/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkSLGLSLCodeGenerator.h" #include "string.h" #include "GLSL.std.450.h" #include "ir/SkSLExpressionStatement.h" #include "ir/SkSLExtension.h" #include "ir/SkSLIndexExpression.h" #include "ir/SkSLModifiersDeclaration.h" #include "ir/SkSLVariableReference.h" #define SK_FRAGCOLOR_BUILTIN 10001 namespace SkSL { void GLSLCodeGenerator::write(const char* s) { if (s[0] == 0) { return; } if (fAtLineStart) { for (int i = 0; i < fIndentation; i++) { fOut->writeText(" "); } } fOut->writeText(s); fAtLineStart = false; } void GLSLCodeGenerator::writeLine(const char* s) { this->write(s); fOut->writeText("\n"); fAtLineStart = true; } void GLSLCodeGenerator::write(const SkString& s) { this->write(s.c_str()); } void GLSLCodeGenerator::writeLine(const SkString& s) { this->writeLine(s.c_str()); } void GLSLCodeGenerator::writeLine() { this->writeLine(""); } void GLSLCodeGenerator::writeExtension(const Extension& ext) { this->writeLine("#extension " + ext.fName + " : enable"); } void GLSLCodeGenerator::writeType(const Type& type) { if (type.kind() == Type::kStruct_Kind) { for (const Type* search : fWrittenStructs) { if (*search == type) { // already written this->write(type.name()); return; } } fWrittenStructs.push_back(&type); this->writeLine("struct " + type.name() + " {"); fIndentation++; for (const auto& f : type.fields()) { this->writeModifiers(f.fModifiers, false); // sizes (which must be static in structs) are part of the type name here this->writeType(*f.fType); this->writeLine(" " + f.fName + ";"); } fIndentation--; this->writeLine("}"); } else { this->write(type.name()); } } void GLSLCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) { switch (expr.fKind) { case Expression::kBinary_Kind: this->writeBinaryExpression((BinaryExpression&) expr, parentPrecedence); break; case Expression::kBoolLiteral_Kind: this->writeBoolLiteral((BoolLiteral&) expr); break; case Expression::kConstructor_Kind: this->writeConstructor((Constructor&) expr); break; case Expression::kIntLiteral_Kind: this->writeIntLiteral((IntLiteral&) expr); break; case Expression::kFieldAccess_Kind: this->writeFieldAccess(((FieldAccess&) expr)); break; case Expression::kFloatLiteral_Kind: this->writeFloatLiteral(((FloatLiteral&) expr)); break; case Expression::kFunctionCall_Kind: this->writeFunctionCall((FunctionCall&) expr); break; case Expression::kPrefix_Kind: this->writePrefixExpression((PrefixExpression&) expr, parentPrecedence); break; case Expression::kPostfix_Kind: this->writePostfixExpression((PostfixExpression&) expr, parentPrecedence); break; case Expression::kSwizzle_Kind: this->writeSwizzle((Swizzle&) expr); break; case Expression::kVariableReference_Kind: this->writeVariableReference((VariableReference&) expr); break; case Expression::kTernary_Kind: this->writeTernaryExpression((TernaryExpression&) expr, parentPrecedence); break; case Expression::kIndex_Kind: this->writeIndexExpression((IndexExpression&) expr); break; default: ABORT("unsupported expression: %s", expr.description().c_str()); } } static bool is_abs(Expression& expr) { if (expr.fKind != Expression::kFunctionCall_Kind) { return false; } return ((FunctionCall&) expr).fFunction.fName == "abs"; } // turns min(abs(x), y) into ((tmpVar1 = abs(x)) < (tmpVar2 = y) ? tmpVar1 : tmpVar2) to avoid a // Tegra3 compiler bug. void GLSLCodeGenerator::writeMinAbsHack(Expression& absExpr, Expression& otherExpr) { ASSERT(!fCaps.canUseMinAndAbsTogether()); SkString tmpVar1 = "minAbsHackVar" + to_string(fVarCount++); SkString tmpVar2 = "minAbsHackVar" + to_string(fVarCount++); this->fFunctionHeader += " " + absExpr.fType.name() + " " + tmpVar1 + ";\n"; this->fFunctionHeader += " " + otherExpr.fType.name() + " " + tmpVar2 + ";\n"; this->write("((" + tmpVar1 + " = "); this->writeExpression(absExpr, kTopLevel_Precedence); this->write(") < (" + tmpVar2 + " = "); this->writeExpression(otherExpr, kAssignment_Precedence); this->write(") ? " + tmpVar1 + " : " + tmpVar2 + ")"); } void GLSLCodeGenerator::writeFunctionCall(const FunctionCall& c) { if (!fCaps.canUseMinAndAbsTogether() && c.fFunction.fName == "min" && c.fFunction.fBuiltin) { ASSERT(c.fArguments.size() == 2); if (is_abs(*c.fArguments[0])) { this->writeMinAbsHack(*c.fArguments[0], *c.fArguments[1]); return; } if (is_abs(*c.fArguments[1])) { // note that this violates the GLSL left-to-right evaluation semantics. I doubt it will // ever end up mattering, but it's worth calling out. this->writeMinAbsHack(*c.fArguments[1], *c.fArguments[0]); return; } } if (fCaps.mustForceNegatedAtanParamToFloat() && c.fFunction.fName == "atan" && c.fFunction.fBuiltin && c.fArguments.size() == 2 && c.fArguments[1]->fKind == Expression::kPrefix_Kind) { const PrefixExpression& p = (PrefixExpression&) *c.fArguments[1]; if (p.fOperator == Token::MINUS) { this->write("atan("); this->writeExpression(*c.fArguments[0], kSequence_Precedence); this->write(", -1.0 * "); this->writeExpression(*p.fOperand, kMultiplicative_Precedence); this->write(")"); return; } } if (!fFoundDerivatives && (c.fFunction.fName == "dFdx" || c.fFunction.fName == "dFdy") && c.fFunction.fBuiltin && fCaps.shaderDerivativeExtensionString()) { ASSERT(fCaps.shaderDerivativeSupport()); fHeader.writeText("#extension "); fHeader.writeText(fCaps.shaderDerivativeExtensionString()); fHeader.writeText(" : require\n"); fFoundDerivatives = true; } if (c.fFunction.fName == "texture" && c.fFunction.fBuiltin) { const char* dim = ""; bool proj = false; switch (c.fArguments[0]->fType.dimensions()) { case SpvDim1D: dim = "1D"; if (c.fArguments[1]->fType == *fContext.fFloat_Type) { proj = false; } else { ASSERT(c.fArguments[1]->fType == *fContext.fVec2_Type); proj = true; } break; case SpvDim2D: dim = "2D"; if (c.fArguments[1]->fType == *fContext.fVec2_Type) { proj = false; } else { ASSERT(c.fArguments[1]->fType == *fContext.fVec3_Type); proj = true; } break; case SpvDim3D: dim = "3D"; if (c.fArguments[1]->fType == *fContext.fVec3_Type) { proj = false; } else { ASSERT(c.fArguments[1]->fType == *fContext.fVec4_Type); proj = true; } break; case SpvDimCube: dim = "Cube"; proj = false; break; case SpvDimRect: dim = "Rect"; proj = false; break; case SpvDimBuffer: ASSERT(false); // doesn't exist dim = "Buffer"; proj = false; break; case SpvDimSubpassData: ASSERT(false); // doesn't exist dim = "SubpassData"; proj = false; break; } this->write("texture"); if (fCaps.generation() < k130_GrGLSLGeneration) { this->write(dim); } if (proj) { this->write("Proj"); } } else { this->write(c.fFunction.fName); } this->write("("); const char* separator = ""; for (const auto& arg : c.fArguments) { this->write(separator); separator = ", "; this->writeExpression(*arg, kSequence_Precedence); } this->write(")"); } void GLSLCodeGenerator::writeConstructor(const Constructor& c) { this->write(c.fType.name() + "("); const char* separator = ""; for (const auto& arg : c.fArguments) { this->write(separator); separator = ", "; this->writeExpression(*arg, kSequence_Precedence); } this->write(")"); } void GLSLCodeGenerator::writeVariableReference(const VariableReference& ref) { if (ref.fVariable.fModifiers.fLayout.fBuiltin == SK_FRAGCOLOR_BUILTIN) { if (fCaps.mustDeclareFragmentShaderOutput()) { this->write("sk_FragColor"); } else { this->write("gl_FragColor"); } } else { this->write(ref.fVariable.fName); } } void GLSLCodeGenerator::writeIndexExpression(const IndexExpression& expr) { this->writeExpression(*expr.fBase, kPostfix_Precedence); this->write("["); this->writeExpression(*expr.fIndex, kTopLevel_Precedence); this->write("]"); } void GLSLCodeGenerator::writeFieldAccess(const FieldAccess& f) { if (f.fOwnerKind == FieldAccess::kDefault_OwnerKind) { this->writeExpression(*f.fBase, kPostfix_Precedence); this->write("."); } this->write(f.fBase->fType.fields()[f.fFieldIndex].fName); } void GLSLCodeGenerator::writeSwizzle(const Swizzle& swizzle) { this->writeExpression(*swizzle.fBase, kPostfix_Precedence); this->write("."); for (int c : swizzle.fComponents) { this->write(&("x\0y\0z\0w\0"[c * 2])); } } static GLSLCodeGenerator::Precedence get_binary_precedence(Token::Kind op) { switch (op) { case Token::STAR: // fall through case Token::SLASH: // fall through case Token::PERCENT: return GLSLCodeGenerator::kMultiplicative_Precedence; case Token::PLUS: // fall through case Token::MINUS: return GLSLCodeGenerator::kAdditive_Precedence; case Token::SHL: // fall through case Token::SHR: return GLSLCodeGenerator::kShift_Precedence; case Token::LT: // fall through case Token::GT: // fall through case Token::LTEQ: // fall through case Token::GTEQ: return GLSLCodeGenerator::kRelational_Precedence; case Token::EQEQ: // fall through case Token::NEQ: return GLSLCodeGenerator::kEquality_Precedence; case Token::BITWISEAND: return GLSLCodeGenerator::kBitwiseAnd_Precedence; case Token::BITWISEXOR: return GLSLCodeGenerator::kBitwiseXor_Precedence; case Token::BITWISEOR: return GLSLCodeGenerator::kBitwiseOr_Precedence; case Token::LOGICALAND: return GLSLCodeGenerator::kLogicalAnd_Precedence; case Token::LOGICALXOR: return GLSLCodeGenerator::kLogicalXor_Precedence; case Token::LOGICALOR: return GLSLCodeGenerator::kLogicalOr_Precedence; case Token::EQ: // fall through case Token::PLUSEQ: // fall through case Token::MINUSEQ: // fall through case Token::STAREQ: // fall through case Token::SLASHEQ: // fall through case Token::PERCENTEQ: // fall through case Token::SHLEQ: // fall through case Token::SHREQ: // fall through case Token::LOGICALANDEQ: // fall through case Token::LOGICALXOREQ: // fall through case Token::LOGICALOREQ: // fall through case Token::BITWISEANDEQ: // fall through case Token::BITWISEXOREQ: // fall through case Token::BITWISEOREQ: return GLSLCodeGenerator::kAssignment_Precedence; default: ABORT("unsupported binary operator"); } } void GLSLCodeGenerator::writeBinaryExpression(const BinaryExpression& b, Precedence parentPrecedence) { Precedence precedence = get_binary_precedence(b.fOperator); if (precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*b.fLeft, precedence); this->write(" " + Token::OperatorName(b.fOperator) + " "); this->writeExpression(*b.fRight, precedence); if (precedence >= parentPrecedence) { this->write(")"); } } void GLSLCodeGenerator::writeTernaryExpression(const TernaryExpression& t, Precedence parentPrecedence) { if (kTernary_Precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*t.fTest, kTernary_Precedence); this->write(" ? "); this->writeExpression(*t.fIfTrue, kTernary_Precedence); this->write(" : "); this->writeExpression(*t.fIfFalse, kTernary_Precedence); if (kTernary_Precedence >= parentPrecedence) { this->write(")"); } } void GLSLCodeGenerator::writePrefixExpression(const PrefixExpression& p, Precedence parentPrecedence) { if (kPrefix_Precedence >= parentPrecedence) { this->write("("); } this->write(Token::OperatorName(p.fOperator)); this->writeExpression(*p.fOperand, kPrefix_Precedence); if (kPrefix_Precedence >= parentPrecedence) { this->write(")"); } } void GLSLCodeGenerator::writePostfixExpression(const PostfixExpression& p, Precedence parentPrecedence) { if (kPostfix_Precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*p.fOperand, kPostfix_Precedence); this->write(Token::OperatorName(p.fOperator)); if (kPostfix_Precedence >= parentPrecedence) { this->write(")"); } } void GLSLCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { this->write(b.fValue ? "true" : "false"); } void GLSLCodeGenerator::writeIntLiteral(const IntLiteral& i) { if (i.fType == *fContext.fUInt_Type) { this->write(to_string(i.fValue & 0xffffffff) + "u"); } else { this->write(to_string((int32_t) i.fValue)); } } void GLSLCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { this->write(to_string(f.fValue)); } void GLSLCodeGenerator::writeFunction(const FunctionDefinition& f) { this->writeType(f.fDeclaration.fReturnType); this->write(" " + f.fDeclaration.fName + "("); const char* separator = ""; for (const auto& param : f.fDeclaration.fParameters) { this->write(separator); separator = ", "; this->writeModifiers(param->fModifiers, false); std::vector sizes; const Type* type = ¶m->fType; while (type->kind() == Type::kArray_Kind) { sizes.push_back(type->columns()); type = &type->componentType(); } this->writeType(*type); this->write(" " + param->fName); for (int s : sizes) { if (s <= 0) { this->write("[]"); } else { this->write("[" + to_string(s) + "]"); } } } this->writeLine(") {"); fFunctionHeader = ""; SkWStream* oldOut = fOut; SkDynamicMemoryWStream buffer; fOut = &buffer; fIndentation++; for (const auto& s : f.fBody->fStatements) { this->writeStatement(*s); this->writeLine(); } fIndentation--; this->writeLine("}"); fOut = oldOut; this->write(fFunctionHeader); sk_sp data(buffer.detachAsData()); this->write(SkString((const char*) data->data(), data->size())); } void GLSLCodeGenerator::writeModifiers(const Modifiers& modifiers, bool globalContext) { if (modifiers.fFlags & Modifiers::kNoPerspective_Flag) { this->write("noperspective "); } if (modifiers.fFlags & Modifiers::kFlat_Flag) { this->write("flat "); } SkString layout = modifiers.fLayout.description(); if (layout.size()) { this->write(layout + " "); } if ((modifiers.fFlags & Modifiers::kIn_Flag) && (modifiers.fFlags & Modifiers::kOut_Flag)) { this->write("inout "); } else if (modifiers.fFlags & Modifiers::kIn_Flag) { if (globalContext && fCaps.generation() < GrGLSLGeneration::k130_GrGLSLGeneration) { this->write(fProgramKind == Program::kVertex_Kind ? "attribute " : "varying "); } else { this->write("in "); } } else if (modifiers.fFlags & Modifiers::kOut_Flag) { if (globalContext && fCaps.generation() < GrGLSLGeneration::k130_GrGLSLGeneration) { this->write("varying "); } else { this->write("out "); } } if (modifiers.fFlags & Modifiers::kUniform_Flag) { this->write("uniform "); } if (modifiers.fFlags & Modifiers::kConst_Flag) { this->write("const "); } if (fCaps.usesPrecisionModifiers()) { if (modifiers.fFlags & Modifiers::kLowp_Flag) { this->write("lowp "); } if (modifiers.fFlags & Modifiers::kMediump_Flag) { this->write("mediump "); } if (modifiers.fFlags & Modifiers::kHighp_Flag) { this->write("highp "); } } } void GLSLCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) { if (intf.fVariable.fName == "gl_PerVertex") { return; } this->writeModifiers(intf.fVariable.fModifiers, true); this->writeLine(intf.fVariable.fType.name() + " {"); fIndentation++; for (const auto& f : intf.fVariable.fType.fields()) { this->writeModifiers(f.fModifiers, false); this->writeType(*f.fType); this->writeLine(" " + f.fName + ";"); } fIndentation--; this->writeLine("};"); } void GLSLCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, bool global) { ASSERT(decl.fVars.size() > 0); this->writeModifiers(decl.fVars[0].fVar->fModifiers, global); this->writeType(decl.fBaseType); SkString separator(" "); for (const auto& var : decl.fVars) { ASSERT(var.fVar->fModifiers == decl.fVars[0].fVar->fModifiers); this->write(separator); separator = SkString(", "); this->write(var.fVar->fName); for (const auto& size : var.fSizes) { this->write("["); if (size) { this->writeExpression(*size, kTopLevel_Precedence); } this->write("]"); } if (var.fValue) { this->write(" = "); this->writeExpression(*var.fValue, kTopLevel_Precedence); } if (!fFoundImageDecl && var.fVar->fType == *fContext.fImage2D_Type) { if (fCaps.imageLoadStoreExtensionString()) { fHeader.writeText("#extension "); fHeader.writeText(fCaps.imageLoadStoreExtensionString()); fHeader.writeText(" : require\n"); } fFoundImageDecl = true; } } this->write(";"); } void GLSLCodeGenerator::writeStatement(const Statement& s) { switch (s.fKind) { case Statement::kBlock_Kind: this->writeBlock((Block&) s); break; case Statement::kExpression_Kind: this->writeExpression(*((ExpressionStatement&) s).fExpression, kTopLevel_Precedence); this->write(";"); break; case Statement::kReturn_Kind: this->writeReturnStatement((ReturnStatement&) s); break; case Statement::kVarDeclarations_Kind: this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration, false); break; case Statement::kIf_Kind: this->writeIfStatement((IfStatement&) s); break; case Statement::kFor_Kind: this->writeForStatement((ForStatement&) s); break; case Statement::kWhile_Kind: this->writeWhileStatement((WhileStatement&) s); break; case Statement::kDo_Kind: this->writeDoStatement((DoStatement&) s); break; case Statement::kBreak_Kind: this->write("break;"); break; case Statement::kContinue_Kind: this->write("continue;"); break; case Statement::kDiscard_Kind: this->write("discard;"); break; default: ABORT("unsupported statement: %s", s.description().c_str()); } } void GLSLCodeGenerator::writeBlock(const Block& b) { this->writeLine("{"); fIndentation++; for (const auto& s : b.fStatements) { this->writeStatement(*s); this->writeLine(); } fIndentation--; this->write("}"); } void GLSLCodeGenerator::writeIfStatement(const IfStatement& stmt) { this->write("if ("); this->writeExpression(*stmt.fTest, kTopLevel_Precedence); this->write(") "); this->writeStatement(*stmt.fIfTrue); if (stmt.fIfFalse) { this->write(" else "); this->writeStatement(*stmt.fIfFalse); } } void GLSLCodeGenerator::writeForStatement(const ForStatement& f) { this->write("for ("); if (f.fInitializer) { this->writeStatement(*f.fInitializer); } else { this->write("; "); } if (f.fTest) { this->writeExpression(*f.fTest, kTopLevel_Precedence); } this->write("; "); if (f.fNext) { this->writeExpression(*f.fNext, kTopLevel_Precedence); } this->write(") "); this->writeStatement(*f.fStatement); } void GLSLCodeGenerator::writeWhileStatement(const WhileStatement& w) { this->write("while ("); this->writeExpression(*w.fTest, kTopLevel_Precedence); this->write(") "); this->writeStatement(*w.fStatement); } void GLSLCodeGenerator::writeDoStatement(const DoStatement& d) { this->write("do "); this->writeStatement(*d.fStatement); this->write(" while ("); this->writeExpression(*d.fTest, kTopLevel_Precedence); this->write(");"); } void GLSLCodeGenerator::writeReturnStatement(const ReturnStatement& r) { this->write("return"); if (r.fExpression) { this->write(" "); this->writeExpression(*r.fExpression, kTopLevel_Precedence); } this->write(";"); } void GLSLCodeGenerator::generateCode(const Program& program, SkWStream& out) { ASSERT(fOut == nullptr); fOut = &fHeader; fProgramKind = program.fKind; this->write(fCaps.versionDeclString()); this->writeLine(); for (const auto& e : program.fElements) { if (e->fKind == ProgramElement::kExtension_Kind) { this->writeExtension((Extension&) *e); } } SkDynamicMemoryWStream body; fOut = &body; if (fCaps.usesPrecisionModifiers()) { this->write("precision "); switch (program.fDefaultPrecision) { case Modifiers::kLowp_Flag: this->write("lowp"); break; case Modifiers::kMediump_Flag: this->write("mediump"); break; case Modifiers::kHighp_Flag: this->write("highp"); break; default: ASSERT(false); this->write(""); } this->writeLine(" float;"); } for (const auto& e : program.fElements) { switch (e->fKind) { case ProgramElement::kExtension_Kind: break; case ProgramElement::kVar_Kind: { VarDeclarations& decl = (VarDeclarations&) *e; if (decl.fVars.size() > 0) { int builtin = decl.fVars[0].fVar->fModifiers.fLayout.fBuiltin; if (builtin == -1) { // normal var this->writeVarDeclarations(decl, true); this->writeLine(); } else if (builtin == SK_FRAGCOLOR_BUILTIN && fCaps.mustDeclareFragmentShaderOutput()) { this->write("out "); if (fCaps.usesPrecisionModifiers()) { this->write("mediump "); } this->writeLine("vec4 sk_FragColor;"); } } break; } case ProgramElement::kInterfaceBlock_Kind: this->writeInterfaceBlock((InterfaceBlock&) *e); break; case ProgramElement::kFunction_Kind: this->writeFunction((FunctionDefinition&) *e); break; case ProgramElement::kModifiers_Kind: this->writeModifiers(((ModifiersDeclaration&) *e).fModifiers, true); this->writeLine(";"); break; default: printf("%s\n", e->description().c_str()); ABORT("unsupported program element"); } } fOut = nullptr; write_data(*fHeader.detachAsData(), out); write_data(*body.detachAsData(), out); } }