)); } else { fErrors.error(c.fPosition, "continue statement must be inside a loop"); return nullptr; } } std::unique_ptr IRGenerator::convertDiscard(const ASTDiscardStatement& d) { return std::unique_ptr(new DiscardStatement(d.fPosition)); } std::unique_ptr IRGenerator::convertFunction(const ASTFunction& f) { const Type* returnType = this->convertType(*f.fReturnType); if (!returnType) { return nullptr; } std::vector parameters; for (const auto& param : f.fParameters) { const Type* type = this->convertType(*param->fType); if (!type) { return nullptr; } for (int j = (int) param->fSizes.size() - 1; j >= 0; j--) { int size = param->fSizes[j]; String name = type->name() + "[" + to_string(size) + "]"; Type* newType = new Type(std::move(name), Type::kArray_Kind, *type, size); fSymbolTable->takeOwnership(newType); type = newType; } String name = param->fName; Position pos = param->fPosition; Variable* var = new Variable(pos, param->fModifiers, std::move(name), *type, Variable::kParameter_Storage); fSymbolTable->takeOwnership(var); parameters.push_back(var); } // find existing declaration const FunctionDeclaration* decl = nullptr; auto entry = (*fSymbolTable)[f.fName]; if (entry) { std::vector functions; switch (entry->fKind) { case Symbol::kUnresolvedFunction_Kind: functions = ((UnresolvedFunction*) entry)->fFunctions; break; case Symbol::kFunctionDeclaration_Kind: functions.push_back((FunctionDeclaration*) entry); break; default: fErrors.error(f.fPosition, "symbol '" + f.fName + "' was already defined"); return nullptr; } for (const auto& other : functions) { ASSERT(other->fName == f.fName); if (parameters.size() == other->fParameters.size()) { bool match = true; for (size_t i = 0; i < parameters.size(); i++) { if (parameters[i]->fType != other->fParameters[i]->fType) { match = false; break; } } if (match) { if (*returnType != other->fReturnType) { FunctionDeclaration newDecl(f.fPosition, f.fModifiers, f.fName, parameters, *returnType); fErrors.error(f.fPosition, "functions '" + newDecl.description() + "' and '" + other->description() + "' differ only in return type"); return nullptr; } decl = other; for (size_t i = 0; i < parameters.size(); i++) { if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) { fErrors.error(f.fPosition, "modifiers on parameter " + to_string((uint64_t) i + 1) + " differ between declaration and " "definition"); return nullptr; } } if (other->fDefined) { fErrors.error(f.fPosition, "duplicate definition of " + other->description()); } break; } } } } if (!decl) { // couldn't find an existing declaration auto newDecl = std::unique_ptr(new FunctionDeclaration(f.fPosition, f.fModifiers, f.fName, parameters, *returnType)); decl = newDecl.get(); fSymbolTable->add(decl->fName, std::move(newDecl)); } if (f.fBody) { ASSERT(!fCurrentFunction); fCurrentFunction = decl; decl->fDefined = true; std::shared_ptr old = fSymbolTable; AutoSymbolTable table(this); for (size_t i = 0; i < parameters.size(); i++) { fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]); } std::unique_ptr body = this->convertBlock(*f.fBody); fCurrentFunction = nullptr; if (!body) { return nullptr; } // conservatively assume all user-defined functions have side effects ((Modifiers&) decl->fModifiers).fFlags |= Modifiers::kHasSideEffects_Flag; return std::unique_ptr(new FunctionDefinition(f.fPosition, *decl, std::move(body))); } return nullptr; } std::unique_ptr IRGenerator::convertInterfaceBlock(const ASTInterfaceBlock& intf) { std::shared_ptr old = fSymbolTable; AutoSymbolTable table(this); std::vector fields; bool haveRuntimeArray = false; for (size_t i = 0; i < intf.fDeclarations.size(); i++) { std::unique_ptr decl = this->convertVarDeclarations( *intf.fDeclarations[i], Variable::kGlobal_Storage); if (!decl) { return nullptr; } for (const auto& var : decl->fVars) { if (haveRuntimeArray) { fErrors.error(decl->fPosition, "only the last entry in an interface block may be a runtime-sized " "array"); } fields.push_back(Type::Field(var->fVar->fModifiers, var->fVar->fName, &var->fVar->fType)); if (var->fValue) { fErrors.error(decl->fPosition, "initializers are not permitted on interface block fields"); } if (var->fVar->fModifiers.fFlags & (Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag | Modifiers::kBuffer_Flag | Modifiers::kConst_Flag)) { fErrors.error(decl->fPosition, "interface block fields may not have storage qualifiers"); } if (var->fVar->fType.kind() == Type::kArray_Kind && var->fVar->fType.columns() == -1) { haveRuntimeArray = true; } } } Type* type = new Type(intf.fPosition, intf.fTypeName, fields); old->takeOwnership(type); std::vector> sizes; for (const auto& size : intf.fSizes) { if (size) { std::unique_ptr converted = this->convertExpression(*size); if (!converted) { return nullptr; } String name = type->fName; int64_t count; if (converted->fKind == Expression::kIntLiteral_Kind) { count = ((IntLiteral&) *converted).fValue; if (count <= 0) { fErrors.error(converted->fPosition, "array size must be positive"); } name += "[" + to_string(count) + "]"; } else { count = -1; name += "[]"; } type = new Type(name, Type::kArray_Kind, *type, (int) count); fSymbolTable->takeOwnership((Type*) type); sizes.push_back(std::move(converted)); } else { type = new Type(type->fName + "[]", Type::kArray_Kind, *type, -1); fSymbolTable->takeOwnership((Type*) type); sizes.push_back(nullptr); } } Variable* var = new Variable(intf.fPosition, intf.fModifiers, intf.fInstanceName.size() ? intf.fInstanceName : intf.fTypeName, *type, Variable::kGlobal_Storage); old->takeOwnership(var); if (intf.fInstanceName.size()) { old->addWithoutOwnership(intf.fInstanceName, var); } else { for (size_t i = 0; i < fields.size(); i++) { old->add(fields[i].fName, std::unique_ptr(new Field(intf.fPosition, *var, (int) i))); } } return std::unique_ptr(new InterfaceBlock(intf.fPosition, var, intf.fTypeName, intf.fInstanceName, std::move(sizes), fSymbolTable)); } const Type* IRGenerator::convertType(const ASTType& type) { const Symbol* result = (*fSymbolTable)[type.fName]; if (result && result->fKind == Symbol::kType_Kind) { for (int size : type.fSizes) { String name = result->fName + "["; if (size != -1) { name += to_string(size); } name += "]"; result = new Type(name, Type::kArray_Kind, (const Type&) *result, size); fSymbolTable->takeOwnership((Type*) result); } return (const Type*) result; } fErrors.error(type.fPosition, "unknown type '" + type.fName + "'"); return nullptr; } std::unique_ptr IRGenerator::convertExpression(const ASTExpression& expr) { switch (expr.fKind) { case ASTExpression::kIdentifier_Kind: return this->convertIdentifier((ASTIdentifier&) expr); case ASTExpression::kBool_Kind: return std::unique_ptr(new BoolLiteral(fContext, expr.fPosition, ((ASTBoolLiteral&) expr).fValue)); case ASTExpression::kInt_Kind: return std::unique_ptr(new IntLiteral(fContext, expr.fPosition, ((ASTIntLiteral&) expr).fValue)); case ASTExpression::kFloat_Kind: return std::unique_ptr(new FloatLiteral(fContext, expr.fPosition, ((ASTFloatLiteral&) expr).fValue)); case ASTExpression::kBinary_Kind: return this->convertBinaryExpression((ASTBinaryExpression&) expr); case ASTExpression::kPrefix_Kind: return this->convertPrefixExpression((ASTPrefixExpression&) expr); case ASTExpression::kSuffix_Kind: return this->convertSuffixExpression((ASTSuffixExpression&) expr); case ASTExpression::kTernary_Kind: return this->convertTernaryExpression((ASTTernaryExpression&) expr); default: ABORT("unsupported expression type: %d\n", expr.fKind); } } std::unique_ptr IRGenerator::convertIdentifier(const ASTIdentifier& identifier) { const Symbol* result = (*fSymbolTable)[identifier.fText]; if (!result) { fErrors.error(identifier.fPosition, "unknown identifier '" + identifier.fText + "'"); return nullptr; } switch (result->fKind) { case Symbol::kFunctionDeclaration_Kind: { std::vector f = { (const FunctionDeclaration*) result }; return std::unique_ptr(new FunctionReference(fContext, identifier.fPosition, f)); } case Symbol::kUnresolvedFunction_Kind: { const UnresolvedFunction* f = (const UnresolvedFunction*) result; return std::unique_ptr(new FunctionReference(fContext, identifier.fPosition, f->fFunctions)); } case Symbol::kVariable_Kind: { const Variable* var = (const Variable*) result; if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) { fInputs.fFlipY = true; if (fSettings->fFlipY && (!fSettings->fCaps || !fSettings->fCaps->fragCoordConventionsExtensionString())) { fInputs.fRTHeight = true; } } // default to kRead_RefKind; this will be corrected later if the variable is written to return std::unique_ptr(new VariableReference( identifier.fPosition, *var, VariableReference::kRead_RefKind)); } case Symbol::kField_Kind: { const Field* field = (const Field*) result; VariableReference* base = new VariableReference(identifier.fPosition, field->fOwner, VariableReference::kRead_RefKind); return std::unique_ptr(new FieldAccess( std::unique_ptr(base), field->fFieldIndex, FieldAccess::kAnonymousInterfaceBlock_OwnerKind)); } case Symbol::kType_Kind: { const Type* t = (const Type*) result; return std::unique_ptr(new TypeReference(fContext, identifier.fPosition, *t)); } default: ABORT("unsupported symbol type %d\n", result->fKind); } } std::unique_ptr IRGenerator::coerce(std::unique_ptr expr, const Type& type) { if (!expr) { return nullptr; } if (expr->fType == type) { return expr; } this->checkValid(*expr); if (expr->fType == *fContext.fInvalid_Type) { return nullptr; } if (!expr->fType.canCoerceTo(type)) { fErrors.error(expr->fPosition, "expected '" + type.description() + "', but found '" + expr->fType.description() + "'"); return nullptr; } if (type.kind() == Type::kScalar_Kind) { std::vector> args; args.push_back(std::move(expr)); ASTIdentifier id(Position(), type.description()); std::unique_ptr ctor = this->convertIdentifier(id); ASSERT(ctor); return this->call(Position(), std::move(ctor), std::move(args)); } std::vector> args; args.push_back(std::move(expr)); return std::unique_ptr(new Constructor(Position(), type, std::move(args))); } static bool is_matrix_multiply(const Type& left, const Type& right) { if (left.kind() == Type::kMatrix_Kind) { return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind; } return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind; } /** * Determines the operand and result types of a binary expression. Returns true if the expression is * legal, false otherwise. If false, the values of the out parameters are undefined. */ static bool determine_binary_type(const Context& context, Token::Kind op, const Type& left, const Type& right, const Type** outLeftType, const Type** outRightType, const Type** outResultType, bool tryFlipped) { bool isLogical; bool validMatrixOrVectorOp; switch (op) { case Token::EQ: *outLeftType = &left; *outRightType = &left; *outResultType = &left; return right.canCoerceTo(left); case Token::EQEQ: // fall through case Token::NEQ: isLogical = true; validMatrixOrVectorOp = true; break; case Token::LT: // fall through case Token::GT: // fall through case Token::LTEQ: // fall through case Token::GTEQ: isLogical = true; validMatrixOrVectorOp = false; break; case Token::LOGICALOR: // fall through case Token::LOGICALAND: // fall through case Token::LOGICALXOR: // fall through case Token::LOGICALOREQ: // fall through case Token::LOGICALANDEQ: // fall through case Token::LOGICALXOREQ: *outLeftType = context.fBool_Type.get(); *outRightType = context.fBool_Type.get(); *outResultType = context.fBool_Type.get(); return left.canCoerceTo(*context.fBool_Type) && right.canCoerceTo(*context.fBool_Type); case Token::STAR: // fall through case Token::STAREQ: if (is_matrix_multiply(left, right)) { // determine final component type if (determine_binary_type(context, Token::STAR, left.componentType(), right.componentType(), outLeftType, outRightType, outResultType, false)) { *outLeftType = &(*outResultType)->toCompound(context, left.columns(), left.rows());; *outRightType = &(*outResultType)->toCompound(context, right.columns(), right.rows());; int leftColumns = left.columns(); int leftRows = left.rows(); int rightColumns; int rightRows; if (right.kind() == Type::kVector_Kind) { // matrix * vector treats the vector as a column vector, so we need to // transpose it rightColumns = right.rows(); rightRows = right.columns(); ASSERT(rightColumns == 1); } else { rightColumns = right.columns(); rightRows = right.rows(); } if (rightColumns > 1) { *outResultType = &(*outResultType)->toCompound(context, rightColumns, leftRows); } else { // result was a column vector, transpose it back to a row *outResultType = &(*outResultType)->toCompound(context, leftRows, rightColumns); } return leftColumns == rightRows; } else { return false; } } isLogical = false; validMatrixOrVectorOp = true; break; case Token::PLUS: // fall through case Token::PLUSEQ: // fall through case Token::MINUS: // fall through case Token::MINUSEQ: // fall through case Token::SLASH: // fall through case Token::SLASHEQ: isLogical = false; validMatrixOrVectorOp = true; break; default: isLogical = false; validMatrixOrVectorOp = false; } bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind; // FIXME: incorrect for shift if (right.canCoerceTo(left) && (left.kind() == Type::kScalar_Kind || (isVectorOrMatrix && validMatrixOrVectorOp))) { *outLeftType = &left; *outRightType = &left; if (isLogical) { *outResultType = context.fBool_Type.get(); } else { *outResultType = &left; } return true; } if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) && (right.kind() == Type::kScalar_Kind)) { if (determine_binary_type(context, op, left.componentType(), right, outLeftType, outRightType, outResultType, false)) { *outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows()); if (!isLogical) { *outResultType = &(*outResultType)->toCompound(context, left.columns(), left.rows()); } return true; } return false; } if (tryFlipped) { return determine_binary_type(context, op, right, left, outRightType, outLeftType, outResultType, false); } return false; } std::unique_ptr IRGenerator::constantFold(const Expression& left, Token::Kind op, const Expression& right) const { if (!left.isConstant() || !right.isConstant()) { return nullptr; } // Note that we expressly do not worry about precision and overflow here -- we use the maximum // precision to calculate the results and hope the result makes sense. The plan is to move the // Skia caps into SkSL, so we have access to all of them including the precisions of the various // types, which will let us be more intelligent about this. if (left.fKind == Expression::kBoolLiteral_Kind && right.fKind == Expression::kBoolLiteral_Kind) { bool leftVal = ((BoolLiteral&) left).fValue; bool rightVal = ((BoolLiteral&) right).fValue; bool result; switch (op) { case Token::LOGICALAND: result = leftVal && rightVal; break; case Token::LOGICALOR: result = leftVal || rightVal; break; case Token::LOGICALXOR: result = leftVal ^ rightVal; break; default: return nullptr; } return std::unique_ptr(new BoolLiteral(fContext, left.fPosition, result)); } #define RESULT(t, op) std::unique_ptr(new t ## Literal(fContext, left.fPosition, \ leftVal op rightVal)) if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) { int64_t leftVal = ((IntLiteral&) left).fValue; int64_t rightVal = ((IntLiteral&) right).fValue; switch (op) { case Token::PLUS: return RESULT(Int, +); case Token::MINUS: return RESULT(Int, -); case Token::STAR: return RESULT(Int, *); case Token::SLASH: if (rightVal) { return RESULT(Int, /); } fErrors.error(right.fPosition, "division by zero"); return nullptr; case Token::PERCENT: if (rightVal) { return RESULT(Int, %); } fErrors.error(right.fPosition, "division by zero"); return nullptr; case Token::BITWISEAND: return RESULT(Int, &); case Token::BITWISEOR: return RESULT(Int, |); case Token::BITWISEXOR: return RESULT(Int, ^); case Token::SHL: return RESULT(Int, <<); case Token::SHR: return RESULT(Int, >>); case Token::EQEQ: return RESULT(Bool, ==); case Token::NEQ: return RESULT(Bool, !=); case Token::GT: return RESULT(Bool, >); case Token::GTEQ: return RESULT(Bool, >=); case Token::LT: return RESULT(Bool, <); case Token::LTEQ: return RESULT(Bool, <=); default: return nullptr; } } if (left.fKind == Expression::kFloatLiteral_Kind && right.fKind == Expression::kFloatLiteral_Kind) { double leftVal = ((FloatLiteral&) left).fValue; double rightVal = ((FloatLiteral&) right).fValue; switch (op) { case Token::PLUS: return RESULT(Float, +); case Token::MINUS: return RESULT(Float, -); case Token::STAR: return RESULT(Float, *); case Token::SLASH: if (rightVal) { return RESULT(Float, /); } fErrors.error(right.fPosition, "division by zero"); return nullptr; case Token::EQEQ: return RESULT(Bool, ==); case Token::NEQ: return RESULT(Bool, !=); case Token::GT: return RESULT(Bool, >); case Token::GTEQ: return RESULT(Bool, >=); case Token::LT: return RESULT(Bool, <); case Token::LTEQ: return RESULT(Bool, <=); default: return nullptr; } } if (left.fType.kind() == Type::kVector_Kind && left.fType.componentType() == *fContext.fFloat_Type && left.fType == right.fType) { ASSERT(left.fKind == Expression::kConstructor_Kind); ASSERT(right.fKind == Expression::kConstructor_Kind); std::vector> args; #define RETURN_VEC_COMPONENTWISE_RESULT(op) \ for (int i = 0; i < left.fType.columns(); i++) { \ float value = ((Constructor&) left).getFVecComponent(i) op \ ((Constructor&) right).getFVecComponent(i); \ args.emplace_back(new FloatLiteral(fContext, Position(), value)); \ } \ return std::unique_ptr(new Constructor(Position(), left.fType, \ std::move(args))); switch (op) { case Token::EQEQ: return std::unique_ptr(new BoolLiteral(fContext, Position(), left.compareConstant(fContext, right))); case Token::NEQ: return std::unique_ptr(new BoolLiteral(fContext, Position(), !left.compareConstant(fContext, right))); case Token::PLUS: RETURN_VEC_COMPONENTWISE_RESULT(+); case Token::MINUS: RETURN_VEC_COMPONENTWISE_RESULT(-); case Token::STAR: RETURN_VEC_COMPONENTWISE_RESULT(*); case Token::SLASH: RETURN_VEC_COMPONENTWISE_RESULT(/); default: return nullptr; } } if (left.fType.kind() == Type::kMatrix_Kind && right.fType.kind() == Type::kMatrix_Kind && left.fKind == right.fKind) { switch (op) { case Token::EQEQ: return std::unique_ptr(new BoolLiteral(fContext, Position(), left.compareConstant(fContext, right))); case Token::NEQ: return std::unique_ptr(new BoolLiteral(fContext, Position(), !left.compareConstant(fContext, right))); default: return nullptr; } } #undef RESULT return nullptr; } std::unique_ptr IRGenerator::convertBinaryExpression( const ASTBinaryExpression& expression) { std::unique_ptr left = this->convertExpression(*expression.fLeft); if (!left) { return nullptr; } std::unique_ptr right = this->convertExpression(*expression.fRight); if (!right) { return nullptr; } const Type* leftType; const Type* rightType; const Type* resultType; if (!determine_binary_type(fContext, expression.fOperator, left->fType, right->fType, &leftType, &rightType, &resultType, !Token::IsAssignment(expression.fOperator))) { fErrors.error(expression.fPosition, "type mismatch: '" + Token::OperatorName(expression.fOperator) + "' cannot operate on '" + left->fType.fName + "', '" + right->fType.fName + "'"); return nullptr; } if (Token::IsAssignment(expression.fOperator)) { this->markWrittenTo(*left, expression.fOperator != Token::EQ); } left = this->coerce(std::move(left), *leftType); right = this->coerce(std::move(right), *rightType); if (!left || !right) { return nullptr; } std::unique_ptr result = this->constantFold(*left.get(), expression.fOperator, *right.get()); if (!result) { result = std::unique_ptr(new BinaryExpression(expression.fPosition, std::move(left), expression.fOperator, std::move(right), *resultType)); } return result; } std::unique_ptr IRGenerator::convertTernaryExpression( const ASTTernaryExpression& expression) { std::unique_ptr test = this->coerce(this->convertExpression(*expression.fTest), *fContext.fBool_Type); if (!test) { return nullptr; } std::unique_ptr ifTrue = this->convertExpression(*expression.fIfTrue); if (!ifTrue) { return nullptr; } std::unique_ptr ifFalse = this->convertExpression(*expression.fIfFalse); if (!ifFalse) { return nullptr; } const Type* trueType; const Type* falseType; const Type* resultType; if (!determine_binary_type(fContext, Token::EQEQ, ifTrue->fType, ifFalse->fType, &trueType, &falseType, &resultType, true) || trueType != falseType) { fErrors.error(expression.fPosition, "ternary operator result mismatch: '" + ifTrue->fType.fName + "', '" + ifFalse->fType.fName + "'"); return nullptr; } ifTrue = this->coerce(std::move(ifTrue), *trueType); if (!ifTrue) { return nullptr; } ifFalse = this->coerce(std::move(ifFalse), *falseType); if (!ifFalse) { return nullptr; } if (test->fKind == Expression::kBoolLiteral_Kind) { // static boolean test, just return one of the branches if (((BoolLiteral&) *test).fValue) { return ifTrue; } else { return ifFalse; } } return std::unique_ptr(new TernaryExpression(expression.fPosition, std::move(test), std::move(ifTrue), std::move(ifFalse))); } // scales the texture coordinates by the texture size for sampling rectangle textures. // For vec2 coordinates, implements the transformation: // texture(sampler, coord) -> texture(sampler, textureSize(sampler) * coord) // For vec3 coordinates, implements the transformation: // texture(sampler, coord) -> texture(sampler, vec3(textureSize(sampler), 1.0) * coord)) void IRGenerator::fixRectSampling(std::vector>& arguments) { ASSERT(arguments.size() == 2); ASSERT(arguments[0]->fType == *fContext.fSampler2DRect_Type); ASSERT(arguments[0]->fKind == Expression::kVariableReference_Kind); const Variable& sampler = ((VariableReference&) *arguments[0]).fVariable; const Symbol* textureSizeSymbol = (*fSymbolTable)["textureSize"]; ASSERT(textureSizeSymbol->fKind == Symbol::kFunctionDeclaration_Kind); const FunctionDeclaration& textureSize = (FunctionDeclaration&) *textureSizeSymbol; std::vector> sizeArguments; sizeArguments.emplace_back(new VariableReference(Position(), sampler)); std::unique_ptr vec2Size = call(Position(), textureSize, std::move(sizeArguments)); const Type& type = arguments[1]->fType; std::unique_ptr scale; if (type == *fContext.fVec2_Type) { scale = std::move(vec2Size); } else { ASSERT(type == *fContext.fVec3_Type); std::vector> vec3Arguments; vec3Arguments.push_back(std::move(vec2Size)); vec3Arguments.emplace_back(new FloatLiteral(fContext, Position(), 1.0)); scale.reset(new Constructor(Position(), *fContext.fVec3_Type, std::move(vec3Arguments))); } arguments[1].reset(new BinaryExpression(Position(), std::move(scale), Token::STAR, std::move(arguments[1]), type)); } std::unique_ptr IRGenerator::call(Position position, const FunctionDeclaration& function, std::vector> arguments) { if (function.fParameters.size() != arguments.size()) { String msg = "call to '" + function.fName + "' expected " + to_string((uint64_t) function.fParameters.size()) + " argument"; if (function.fParameters.size() != 1) { msg += "s"; } msg += ", but found " + to_string((uint64_t) arguments.size()); fErrors.error(position, msg); return nullptr; } std::vector types; const Type* returnType; if (!function.determineFinalTypes(arguments, &types, &returnType)) { String msg = "no match for " + function.fName + "("; String separator; for (size_t i = 0; i < arguments.size(); i++) { msg += separator; separator = ", "; msg += arguments[i]->fType.description(); } msg += ")"; fErrors.error(position, msg); return nullptr; } for (size_t i = 0; i < arguments.size(); i++) { arguments[i] = this->coerce(std::move(arguments[i]), *types[i]); if (!arguments[i]) { return nullptr; } if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) { this->markWrittenTo(*arguments[i], function.fParameters[i]->fModifiers.fFlags & Modifiers::kIn_Flag); } } if (function.fBuiltin && function.fName == "texture" && arguments[0]->fType == *fContext.fSampler2DRect_Type) { this->fixRectSampling(arguments); } return std::unique_ptr(new FunctionCall(position, *returnType, function, std::move(arguments))); } /** * Determines the cost of coercing the arguments of a function to the required types. Returns true * if the cost could be computed, false if the call is not valid. Cost has no particular meaning * other than "lower costs are preferred". */ bool IRGenerator::determineCallCost(const FunctionDeclaration& function, const std::vector>& arguments, int* outCost) { if (function.fParameters.size() != arguments.size()) { return false; } int total = 0; std::vector types; const Type* ignored; if (!function.determineFinalTypes(arguments, &types, &ignored)) { return false; } for (size_t i = 0; i < arguments.size(); i++) { int cost; if (arguments[i]->fType.determineCoercionCost(*types[i], &cost)) { total += cost; } else { return false; } } *outCost = total; return true; } std::unique_ptr IRGenerator::call(Position position, std::unique_ptr functionValue, std::vector> arguments) { if (functionValue->fKind == Expression::kTypeReference_Kind) { return this->convertConstructor(position, ((TypeReference&) *functionValue).fValue, std::move(arguments)); } if (functionValue->fKind != Expression::kFunctionReference_Kind) { fErrors.error(position, "'" + functionValue->description() + "' is not a function"); return nullptr; } FunctionReference* ref = (FunctionReference*) functionValue.get(); int bestCost = INT_MAX; const FunctionDeclaration* best = nullptr; if (ref->fFunctions.size() > 1) { for (const auto& f : ref->fFunctions) { int cost; if (this->determineCallCost(*f, arguments, &cost) && cost < bestCost) { bestCost = cost; best = f; } } if (best) { return this->call(position, *best, std::move(arguments)); } String msg = "no match for " + ref->fFunctions[0]->fName + "("; String separator; for (size_t i = 0; i < arguments.size(); i++) { msg += separator; separator = ", "; msg += arguments[i]->fType.description(); } msg += ")"; fErrors.error(position, msg); return nullptr; } return this->call(position, *ref->fFunctions[0], std::move(arguments)); } std::unique_ptr IRGenerator::convertNumberConstructor( Position position, const Type& type, std::vector> args) { ASSERT(type.isNumber()); if (args.size() != 1) { fErrors.error(position, "invalid arguments to '" + type.description() + "' constructor, (expected exactly 1 argument, but found " + to_string((uint64_t) args.size()) + ")"); return nullptr; } if (type == *fContext.fFloat_Type && args.size() == 1 && args[0]->fKind == Expression::kIntLiteral_Kind) { int64_t value = ((IntLiteral&) *args[0]).fValue; return std::unique_ptr(new FloatLiteral(fContext, position, (double) value)); } if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type || type == *fContext.fUInt_Type)) { return std::unique_ptr(new IntLiteral(fContext, position, ((IntLiteral&) *args[0]).fValue, &type)); } if (args[0]->fType == *fContext.fBool_Type) { std::unique_ptr zero(new IntLiteral(fContext, position, 0)); std::unique_ptr one(new IntLiteral(fContext, position, 1)); return std::unique_ptr( new TernaryExpression(position, std::move(args[0]), this->coerce(std::move(one), type), this->coerce(std::move(zero), type))); } if (!args[0]->fType.isNumber()) { fErrors.error(position, "invalid argument to '" + type.description() + "' constructor (expected a number or bool, but found '" + args[0]->fType.description() + "')"); return nullptr; } return std::unique_ptr(new Constructor(position, std::move(type), std::move(args))); } int component_count(const Type& type) { switch (type.kind()) { case Type::kVector_Kind: return type.columns(); case Type::kMatrix_Kind: return type.columns() * type.rows(); default: return 1; } } std::unique_ptr IRGenerator::convertCompoundConstructor( Position position, const Type& type, std::vector> args) { ASSERT(type.kind() == Type::kVector_Kind || type.kind() == Type::kMatrix_Kind); if (type.kind() == Type::kMatrix_Kind && args.size() == 1 && args[0]->fType.kind() == Type::kMatrix_Kind) { // matrix from matrix is always legal return std::unique_ptr(new Constructor(position, std::move(type), std::move(args))); } int actual = 0; int expected = type.rows() * type.columns(); if (args.size() != 1 || expected != component_count(args[0]->fType) || type.componentType().isNumber() != args[0]->fType.componentType().isNumber()) { for (size_t i = 0; i < args.size(); i++) { if (args[i]->fType.kind() == Type::kVector_Kind) { if (type.componentType().isNumber() != args[i]->fType.componentType().isNumber()) { fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid " "parameter to '" + type.description() + "' constructor"); return nullptr; } actual += args[i]->fType.columns(); } else if (args[i]->fType.kind() == Type::kScalar_Kind) { actual += 1; if (type.kind() != Type::kScalar_Kind) { args[i] = this->coerce(std::move(args[i]), type.componentType()); if (!args[i]) { return nullptr; } } } else { fErrors.error(position, "'" + args[i]->fType.description() + "' is not a valid " "parameter to '" + type.description() + "' constructor"); return nullptr; } } if (actual != 1 && actual != expected) { fErrors.error(position, "invalid arguments to '" + type.description() + "' constructor (expected " + to_string(expected) + " scalars, but found " + to_string(actual) + ")"); return nullptr; } } return std::unique_ptr(new Constructor(position, std::move(type), std::move(args))); } std::unique_ptr IRGenerator::convertConstructor( Position position, const Type& type, std::vector> args) { // FIXME: add support for structs Type::Kind kind = type.kind(); if (args.size() == 1 && args[0]->fType == type) { // argument is already the right type, just return it return std::move(args[0]); } if (type.isNumber()) { return this->convertNumberConstructor(position, type, std::move(args)); } else if (kind == Type::kArray_Kind) { const Type& base = type.componentType(); for (size_t i = 0; i < args.size(); i++) { args[i] = this->coerce(std::move(args[i]), base); if (!args[i]) { return nullptr; } } return std::unique_ptr(new Constructor(position, std::move(type), std::move(args))); } else if (kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) { return this->convertCompoundConstructor(position, type, std::move(args)); } else { fErrors.error(position, "cannot construct '" + type.description() + "'"); return nullptr; } } std::unique_ptr IRGenerator::convertPrefixExpression( const ASTPrefixExpression& expression) { std::unique_ptr base = this->convertExpression(*expression.fOperand); if (!base) { return nullptr; } switch (expression.fOperator) { case Token::PLUS: if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) { fErrors.error(expression.fPosition, "'+' cannot operate on '" + base->fType.description() + "'"); return nullptr; } return base; case Token::MINUS: if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) { fErrors.error(expression.fPosition, "'-' cannot operate on '" + base->fType.description() + "'"); return nullptr; } if (base->fKind == Expression::kIntLiteral_Kind) { return std::unique_ptr(new IntLiteral(fContext, base->fPosition, -((IntLiteral&) *base).fValue)); } if (base->fKind == Expression::kFloatLiteral_Kind) { double value = -((FloatLiteral&) *base).fValue; return std::unique_ptr(new FloatLiteral(fContext, base->fPosition, value)); } return std::unique_ptr(new PrefixExpression(Token::MINUS, std::move(base))); case Token::PLUSPLUS: if (!base->fType.isNumber()) { fErrors.error(expression.fPosition, "'" + Token::OperatorName(expression.fOperator) + "' cannot operate on '" + base->fType.description() + "'"); return nullptr; } this->markWrittenTo(*base, true); break; case Token::MINUSMINUS: if (!base->fType.isNumber()) { fErrors.error(expression.fPosition, "'" + Token::OperatorName(expression.fOperator) + "' cannot operate on '" + base->fType.description() + "'"); return nullptr; } this->markWrittenTo(*base, true); break; case Token::LOGICALNOT: if (base->fType != *fContext.fBool_Type) { fErrors.error(expression.fPosition, "'" + Token::OperatorName(expression.fOperator) + "' cannot operate on '" + base->fType.description() + "'"); return nullptr; } if (base->fKind == Expression::kBoolLiteral_Kind) { return std::unique_ptr(new BoolLiteral(fContext, base->fPosition, !((BoolLiteral&) *base).fValue)); } break; case Token::BITWISENOT: if (base->fType != *fContext.fInt_Type) { fErrors.error(expression.fPosition, "'" + Token::OperatorName(expression.fOperator) + "' cannot operate on '" + base->fType.description() + "'"); return nullptr; } break; default: ABORT("unsupported prefix operator\n"); } return std::unique_ptr(new PrefixExpression(expression.fOperator, std::move(base))); } std::unique_ptr IRGenerator::convertIndex(std::unique_ptr base, const ASTExpression& index) { if (base->fKind == Expression::kTypeReference_Kind) { if (index.fKind == ASTExpression::kInt_Kind) { const Type& oldType = ((TypeReference&) *base).fValue; int64_t size = ((const ASTIntLiteral&) index).fValue; Type* newType = new Type(oldType.name() + "[" + to_string(size) + "]", Type::kArray_Kind, oldType, size); fSymbolTable->takeOwnership(newType); return std::unique_ptr(new TypeReference(fContext, base->fPosition, *newType)); } else { fErrors.error(base->fPosition, "array size must be a constant"); return nullptr; } } if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind && base->fType.kind() != Type::kVector_Kind) { fErrors.error(base->fPosition, "expected array, but found '" + base->fType.description() + "'"); return nullptr; } std::unique_ptr converted = this->convertExpression(index); if (!converted) { return nullptr; } if (converted->fType != *fContext.fUInt_Type) { converted = this->coerce(std::move(converted), *fContext.fInt_Type); if (!converted) { return nullptr; } } return std::unique_ptr(new IndexExpression(fContext, std::move(base), std::move(converted))); } std::unique_ptr IRGenerator::convertField(std::unique_ptr base, const String& field) { auto fields = base->fType.fields(); for (size_t i = 0; i < fields.size(); i++) { if (fields[i].fName == field) { return std::unique_ptr(new FieldAccess(std::move(base), (int) i)); } } fErrors.error(base->fPosition, "type '" + base->fType.description() + "' does not have a " "field named '" + field + ""); return nullptr; } std::unique_ptr IRGenerator::convertSwizzle(std::unique_ptr base, const String& fields) { if (base->fType.kind() != Type::kVector_Kind) { fErrors.error(base->fPosition, "cannot swizzle type '" + base->fType.description() + "'"); return nullptr; } std::vector swizzleComponents; for (size_t i = 0; i < fields.size(); i++) { switch (fields[i]) { case 'x': // fall through case 'r': // fall through case 's': swizzleComponents.push_back(0); break; case 'y': // fall through case 'g': // fall through case 't': if (base->fType.columns() >= 2) { swizzleComponents.push_back(1); break; } // fall through case 'z': // fall through case 'b': // fall through case 'p': if (base->fType.columns() >= 3) { swizzleComponents.push_back(2); break; } // fall through case 'w': // fall through case 'a': // fall through case 'q': if (base->fType.columns() >= 4) { swizzleComponents.push_back(3); break; } // fall through default: fErrors.error(base->fPosition, String::printf("invalid swizzle component '%c'", fields[i])); return nullptr; } } ASSERT(swizzleComponents.size() > 0); if (swizzleComponents.size() > 4) { fErrors.error(base->fPosition, "too many components in swizzle mask '" + fields + "'"); return nullptr; } return std::unique_ptr(new Swizzle(fContext, std::move(base), swizzleComponents)); } std::unique_ptr IRGenerator::getCap(Position position, String name) { auto found = fCapsMap.find(name); if (found == fCapsMap.end()) { fErrors.error(position, "unknown capability flag '" + name + "'"); return nullptr; } switch (found->second.fKind) { case CapValue::kBool_Kind: return std::unique_ptr(new BoolLiteral(fContext, position, (bool) found->second.fValue)); case CapValue::kInt_Kind: return std::unique_ptr(new IntLiteral(fContext, position, found->second.fValue)); } ASSERT(false); return nullptr; } std::unique_ptr IRGenerator::convertSuffixExpression( const ASTSuffixExpression& expression) { std::unique_ptr base = this->convertExpression(*expression.fBase); if (!base) { return nullptr; } switch (expression.fSuffix->fKind) { case ASTSuffix::kIndex_Kind: { const ASTExpression* expr = ((ASTIndexSuffix&) *expression.fSuffix).fExpression.get(); if (expr) { return this->convertIndex(std::move(base), *expr); } else if (base->fKind == Expression::kTypeReference_Kind) { const Type& oldType = ((TypeReference&) *base).fValue; Type* newType = new Type(oldType.name() + "[]", Type::kArray_Kind, oldType, -1); fSymbolTable->takeOwnership(newType); return std::unique_ptr(new TypeReference(fContext, base->fPosition, *newType)); } else { fErrors.error(expression.fPosition, "'[]' must follow a type name"); return nullptr; } } case ASTSuffix::kCall_Kind: { auto rawArguments = &((ASTCallSuffix&) *expression.fSuffix).fArguments; std::vector> arguments; for (size_t i = 0; i < rawArguments->size(); i++) { std::unique_ptr converted = this->convertExpression(*(*rawArguments)[i]); if (!converted) { return nullptr; } arguments.push_back(std::move(converted)); } return this->call(expression.fPosition, std::move(base), std::move(arguments)); } case ASTSuffix::kField_Kind: { if (base->fType == *fContext.fSkCaps_Type) { return this->getCap(expression.fPosition, ((ASTFieldSuffix&) *expression.fSuffix).fField); } switch (base->fType.kind()) { case Type::kVector_Kind: return this->convertSwizzle(std::move(base), ((ASTFieldSuffix&) *expression.fSuffix).fField); case Type::kStruct_Kind: return this->convertField(std::move(base), ((ASTFieldSuffix&) *expression.fSuffix).fField); default: fErrors.error(base->fPosition, "cannot swizzle value of type '" + base->fType.description() + "'"); return nullptr; } } case ASTSuffix::kPostIncrement_Kind: if (!base->fType.isNumber()) { fErrors.error(expression.fPosition, "'++' cannot operate on '" + base->fType.description() + "'"); return nullptr; } this->markWrittenTo(*base, true); return std::unique_ptr(new PostfixExpression(std::move(base), Token::PLUSPLUS)); case ASTSuffix::kPostDecrement_Kind: if (!base->fType.isNumber()) { fErrors.error(expression.fPosition, "'--' cannot operate on '" + base->fType.description() + "'"); return nullptr; } this->markWrittenTo(*base, true); return std::unique_ptr(new PostfixExpression(std::move(base), Token::MINUSMINUS)); default: ABORT("unsupported suffix operator"); } } void IRGenerator::checkValid(const Expression& expr) { switch (expr.fKind) { case Expression::kFunctionReference_Kind: fErrors.error(expr.fPosition, "expected '(' to begin function call"); break; case Expression::kTypeReference_Kind: fErrors.error(expr.fPosition, "expected '(' to begin constructor invocation"); break; default: if (expr.fType == *fContext.fInvalid_Type) { fErrors.error(expr.fPosition, "invalid expression"); } } } static bool has_duplicates(const Swizzle& swizzle) { int bits = 0; for (int idx : swizzle.fComponents) { ASSERT(idx >= 0 && idx <= 3); int bit = 1 << idx; if (bits & bit) { return true; } bits |= bit; } return false; } void IRGenerator::markWrittenTo(const Expression& expr, bool readWrite) { switch (expr.fKind) { case Expression::kVariableReference_Kind: { const Variable& var = ((VariableReference&) expr).fVariable; if (var.fModifiers.fFlags & (Modifiers::kConst_Flag | Modifiers::kUniform_Flag)) { fErrors.error(expr.fPosition, "cannot modify immutable variable '" + var.fName + "'"); } ((VariableReference&) expr).setRefKind(readWrite ? VariableReference::kReadWrite_RefKind : VariableReference::kWrite_RefKind); break; } case Expression::kFieldAccess_Kind: this->markWrittenTo(*((FieldAccess&) expr).fBase, readWrite); break; case Expression::kSwizzle_Kind: if (has_duplicates((Swizzle&) expr)) { fErrors.error(expr.fPosition, "cannot write to the same swizzle field more than once"); } this->markWrittenTo(*((Swizzle&) expr).fBase, readWrite); break; case Expression::kIndex_Kind: this->markWrittenTo(*((IndexExpression&) expr).fBase, readWrite); break; default: fErrors.error(expr.fPosition, "cannot assign to '" + expr.description() + "'"); break; } } }