/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkSLGLSLCodeGenerator.h" #include "SkSLCompiler.h" #include "ir/SkSLExpressionStatement.h" #include "ir/SkSLExtension.h" #include "ir/SkSLIndexExpression.h" #include "ir/SkSLModifiersDeclaration.h" #include "ir/SkSLNop.h" #include "ir/SkSLVariableReference.h" namespace SkSL { void GLSLCodeGenerator::write(const char* s) { if (s[0] == 0) { return; } if (fAtLineStart) { for (int i = 0; i < fIndentation; i++) { fOut->writeText(" "); } } fOut->writeText(s); fAtLineStart = false; } void GLSLCodeGenerator::writeLine(const char* s) { this->write(s); fOut->writeText(fLineEnding); fAtLineStart = true; } void GLSLCodeGenerator::write(const String& s) { this->write(s.c_str()); } void GLSLCodeGenerator::write(StringFragment s) { if (!s.fLength) { return; } if (fAtLineStart) { for (int i = 0; i < fIndentation; i++) { fOut->writeText(" "); } } fOut->write(s.fChars, s.fLength); fAtLineStart = false; } void GLSLCodeGenerator::writeLine(const String& s) { this->writeLine(s.c_str()); } void GLSLCodeGenerator::writeLine() { this->writeLine(""); } void GLSLCodeGenerator::writeExtension(const String& name) { this->writeExtension(name, true); } void GLSLCodeGenerator::writeExtension(const String& name, bool require) { fExtensions.writeText("#extension "); fExtensions.write(name.c_str(), name.length()); fExtensions.writeText(require ? " : require\n" : " : enable\n"); } bool GLSLCodeGenerator::usesPrecisionModifiers() const { return fProgram.fSettings.fCaps->usesPrecisionModifiers(); } String GLSLCodeGenerator::getTypeName(const Type& type) { switch (type.kind()) { case Type::kVector_Kind: { Type component = type.componentType(); String result; if (component == *fContext.fFloat_Type || component == *fContext.fHalf_Type) { result = "vec"; } else if (component == *fContext.fDouble_Type) { result = "dvec"; } else if (component == *fContext.fInt_Type || component == *fContext.fShort_Type || component == *fContext.fByte_Type) { result = "ivec"; } else if (component == *fContext.fUInt_Type || component == *fContext.fUShort_Type || component == *fContext.fUByte_Type) { result = "uvec"; } else if (component == *fContext.fBool_Type) { result = "bvec"; } else { ABORT("unsupported vector type"); } result += to_string(type.columns()); return result; } case Type::kMatrix_Kind: { String result; Type component = type.componentType(); if (component == *fContext.fFloat_Type || component == *fContext.fHalf_Type) { result = "mat"; } else if (component == *fContext.fDouble_Type) { result = "dmat"; } else { ABORT("unsupported matrix type"); } result += to_string(type.columns()); if (type.columns() != type.rows()) { result += "x"; result += to_string(type.rows()); } return result; } case Type::kArray_Kind: { String result = this->getTypeName(type.componentType()) + "["; if (type.columns() != -1) { result += to_string(type.columns()); } result += "]"; return result; } case Type::kScalar_Kind: { if (type == *fContext.fHalf_Type) { return "float"; } else if (type == *fContext.fShort_Type) { return "int"; } else if (type == *fContext.fUShort_Type) { return "uint"; } else if (type == *fContext.fByte_Type) { return "int"; } else if (type == *fContext.fUByte_Type) { return "uint"; } else { return type.name(); } break; } default: return type.name(); } } void GLSLCodeGenerator::writeType(const Type& type) { if (type.kind() == Type::kStruct_Kind) { for (const Type* search : fWrittenStructs) { if (*search == type) { // already written this->write(type.fName); return; } } fWrittenStructs.push_back(&type); this->write("struct "); this->write(type.fName); this->writeLine(" {"); fIndentation++; for (const auto& f : type.fields()) { this->writeModifiers(f.fModifiers, false); this->writeTypePrecision(*f.fType); // sizes (which must be static in structs) are part of the type name here this->writeType(*f.fType); this->write(" "); this->write(f.fName); this->writeLine(";"); } fIndentation--; this->write("}"); } else { this->write(this->getTypeName(type)); } } void GLSLCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) { switch (expr.fKind) { case Expression::kBinary_Kind: this->writeBinaryExpression((BinaryExpression&) expr, parentPrecedence); break; case Expression::kBoolLiteral_Kind: this->writeBoolLiteral((BoolLiteral&) expr); break; case Expression::kConstructor_Kind: this->writeConstructor((Constructor&) expr, parentPrecedence); break; case Expression::kIntLiteral_Kind: this->writeIntLiteral((IntLiteral&) expr); break; case Expression::kFieldAccess_Kind: this->writeFieldAccess(((FieldAccess&) expr)); break; case Expression::kFloatLiteral_Kind: this->writeFloatLiteral(((FloatLiteral&) expr)); break; case Expression::kFunctionCall_Kind: this->writeFunctionCall((FunctionCall&) expr); break; case Expression::kPrefix_Kind: this->writePrefixExpression((PrefixExpression&) expr, parentPrecedence); break; case Expression::kPostfix_Kind: this->writePostfixExpression((PostfixExpression&) expr, parentPrecedence); break; case Expression::kSetting_Kind: this->writeSetting((Setting&) expr); break; case Expression::kSwizzle_Kind: this->writeSwizzle((Swizzle&) expr); break; case Expression::kVariableReference_Kind: this->writeVariableReference((VariableReference&) expr); break; case Expression::kTernary_Kind: this->writeTernaryExpression((TernaryExpression&) expr, parentPrecedence); break; case Expression::kIndex_Kind: this->writeIndexExpression((IndexExpression&) expr); break; default: ABORT("unsupported expression: %s", expr.description().c_str()); } } static bool is_abs(Expression& expr) { if (expr.fKind != Expression::kFunctionCall_Kind) { return false; } return ((FunctionCall&) expr).fFunction.fName == "abs"; } // turns min(abs(x), y) into ((tmpVar1 = abs(x)) < (tmpVar2 = y) ? tmpVar1 : tmpVar2) to avoid a // Tegra3 compiler bug. void GLSLCodeGenerator::writeMinAbsHack(Expression& absExpr, Expression& otherExpr) { SkASSERT(!fProgram.fSettings.fCaps->canUseMinAndAbsTogether()); String tmpVar1 = "minAbsHackVar" + to_string(fVarCount++); String tmpVar2 = "minAbsHackVar" + to_string(fVarCount++); this->fFunctionHeader += String(" ") + this->getTypePrecision(absExpr.fType) + this->getTypeName(absExpr.fType) + " " + tmpVar1 + ";\n"; this->fFunctionHeader += String(" ") + this->getTypePrecision(otherExpr.fType) + this->getTypeName(otherExpr.fType) + " " + tmpVar2 + ";\n"; this->write("((" + tmpVar1 + " = "); this->writeExpression(absExpr, kTopLevel_Precedence); this->write(") < (" + tmpVar2 + " = "); this->writeExpression(otherExpr, kAssignment_Precedence); this->write(") ? " + tmpVar1 + " : " + tmpVar2 + ")"); } void GLSLCodeGenerator::writeInverseSqrtHack(const Expression& x) { this->write("(1.0 / sqrt("); this->writeExpression(x, kTopLevel_Precedence); this->write("))"); } void GLSLCodeGenerator::writeDeterminantHack(const Expression& mat) { String name; if (mat.fType == *fContext.fFloat2x2_Type || mat.fType == *fContext.fHalf2x2_Type) { name = "_determinant2"; if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( "float " + name + "(mat2 m) {" " return m[0][0] * m[1][1] - m[0][1] * m[1][0];" "}" ).c_str()); } } else if (mat.fType == *fContext.fFloat3x3_Type || mat.fType == *fContext.fHalf3x3_Type) { name = "_determinant3"; if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( "float " + name + "(mat3 m) {" " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];" " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];" " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];" " float b01 = a22 * a11 - a12 * a21;" " float b11 = -a22 * a10 + a12 * a20;" " float b21 = a21 * a10 - a11 * a20;" " return a00 * b01 + a01 * b11 + a02 * b21;" "}" ).c_str()); } } else if (mat.fType == *fContext.fFloat4x4_Type || mat.fType == *fContext.fHalf4x4_Type) { name = "_determinant3"; if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( "mat4 " + name + "(mat4 m) {" " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];" " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];" " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];" " float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];" " float b00 = a00 * a11 - a01 * a10;" " float b01 = a00 * a12 - a02 * a10;" " float b02 = a00 * a13 - a03 * a10;" " float b03 = a01 * a12 - a02 * a11;" " float b04 = a01 * a13 - a03 * a11;" " float b05 = a02 * a13 - a03 * a12;" " float b06 = a20 * a31 - a21 * a30;" " float b07 = a20 * a32 - a22 * a30;" " float b08 = a20 * a33 - a23 * a30;" " float b09 = a21 * a32 - a22 * a31;" " float b10 = a21 * a33 - a23 * a31;" " float b11 = a22 * a33 - a23 * a32;" " return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;" "}" ).c_str()); } } else { SkASSERT(false); } this->write(name + "("); this->writeExpression(mat, kTopLevel_Precedence); this->write(")"); } void GLSLCodeGenerator::writeInverseHack(const Expression& mat) { String name; if (mat.fType == *fContext.fFloat2x2_Type || mat.fType == *fContext.fHalf2x2_Type) { name = "_inverse2"; if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( "mat2 " + name + "(mat2 m) {" " return mat2(m[1][1], -m[0][1], -m[1][0], m[0][0]) / " "(m[0][0] * m[1][1] - m[0][1] * m[1][0]);" "}" ).c_str()); } } else if (mat.fType == *fContext.fFloat3x3_Type || mat.fType == *fContext.fHalf3x3_Type) { name = "_inverse3"; if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( "mat3 " + name + "(mat3 m) {" " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];" " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];" " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];" " float b01 = a22 * a11 - a12 * a21;" " float b11 = -a22 * a10 + a12 * a20;" " float b21 = a21 * a10 - a11 * a20;" " float det = a00 * b01 + a01 * b11 + a02 * b21;" " return mat3(b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11)," " b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10)," " b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) / det;" "}" ).c_str()); } } else if (mat.fType == *fContext.fFloat4x4_Type || mat.fType == *fContext.fHalf4x4_Type) { name = "_inverse4"; if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); fExtraFunctions.writeText(( "mat4 " + name + "(mat4 m) {" " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];" " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];" " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];" " float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];" " float b00 = a00 * a11 - a01 * a10;" " float b01 = a00 * a12 - a02 * a10;" " float b02 = a00 * a13 - a03 * a10;" " float b03 = a01 * a12 - a02 * a11;" " float b04 = a01 * a13 - a03 * a11;" " float b05 = a02 * a13 - a03 * a12;" " float b06 = a20 * a31 - a21 * a30;" " float b07 = a20 * a32 - a22 * a30;" " float b08 = a20 * a33 - a23 * a30;" " float b09 = a21 * a32 - a22 * a31;" " float b10 = a21 * a33 - a23 * a31;" " float b11 = a22 * a33 - a23 * a32;" " float det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - " " b04 * b07 + b05 * b06;" " return mat4(" " a11 * b11 - a12 * b10 + a13 * b09," " a02 * b10 - a01 * b11 - a03 * b09," " a31 * b05 - a32 * b04 + a33 * b03," " a22 * b04 - a21 * b05 - a23 * b03," " a12 * b08 - a10 * b11 - a13 * b07," " a00 * b11 - a02 * b08 + a03 * b07," " a32 * b02 - a30 * b05 - a33 * b01," " a20 * b05 - a22 * b02 + a23 * b01," " a10 * b10 - a11 * b08 + a13 * b06," " a01 * b08 - a00 * b10 - a03 * b06," " a30 * b04 - a31 * b02 + a33 * b00," " a21 * b02 - a20 * b04 - a23 * b00," " a11 * b07 - a10 * b09 - a12 * b06," " a00 * b09 - a01 * b07 + a02 * b06," " a31 * b01 - a30 * b03 - a32 * b00," " a20 * b03 - a21 * b01 + a22 * b00) / det;" "}" ).c_str()); } } else { SkASSERT(false); } this->write(name + "("); this->writeExpression(mat, kTopLevel_Precedence); this->write(")"); } void GLSLCodeGenerator::writeTransposeHack(const Expression& mat) { String name = "transpose" + to_string(mat.fType.columns()) + to_string(mat.fType.rows()); if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { fWrittenIntrinsics.insert(name); String type = this->getTypeName(mat.fType); const Type& base = mat.fType.componentType(); String transposed = this->getTypeName(base.toCompound(fContext, mat.fType.rows(), mat.fType.columns())); fExtraFunctions.writeText((transposed + " " + name + "(" + type + " m) {\nreturn " + transposed + "(").c_str()); const char* separator = ""; for (int row = 0; row < mat.fType.rows(); ++row) { for (int column = 0; column < mat.fType.columns(); ++column) { fExtraFunctions.writeText(separator); fExtraFunctions.writeText(("m[" + to_string(column) + "][" + to_string(row) + "]").c_str()); separator = ", "; } } fExtraFunctions.writeText("); }"); } this->write(name + "("); this->writeExpression(mat, kTopLevel_Precedence); this->write(")"); } void GLSLCodeGenerator::writeFunctionCall(const FunctionCall& c) { if (!fProgram.fSettings.fCaps->canUseMinAndAbsTogether() && c.fFunction.fName == "min" && c.fFunction.fBuiltin) { SkASSERT(c.fArguments.size() == 2); if (is_abs(*c.fArguments[0])) { this->writeMinAbsHack(*c.fArguments[0], *c.fArguments[1]); return; } if (is_abs(*c.fArguments[1])) { // note that this violates the GLSL left-to-right evaluation semantics. I doubt it will // ever end up mattering, but it's worth calling out. this->writeMinAbsHack(*c.fArguments[1], *c.fArguments[0]); return; } } if (!fProgram.fSettings.fCaps->canUseFractForNegativeValues() && c.fFunction.fName == "fract" && c.fFunction.fBuiltin) { SkASSERT(c.fArguments.size() == 1); this->write("(0.5 - sign("); this->writeExpression(*c.fArguments[0], kSequence_Precedence); this->write(") * (0.5 - fract(abs("); this->writeExpression(*c.fArguments[0], kSequence_Precedence); this->write("))))"); return; } if (fProgram.fSettings.fCaps->mustForceNegatedAtanParamToFloat() && c.fFunction.fName == "atan" && c.fFunction.fBuiltin && c.fArguments.size() == 2 && c.fArguments[1]->fKind == Expression::kPrefix_Kind) { const PrefixExpression& p = (PrefixExpression&) *c.fArguments[1]; if (p.fOperator == Token::MINUS) { this->write("atan("); this->writeExpression(*c.fArguments[0], kSequence_Precedence); this->write(", -1.0 * "); this->writeExpression(*p.fOperand, kMultiplicative_Precedence); this->write(")"); return; } } if (c.fFunction.fBuiltin && c.fFunction.fName == "determinant" && fProgram.fSettings.fCaps->generation() < k150_GrGLSLGeneration) { SkASSERT(c.fArguments.size() == 1); this->writeDeterminantHack(*c.fArguments[0]); return; } if (c.fFunction.fBuiltin && c.fFunction.fName == "inverse" && fProgram.fSettings.fCaps->generation() < k140_GrGLSLGeneration) { SkASSERT(c.fArguments.size() == 1); this->writeInverseHack(*c.fArguments[0]); return; } if (c.fFunction.fBuiltin && c.fFunction.fName == "inverseSqrt" && fProgram.fSettings.fCaps->generation() < k130_GrGLSLGeneration) { SkASSERT(c.fArguments.size() == 1); this->writeInverseSqrtHack(*c.fArguments[0]); return; } if (c.fFunction.fBuiltin && c.fFunction.fName == "transpose" && fProgram.fSettings.fCaps->generation() < k130_GrGLSLGeneration) { SkASSERT(c.fArguments.size() == 1); this->writeTransposeHack(*c.fArguments[0]); return; } if (!fFoundDerivatives && (c.fFunction.fName == "dFdx" || c.fFunction.fName == "dFdy") && c.fFunction.fBuiltin && fProgram.fSettings.fCaps->shaderDerivativeExtensionString()) { SkASSERT(fProgram.fSettings.fCaps->shaderDerivativeSupport()); this->writeExtension(fProgram.fSettings.fCaps->shaderDerivativeExtensionString()); fFoundDerivatives = true; } bool isTextureFunctionWithBias = false; if (c.fFunction.fName == "texture" && c.fFunction.fBuiltin) { const char* dim = ""; bool proj = false; switch (c.fArguments[0]->fType.dimensions()) { case SpvDim1D: dim = "1D"; isTextureFunctionWithBias = true; if (c.fArguments[1]->fType == *fContext.fFloat_Type) { proj = false; } else { SkASSERT(c.fArguments[1]->fType == *fContext.fFloat2_Type); proj = true; } break; case SpvDim2D: dim = "2D"; if (c.fArguments[0]->fType != *fContext.fSamplerExternalOES_Type) { isTextureFunctionWithBias = true; } if (c.fArguments[1]->fType == *fContext.fFloat2_Type) { proj = false; } else { SkASSERT(c.fArguments[1]->fType == *fContext.fFloat3_Type); proj = true; } break; case SpvDim3D: dim = "3D"; isTextureFunctionWithBias = true; if (c.fArguments[1]->fType == *fContext.fFloat3_Type) { proj = false; } else { SkASSERT(c.fArguments[1]->fType == *fContext.fFloat4_Type); proj = true; } break; case SpvDimCube: dim = "Cube"; isTextureFunctionWithBias = true; proj = false; break; case SpvDimRect: dim = "Rect"; proj = false; break; case SpvDimBuffer: SkASSERT(false); // doesn't exist dim = "Buffer"; proj = false; break; case SpvDimSubpassData: SkASSERT(false); // doesn't exist dim = "SubpassData"; proj = false; break; } this->write("texture"); if (fProgram.fSettings.fCaps->generation() < k130_GrGLSLGeneration) { this->write(dim); } if (proj) { this->write("Proj"); } } else { this->write(c.fFunction.fName); } this->write("("); const char* separator = ""; for (const auto& arg : c.fArguments) { this->write(separator); separator = ", "; this->writeExpression(*arg, kSequence_Precedence); } if (fProgram.fSettings.fSharpenTextures && isTextureFunctionWithBias) { this->write(", -0.5"); } this->write(")"); } void GLSLCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) { if (c.fArguments.size() == 1 && this->getTypeName(c.fType) == this->getTypeName(c.fArguments[0]->fType)) { // in cases like half(float), they're different types as far as SkSL is concerned but the // same type as far as GLSL is concerned. We avoid a redundant float(float) by just writing // out the inner expression here. this->writeExpression(*c.fArguments[0], parentPrecedence); return; } this->writeType(c.fType); this->write("("); const char* separator = ""; for (const auto& arg : c.fArguments) { this->write(separator); separator = ", "; this->writeExpression(*arg, kSequence_Precedence); } this->write(")"); } void GLSLCodeGenerator::writeFragCoord() { if (!fProgram.fSettings.fCaps->canUseFragCoord()) { if (!fSetupFragCoordWorkaround) { const char* precision = usesPrecisionModifiers() ? "highp " : ""; fFunctionHeader += precision; fFunctionHeader += " float sk_FragCoord_InvW = 1. / sk_FragCoord_Workaround.w;\n"; fFunctionHeader += precision; fFunctionHeader += " vec4 sk_FragCoord_Resolved = " "vec4(sk_FragCoord_Workaround.xyz * sk_FragCoord_InvW, sk_FragCoord_InvW);\n"; // Ensure that we get exact .5 values for x and y. fFunctionHeader += " sk_FragCoord_Resolved.xy = floor(sk_FragCoord_Resolved.xy) + " "vec2(.5);\n"; fSetupFragCoordWorkaround = true; } this->write("sk_FragCoord_Resolved"); return; } // We only declare "gl_FragCoord" when we're in the case where we want to use layout qualifiers // to reverse y. Otherwise it isn't necessary and whether the "in" qualifier appears in the // declaration varies in earlier GLSL specs. So it is simpler to omit it. if (!fProgram.fSettings.fFlipY) { this->write("gl_FragCoord"); } else if (const char* extension = fProgram.fSettings.fCaps->fragCoordConventionsExtensionString()) { if (!fSetupFragPositionGlobal) { if (fProgram.fSettings.fCaps->generation() < k150_GrGLSLGeneration) { this->writeExtension(extension); } fGlobals.writeText("layout(origin_upper_left) in vec4 gl_FragCoord;\n"); fSetupFragPositionGlobal = true; } this->write("gl_FragCoord"); } else { if (!fSetupFragPositionGlobal) { // The Adreno compiler seems to be very touchy about access to "gl_FragCoord". // Accessing glFragCoord.zw can cause a program to fail to link. Additionally, // depending on the surrounding code, accessing .xy with a uniform involved can // do the same thing. Copying gl_FragCoord.xy into a temp float2 beforehand // (and only accessing .xy) seems to "fix" things. const char* precision = usesPrecisionModifiers() ? "highp " : ""; fGlobals.writeText("uniform "); fGlobals.writeText(precision); fGlobals.writeText("float " SKSL_RTHEIGHT_NAME ";\n"); fSetupFragPositionGlobal = true; } if (!fSetupFragPositionLocal) { const char* precision = usesPrecisionModifiers() ? "highp " : ""; fFunctionHeader += precision; fFunctionHeader += " vec2 _sktmpCoord = gl_FragCoord.xy;\n"; fFunctionHeader += precision; fFunctionHeader += " vec4 sk_FragCoord = vec4(_sktmpCoord.x, " SKSL_RTHEIGHT_NAME " - _sktmpCoord.y, 1.0, 1.0);\n"; fSetupFragPositionLocal = true; } this->write("sk_FragCoord"); } } void GLSLCodeGenerator::writeVariableReference(const VariableReference& ref) { switch (ref.fVariable.fModifiers.fLayout.fBuiltin) { case SK_FRAGCOLOR_BUILTIN: if (fProgram.fSettings.fCaps->mustDeclareFragmentShaderOutput()) { this->write("sk_FragColor"); } else { this->write("gl_FragColor"); } break; case SK_FRAGCOORD_BUILTIN: this->writeFragCoord(); break; case SK_CLOCKWISE_BUILTIN: this->write("gl_FrontFacing"); break; case SK_VERTEXID_BUILTIN: this->write("gl_VertexID"); break; case SK_INSTANCEID_BUILTIN: this->write("gl_InstanceID"); break; case SK_CLIPDISTANCE_BUILTIN: this->write("gl_ClipDistance"); break; case SK_IN_BUILTIN: this->write("gl_in"); break; case SK_INVOCATIONID_BUILTIN: this->write("gl_InvocationID"); break; case SK_LASTFRAGCOLOR_BUILTIN: this->write(fProgram.fSettings.fCaps->fbFetchColorName()); break; default: this->write(ref.fVariable.fName); } } void GLSLCodeGenerator::writeIndexExpression(const IndexExpression& expr) { this->writeExpression(*expr.fBase, kPostfix_Precedence); this->write("["); this->writeExpression(*expr.fIndex, kTopLevel_Precedence); this->write("]"); } bool is_sk_position(const FieldAccess& f) { return "sk_Position" == f.fBase->fType.fields()[f.fFieldIndex].fName; } void GLSLCodeGenerator::writeFieldAccess(const FieldAccess& f) { if (f.fOwnerKind == FieldAccess::kDefault_OwnerKind) { this->writeExpression(*f.fBase, kPostfix_Precedence); this->write("."); } switch (f.fBase->fType.fields()[f.fFieldIndex].fModifiers.fLayout.fBuiltin) { case SK_CLIPDISTANCE_BUILTIN: this->write("gl_ClipDistance"); break; default: StringFragment name = f.fBase->fType.fields()[f.fFieldIndex].fName; if (name == "sk_Position") { this->write("gl_Position"); } else if (name == "sk_PointSize") { this->write("gl_PointSize"); } else { this->write(f.fBase->fType.fields()[f.fFieldIndex].fName); } } } void GLSLCodeGenerator::writeSwizzle(const Swizzle& swizzle) { this->writeExpression(*swizzle.fBase, kPostfix_Precedence); this->write("."); for (int c : swizzle.fComponents) { this->write(&("x\0y\0z\0w\0"[c * 2])); } } GLSLCodeGenerator::Precedence GLSLCodeGenerator::GetBinaryPrecedence(Token::Kind op) { switch (op) { case Token::STAR: // fall through case Token::SLASH: // fall through case Token::PERCENT: return GLSLCodeGenerator::kMultiplicative_Precedence; case Token::PLUS: // fall through case Token::MINUS: return GLSLCodeGenerator::kAdditive_Precedence; case Token::SHL: // fall through case Token::SHR: return GLSLCodeGenerator::kShift_Precedence; case Token::LT: // fall through case Token::GT: // fall through case Token::LTEQ: // fall through case Token::GTEQ: return GLSLCodeGenerator::kRelational_Precedence; case Token::EQEQ: // fall through case Token::NEQ: return GLSLCodeGenerator::kEquality_Precedence; case Token::BITWISEAND: return GLSLCodeGenerator::kBitwiseAnd_Precedence; case Token::BITWISEXOR: return GLSLCodeGenerator::kBitwiseXor_Precedence; case Token::BITWISEOR: return GLSLCodeGenerator::kBitwiseOr_Precedence; case Token::LOGICALAND: return GLSLCodeGenerator::kLogicalAnd_Precedence; case Token::LOGICALXOR: return GLSLCodeGenerator::kLogicalXor_Precedence; case Token::LOGICALOR: return GLSLCodeGenerator::kLogicalOr_Precedence; case Token::EQ: // fall through case Token::PLUSEQ: // fall through case Token::MINUSEQ: // fall through case Token::STAREQ: // fall through case Token::SLASHEQ: // fall through case Token::PERCENTEQ: // fall through case Token::SHLEQ: // fall through case Token::SHREQ: // fall through case Token::LOGICALANDEQ: // fall through case Token::LOGICALXOREQ: // fall through case Token::LOGICALOREQ: // fall through case Token::BITWISEANDEQ: // fall through case Token::BITWISEXOREQ: // fall through case Token::BITWISEOREQ: return GLSLCodeGenerator::kAssignment_Precedence; case Token::COMMA: return GLSLCodeGenerator::kSequence_Precedence; default: ABORT("unsupported binary operator"); } } void GLSLCodeGenerator::writeBinaryExpression(const BinaryExpression& b, Precedence parentPrecedence) { Precedence precedence = GetBinaryPrecedence(b.fOperator); if (precedence >= parentPrecedence) { this->write("("); } bool positionWorkaround = fProgramKind == Program::Kind::kVertex_Kind && Compiler::IsAssignment(b.fOperator) && Expression::kFieldAccess_Kind == b.fLeft->fKind && is_sk_position((FieldAccess&) *b.fLeft) && !strstr(b.fRight->description().c_str(), "sk_RTAdjust") && !fProgram.fSettings.fCaps->canUseFragCoord(); if (positionWorkaround) { this->write("sk_FragCoord_Workaround = ("); } this->writeExpression(*b.fLeft, precedence); this->write(" "); this->write(Compiler::OperatorName(b.fOperator)); this->write(" "); this->writeExpression(*b.fRight, precedence); if (positionWorkaround) { this->write(")"); } if (precedence >= parentPrecedence) { this->write(")"); } } void GLSLCodeGenerator::writeTernaryExpression(const TernaryExpression& t, Precedence parentPrecedence) { if (kTernary_Precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*t.fTest, kTernary_Precedence); this->write(" ? "); this->writeExpression(*t.fIfTrue, kTernary_Precedence); this->write(" : "); this->writeExpression(*t.fIfFalse, kTernary_Precedence); if (kTernary_Precedence >= parentPrecedence) { this->write(")"); } } void GLSLCodeGenerator::writePrefixExpression(const PrefixExpression& p, Precedence parentPrecedence) { if (kPrefix_Precedence >= parentPrecedence) { this->write("("); } this->write(Compiler::OperatorName(p.fOperator)); this->writeExpression(*p.fOperand, kPrefix_Precedence); if (kPrefix_Precedence >= parentPrecedence) { this->write(")"); } } void GLSLCodeGenerator::writePostfixExpression(const PostfixExpression& p, Precedence parentPrecedence) { if (kPostfix_Precedence >= parentPrecedence) { this->write("("); } this->writeExpression(*p.fOperand, kPostfix_Precedence); this->write(Compiler::OperatorName(p.fOperator)); if (kPostfix_Precedence >= parentPrecedence) { this->write(")"); } } void GLSLCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { this->write(b.fValue ? "true" : "false"); } void GLSLCodeGenerator::writeIntLiteral(const IntLiteral& i) { if (i.fType == *fContext.fUInt_Type) { this->write(to_string(i.fValue & 0xffffffff) + "u"); } else if (i.fType == *fContext.fUShort_Type) { this->write(to_string(i.fValue & 0xffff) + "u"); } else if (i.fType == *fContext.fUByte_Type) { this->write(to_string(i.fValue & 0xff) + "u"); } else { this->write(to_string((int32_t) i.fValue)); } } void GLSLCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { this->write(to_string(f.fValue)); } void GLSLCodeGenerator::writeSetting(const Setting& s) { ABORT("internal error; setting was not folded to a constant during compilation\n"); } void GLSLCodeGenerator::writeFunction(const FunctionDefinition& f) { if (fProgramKind != Program::kPipelineStage_Kind) { this->writeTypePrecision(f.fDeclaration.fReturnType); this->writeType(f.fDeclaration.fReturnType); this->write(" " + f.fDeclaration.fName + "("); const char* separator = ""; for (const auto& param : f.fDeclaration.fParameters) { this->write(separator); separator = ", "; this->writeModifiers(param->fModifiers, false); std::vector sizes; const Type* type = ¶m->fType; while (type->kind() == Type::kArray_Kind) { sizes.push_back(type->columns()); type = &type->componentType(); } this->writeTypePrecision(*type); this->writeType(*type); this->write(" " + param->fName); for (int s : sizes) { if (s <= 0) { this->write("[]"); } else { this->write("[" + to_string(s) + "]"); } } } this->writeLine(") {"); fIndentation++; } fFunctionHeader = ""; OutputStream* oldOut = fOut; StringStream buffer; fOut = &buffer; this->writeStatements(((Block&) *f.fBody).fStatements); if (fProgramKind != Program::kPipelineStage_Kind) { fIndentation--; this->writeLine("}"); } fOut = oldOut; this->write(fFunctionHeader); this->write(buffer.str()); } void GLSLCodeGenerator::writeModifiers(const Modifiers& modifiers, bool globalContext) { if (modifiers.fFlags & Modifiers::kFlat_Flag) { this->write("flat "); } if (modifiers.fFlags & Modifiers::kNoPerspective_Flag) { this->write("noperspective "); } String layout = modifiers.fLayout.description(); if (layout.size()) { this->write(layout + " "); } if (modifiers.fFlags & Modifiers::kReadOnly_Flag) { this->write("readonly "); } if (modifiers.fFlags & Modifiers::kWriteOnly_Flag) { this->write("writeonly "); } if (modifiers.fFlags & Modifiers::kCoherent_Flag) { this->write("coherent "); } if (modifiers.fFlags & Modifiers::kVolatile_Flag) { this->write("volatile "); } if (modifiers.fFlags & Modifiers::kRestrict_Flag) { this->write("restrict "); } if ((modifiers.fFlags & Modifiers::kIn_Flag) && (modifiers.fFlags & Modifiers::kOut_Flag)) { this->write("inout "); } else if (modifiers.fFlags & Modifiers::kIn_Flag) { if (globalContext && fProgram.fSettings.fCaps->generation() < GrGLSLGeneration::k130_GrGLSLGeneration) { this->write(fProgramKind == Program::kVertex_Kind ? "attribute " : "varying "); } else { this->write("in "); } } else if (modifiers.fFlags & Modifiers::kOut_Flag) { if (globalContext && fProgram.fSettings.fCaps->generation() < GrGLSLGeneration::k130_GrGLSLGeneration) { this->write("varying "); } else { this->write("out "); } } if (modifiers.fFlags & Modifiers::kUniform_Flag) { this->write("uniform "); } if (modifiers.fFlags & Modifiers::kConst_Flag) { this->write("const "); } if (usesPrecisionModifiers()) { if (modifiers.fFlags & Modifiers::kLowp_Flag) { this->write("lowp "); } if (modifiers.fFlags & Modifiers::kMediump_Flag) { this->write("mediump "); } if (modifiers.fFlags & Modifiers::kHighp_Flag) { this->write("highp "); } } } void GLSLCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) { if (intf.fTypeName == "sk_PerVertex") { return; } this->writeModifiers(intf.fVariable.fModifiers, true); this->writeLine(intf.fTypeName + " {"); fIndentation++; const Type* structType = &intf.fVariable.fType; while (structType->kind() == Type::kArray_Kind) { structType = &structType->componentType(); } for (const auto& f : structType->fields()) { this->writeModifiers(f.fModifiers, false); this->writeTypePrecision(*f.fType); this->writeType(*f.fType); this->writeLine(" " + f.fName + ";"); } fIndentation--; this->write("}"); if (intf.fInstanceName.size()) { this->write(" "); this->write(intf.fInstanceName); for (const auto& size : intf.fSizes) { this->write("["); if (size) { this->writeExpression(*size, kTopLevel_Precedence); } this->write("]"); } } this->writeLine(";"); } void GLSLCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) { this->writeExpression(value, kTopLevel_Precedence); } const char* GLSLCodeGenerator::getTypePrecision(const Type& type) { if (usesPrecisionModifiers()) { switch (type.kind()) { case Type::kScalar_Kind: if (type == *fContext.fShort_Type || type == *fContext.fUShort_Type || type == *fContext.fByte_Type || type == *fContext.fUByte_Type) { if (fProgram.fSettings.fForceHighPrecision || fProgram.fSettings.fCaps->incompleteShortIntPrecision()) { return "highp "; } return "mediump "; } if (type == *fContext.fHalf_Type) { return fProgram.fSettings.fForceHighPrecision ? "highp " : "mediump "; } if (type == *fContext.fFloat_Type || type == *fContext.fInt_Type || type == *fContext.fUInt_Type) { return "highp "; } return ""; case Type::kVector_Kind: // fall through case Type::kMatrix_Kind: return this->getTypePrecision(type.componentType()); default: break; } } return ""; } void GLSLCodeGenerator::writeTypePrecision(const Type& type) { this->write(this->getTypePrecision(type)); } void GLSLCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, bool global) { if (!decl.fVars.size()) { return; } bool wroteType = false; for (const auto& stmt : decl.fVars) { VarDeclaration& var = (VarDeclaration&) *stmt; if (wroteType) { this->write(", "); } else { this->writeModifiers(var.fVar->fModifiers, global); this->writeTypePrecision(decl.fBaseType); this->writeType(decl.fBaseType); this->write(" "); wroteType = true; } this->write(var.fVar->fName); for (const auto& size : var.fSizes) { this->write("["); if (size) { this->writeExpression(*size, kTopLevel_Precedence); } this->write("]"); } if (var.fValue) { this->write(" = "); this->writeVarInitializer(*var.fVar, *var.fValue); } if (!fFoundImageDecl && var.fVar->fType == *fContext.fImage2D_Type) { if (fProgram.fSettings.fCaps->imageLoadStoreExtensionString()) { this->writeExtension(fProgram.fSettings.fCaps->imageLoadStoreExtensionString()); } fFoundImageDecl = true; } if (!fFoundExternalSamplerDecl && var.fVar->fType == *fContext.fSamplerExternalOES_Type) { if (fProgram.fSettings.fCaps->externalTextureExtensionString()) { this->writeExtension(fProgram.fSettings.fCaps->externalTextureExtensionString()); } if (fProgram.fSettings.fCaps->secondExternalTextureExtensionString()) { this->writeExtension( fProgram.fSettings.fCaps->secondExternalTextureExtensionString()); } fFoundExternalSamplerDecl = true; } } if (wroteType) { this->write(";"); } } void GLSLCodeGenerator::writeStatement(const Statement& s) { switch (s.fKind) { case Statement::kBlock_Kind: this->writeBlock((Block&) s); break; case Statement::kExpression_Kind: this->writeExpression(*((ExpressionStatement&) s).fExpression, kTopLevel_Precedence); this->write(";"); break; case Statement::kReturn_Kind: this->writeReturnStatement((ReturnStatement&) s); break; case Statement::kVarDeclarations_Kind: this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration, false); break; case Statement::kIf_Kind: this->writeIfStatement((IfStatement&) s); break; case Statement::kFor_Kind: this->writeForStatement((ForStatement&) s); break; case Statement::kWhile_Kind: this->writeWhileStatement((WhileStatement&) s); break; case Statement::kDo_Kind: this->writeDoStatement((DoStatement&) s); break; case Statement::kSwitch_Kind: this->writeSwitchStatement((SwitchStatement&) s); break; case Statement::kBreak_Kind: this->write("break;"); break; case Statement::kContinue_Kind: this->write("continue;"); break; case Statement::kDiscard_Kind: this->write("discard;"); break; case Statement::kNop_Kind: this->write(";"); break; default: ABORT("unsupported statement: %s", s.description().c_str()); } } void GLSLCodeGenerator::writeStatements(const std::vector>& statements) { for (const auto& s : statements) { if (!s->isEmpty()) { this->writeStatement(*s); this->writeLine(); } } } void GLSLCodeGenerator::writeBlock(const Block& b) { this->writeLine("{"); fIndentation++; this->writeStatements(b.fStatements); fIndentation--; this->write("}"); } void GLSLCodeGenerator::writeIfStatement(const IfStatement& stmt) { this->write("if ("); this->writeExpression(*stmt.fTest, kTopLevel_Precedence); this->write(") "); this->writeStatement(*stmt.fIfTrue); if (stmt.fIfFalse) { this->write(" else "); this->writeStatement(*stmt.fIfFalse); } } void GLSLCodeGenerator::writeForStatement(const ForStatement& f) { this->write("for ("); if (f.fInitializer && !f.fInitializer->isEmpty()) { this->writeStatement(*f.fInitializer); } else { this->write("; "); } if (f.fTest) { this->writeExpression(*f.fTest, kTopLevel_Precedence); } this->write("; "); if (f.fNext) { this->writeExpression(*f.fNext, kTopLevel_Precedence); } this->write(") "); this->writeStatement(*f.fStatement); } void GLSLCodeGenerator::writeWhileStatement(const WhileStatement& w) { this->write("while ("); this->writeExpression(*w.fTest, kTopLevel_Precedence); this->write(") "); this->writeStatement(*w.fStatement); } void GLSLCodeGenerator::writeDoStatement(const DoStatement& d) { this->write("do "); this->writeStatement(*d.fStatement); this->write(" while ("); this->writeExpression(*d.fTest, kTopLevel_Precedence); this->write(");"); } void GLSLCodeGenerator::writeSwitchStatement(const SwitchStatement& s) { this->write("switch ("); this->writeExpression(*s.fValue, kTopLevel_Precedence); this->writeLine(") {"); fIndentation++; for (const auto& c : s.fCases) { if (c->fValue) { this->write("case "); this->writeExpression(*c->fValue, kTopLevel_Precedence); this->writeLine(":"); } else { this->writeLine("default:"); } fIndentation++; for (const auto& stmt : c->fStatements) { this->writeStatement(*stmt); this->writeLine(); } fIndentation--; } fIndentation--; this->write("}"); } void GLSLCodeGenerator::writeReturnStatement(const ReturnStatement& r) { this->write("return"); if (r.fExpression) { this->write(" "); this->writeExpression(*r.fExpression, kTopLevel_Precedence); } this->write(";"); } void GLSLCodeGenerator::writeHeader() { this->write(fProgram.fSettings.fCaps->versionDeclString()); this->writeLine(); } void GLSLCodeGenerator::writeProgramElement(const ProgramElement& e) { switch (e.fKind) { case ProgramElement::kExtension_Kind: this->writeExtension(((Extension&) e).fName); break; case ProgramElement::kVar_Kind: { VarDeclarations& decl = (VarDeclarations&) e; if (decl.fVars.size() > 0) { int builtin = ((VarDeclaration&) *decl.fVars[0]).fVar->fModifiers.fLayout.fBuiltin; if (builtin == -1) { // normal var this->writeVarDeclarations(decl, true); this->writeLine(); } else if (builtin == SK_FRAGCOLOR_BUILTIN && fProgram.fSettings.fCaps->mustDeclareFragmentShaderOutput()) { if (fProgram.fSettings.fFragColorIsInOut) { this->write("inout "); } else { this->write("out "); } if (usesPrecisionModifiers()) { this->write("mediump "); } this->writeLine("vec4 sk_FragColor;"); } } break; } case ProgramElement::kInterfaceBlock_Kind: this->writeInterfaceBlock((InterfaceBlock&) e); break; case ProgramElement::kFunction_Kind: this->writeFunction((FunctionDefinition&) e); break; case ProgramElement::kModifiers_Kind: { const Modifiers& modifiers = ((ModifiersDeclaration&) e).fModifiers; if (!fFoundGSInvocations && modifiers.fLayout.fInvocations >= 0) { if (fProgram.fSettings.fCaps->gsInvocationsExtensionString()) { this->writeExtension(fProgram.fSettings.fCaps->gsInvocationsExtensionString()); } fFoundGSInvocations = true; } this->writeModifiers(modifiers, true); this->writeLine(";"); break; } case ProgramElement::kEnum_Kind: break; default: printf("%s\n", e.description().c_str()); ABORT("unsupported program element"); } } bool GLSLCodeGenerator::generateCode() { fProgramKind = fProgram.fKind; if (fProgramKind != Program::kPipelineStage_Kind) { this->writeHeader(); } if (Program::kGeometry_Kind == fProgramKind && fProgram.fSettings.fCaps->geometryShaderExtensionString()) { this->writeExtension(fProgram.fSettings.fCaps->geometryShaderExtensionString()); } OutputStream* rawOut = fOut; StringStream body; fOut = &body; for (const auto& e : fProgram) { this->writeProgramElement(e); } fOut = rawOut; write_stringstream(fExtensions, *rawOut); write_stringstream(fGlobals, *rawOut); if (!fProgram.fSettings.fCaps->canUseFragCoord()) { Layout layout; switch (fProgram.fKind) { case Program::kVertex_Kind: { Modifiers modifiers(layout, Modifiers::kOut_Flag | Modifiers::kHighp_Flag); this->writeModifiers(modifiers, true); this->write("vec4 sk_FragCoord_Workaround;\n"); break; } case Program::kFragment_Kind: { Modifiers modifiers(layout, Modifiers::kIn_Flag | Modifiers::kHighp_Flag); this->writeModifiers(modifiers, true); this->write("vec4 sk_FragCoord_Workaround;\n"); break; } default: break; } } if (this->usesPrecisionModifiers()) { this->writeLine("precision mediump float;"); } write_stringstream(fExtraFunctions, *rawOut); write_stringstream(body, *rawOut); return true; } }