/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkSLCFGGenerator.h" #include "ir/SkSLConstructor.h" #include "ir/SkSLBinaryExpression.h" #include "ir/SkSLDoStatement.h" #include "ir/SkSLExpressionStatement.h" #include "ir/SkSLFieldAccess.h" #include "ir/SkSLForStatement.h" #include "ir/SkSLFunctionCall.h" #include "ir/SkSLIfStatement.h" #include "ir/SkSLIndexExpression.h" #include "ir/SkSLPostfixExpression.h" #include "ir/SkSLPrefixExpression.h" #include "ir/SkSLReturnStatement.h" #include "ir/SkSLSwizzle.h" #include "ir/SkSLSwitchStatement.h" #include "ir/SkSLTernaryExpression.h" #include "ir/SkSLVarDeclarationsStatement.h" #include "ir/SkSLWhileStatement.h" namespace SkSL { BlockId CFG::newBlock() { BlockId result = fBlocks.size(); fBlocks.emplace_back(); if (fBlocks.size() > 1) { this->addExit(fCurrent, result); } fCurrent = result; return result; } BlockId CFG::newIsolatedBlock() { BlockId result = fBlocks.size(); fBlocks.emplace_back(); return result; } void CFG::addExit(BlockId from, BlockId to) { if (from == 0 || fBlocks[from].fEntrances.size()) { fBlocks[from].fExits.insert(to); fBlocks[to].fEntrances.insert(from); } } void CFG::dump() { for (size_t i = 0; i < fBlocks.size(); i++) { printf("Block %d\n-------\nBefore: ", (int) i); const char* separator = ""; for (auto iter = fBlocks[i].fBefore.begin(); iter != fBlocks[i].fBefore.end(); iter++) { printf("%s%s = %s", separator, iter->first->description().c_str(), *iter->second ? (*iter->second)->description().c_str() : ""); separator = ", "; } printf("\nEntrances: "); separator = ""; for (BlockId b : fBlocks[i].fEntrances) { printf("%s%d", separator, (int) b); separator = ", "; } printf("\n"); for (size_t j = 0; j < fBlocks[i].fNodes.size(); j++) { BasicBlock::Node& n = fBlocks[i].fNodes[j]; printf("Node %d: %s\n", (int) j, n.fKind == BasicBlock::Node::kExpression_Kind ? (*n.fExpression)->description().c_str() : n.fStatement->description().c_str()); } printf("Exits: "); separator = ""; for (BlockId b : fBlocks[i].fExits) { printf("%s%d", separator, (int) b); separator = ", "; } printf("\n\n"); } } void CFGGenerator::addExpression(CFG& cfg, std::unique_ptr* e, bool constantPropagate) { ASSERT(e); switch ((*e)->fKind) { case Expression::kBinary_Kind: { BinaryExpression* b = (BinaryExpression*) e->get(); switch (b->fOperator) { case Token::LOGICALAND: // fall through case Token::LOGICALOR: { // this isn't as precise as it could be -- we don't bother to track that if we // early exit from a logical and/or, we know which branch of an 'if' we're going // to hit -- but it won't make much difference in practice. this->addExpression(cfg, &b->fLeft, constantPropagate); BlockId start = cfg.fCurrent; cfg.newBlock(); this->addExpression(cfg, &b->fRight, constantPropagate); cfg.newBlock(); cfg.addExit(start, cfg.fCurrent); break; } case Token::EQ: { this->addExpression(cfg, &b->fRight, constantPropagate); this->addLValue(cfg, &b->fLeft); cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; } default: this->addExpression(cfg, &b->fLeft, !Token::IsAssignment(b->fOperator)); this->addExpression(cfg, &b->fRight, constantPropagate); cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); } break; } case Expression::kConstructor_Kind: { Constructor* c = (Constructor*) e->get(); for (auto& arg : c->fArguments) { this->addExpression(cfg, &arg, constantPropagate); } cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; } case Expression::kFunctionCall_Kind: { FunctionCall* c = (FunctionCall*) e->get(); for (auto& arg : c->fArguments) { this->addExpression(cfg, &arg, constantPropagate); } cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; } case Expression::kFieldAccess_Kind: this->addExpression(cfg, &((FieldAccess*) e->get())->fBase, constantPropagate); cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; case Expression::kIndex_Kind: this->addExpression(cfg, &((IndexExpression*) e->get())->fBase, constantPropagate); this->addExpression(cfg, &((IndexExpression*) e->get())->fIndex, constantPropagate); cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; case Expression::kPrefix_Kind: { PrefixExpression* p = (PrefixExpression*) e->get(); this->addExpression(cfg, &p->fOperand, constantPropagate && p->fOperator != Token::PLUSPLUS && p->fOperator != Token::MINUSMINUS); cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; } case Expression::kPostfix_Kind: this->addExpression(cfg, &((PostfixExpression*) e->get())->fOperand, false); cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; case Expression::kSwizzle_Kind: this->addExpression(cfg, &((Swizzle*) e->get())->fBase, constantPropagate); cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; case Expression::kBoolLiteral_Kind: // fall through case Expression::kFloatLiteral_Kind: // fall through case Expression::kIntLiteral_Kind: // fall through case Expression::kVariableReference_Kind: cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kExpression_Kind, constantPropagate, e, nullptr }); break; case Expression::kTernary_Kind: { TernaryExpression* t = (TernaryExpression*) e->get(); this->addExpression(cfg, &t->fTest, constantPropagate); BlockId start = cfg.fCurrent; cfg.newBlock(); this->addExpression(cfg, &t->fIfTrue, constantPropagate); BlockId next = cfg.newBlock(); cfg.fCurrent = start; cfg.newBlock(); this->addExpression(cfg, &t->fIfFalse, constantPropagate); cfg.addExit(cfg.fCurrent, next); cfg.fCurrent = next; break; } case Expression::kFunctionReference_Kind: // fall through case Expression::kTypeReference_Kind: // fall through case Expression::kDefined_Kind: ASSERT(false); break; } } // adds expressions that are evaluated as part of resolving an lvalue void CFGGenerator::addLValue(CFG& cfg, std::unique_ptr* e) { switch ((*e)->fKind) { case Expression::kFieldAccess_Kind: this->addLValue(cfg, &((FieldAccess&) **e).fBase); break; case Expression::kIndex_Kind: this->addLValue(cfg, &((IndexExpression&) **e).fBase); this->addExpression(cfg, &((IndexExpression&) **e).fIndex, true); break; case Expression::kSwizzle_Kind: this->addLValue(cfg, &((Swizzle&) **e).fBase); break; case Expression::kVariableReference_Kind: break; default: // not an lvalue, can't happen ASSERT(false); break; } } void CFGGenerator::addStatement(CFG& cfg, const Statement* s) { switch (s->fKind) { case Statement::kBlock_Kind: for (const auto& child : ((const Block*) s)->fStatements) { addStatement(cfg, child.get()); } break; case Statement::kIf_Kind: { IfStatement* ifs = (IfStatement*) s; this->addExpression(cfg, &ifs->fTest, true); BlockId start = cfg.fCurrent; cfg.newBlock(); this->addStatement(cfg, ifs->fIfTrue.get()); BlockId next = cfg.newBlock(); if (ifs->fIfFalse) { cfg.fCurrent = start; cfg.newBlock(); this->addStatement(cfg, ifs->fIfFalse.get()); cfg.addExit(cfg.fCurrent, next); cfg.fCurrent = next; } else { cfg.addExit(start, next); } break; } case Statement::kExpression_Kind: { this->addExpression(cfg, &((ExpressionStatement&) *s).fExpression, true); break; } case Statement::kVarDeclarations_Kind: { VarDeclarationsStatement& decls = ((VarDeclarationsStatement&) *s); for (auto& vd : decls.fDeclaration->fVars) { if (vd.fValue) { this->addExpression(cfg, &vd.fValue, true); } } cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, false, nullptr, s }); break; } case Statement::kDiscard_Kind: cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, false, nullptr, s }); cfg.fCurrent = cfg.newIsolatedBlock(); break; case Statement::kReturn_Kind: { ReturnStatement& r = ((ReturnStatement&) *s); if (r.fExpression) { this->addExpression(cfg, &r.fExpression, true); } cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, false, nullptr, s }); cfg.fCurrent = cfg.newIsolatedBlock(); break; } case Statement::kBreak_Kind: cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, false, nullptr, s }); cfg.addExit(cfg.fCurrent, fLoopExits.top()); cfg.fCurrent = cfg.newIsolatedBlock(); break; case Statement::kContinue_Kind: cfg.fBlocks[cfg.fCurrent].fNodes.push_back({ BasicBlock::Node::kStatement_Kind, false, nullptr, s }); cfg.addExit(cfg.fCurrent, fLoopContinues.top()); cfg.fCurrent = cfg.newIsolatedBlock(); break; case Statement::kWhile_Kind: { WhileStatement* w = (WhileStatement*) s; BlockId loopStart = cfg.newBlock(); fLoopContinues.push(loopStart); BlockId loopExit = cfg.newIsolatedBlock(); fLoopExits.push(loopExit); this->addExpression(cfg, &w->fTest, true); BlockId test = cfg.fCurrent; cfg.addExit(test, loopExit); cfg.newBlock(); this->addStatement(cfg, w->fStatement.get()); cfg.addExit(cfg.fCurrent, loopStart); fLoopContinues.pop(); fLoopExits.pop(); cfg.fCurrent = loopExit; break; } case Statement::kDo_Kind: { DoStatement* d = (DoStatement*) s; BlockId loopStart = cfg.newBlock(); fLoopContinues.push(loopStart); BlockId loopExit = cfg.newIsolatedBlock(); fLoopExits.push(loopExit); this->addStatement(cfg, d->fStatement.get()); this->addExpression(cfg, &d->fTest, true); cfg.addExit(cfg.fCurrent, loopExit); cfg.addExit(cfg.fCurrent, loopStart); fLoopContinues.pop(); fLoopExits.pop(); cfg.fCurrent = loopExit; break; } case Statement::kFor_Kind: { ForStatement* f = (ForStatement*) s; if (f->fInitializer) { this->addStatement(cfg, f->fInitializer.get()); } BlockId loopStart = cfg.newBlock(); BlockId next = cfg.newIsolatedBlock(); fLoopContinues.push(next); BlockId loopExit = cfg.newIsolatedBlock(); fLoopExits.push(loopExit); if (f->fTest) { this->addExpression(cfg, &f->fTest, true); BlockId test = cfg.fCurrent; cfg.addExit(test, loopExit); } cfg.newBlock(); this->addStatement(cfg, f->fStatement.get()); cfg.addExit(cfg.fCurrent, next); cfg.fCurrent = next; if (f->fNext) { this->addExpression(cfg, &f->fNext, true); } cfg.addExit(cfg.fCurrent, loopStart); fLoopContinues.pop(); fLoopExits.pop(); cfg.fCurrent = loopExit; break; } case Statement::kSwitch_Kind: { SwitchStatement* ss = (SwitchStatement*) s; this->addExpression(cfg, &ss->fValue, true); BlockId start = cfg.fCurrent; BlockId switchExit = cfg.newIsolatedBlock(); fLoopExits.push(switchExit); for (const auto& c : ss->fCases) { cfg.newBlock(); cfg.addExit(start, cfg.fCurrent); if (c->fValue) { // technically this should go in the start block, but it doesn't actually matter // because it must be constant. Not worth running two loops for. this->addExpression(cfg, &c->fValue, true); } for (const auto& caseStatement : c->fStatements) { this->addStatement(cfg, caseStatement.get()); } } cfg.addExit(cfg.fCurrent, switchExit); // note that unlike GLSL, our grammar requires the default case to be last if (0 == ss->fCases.size() || ss->fCases[ss->fCases.size() - 1]->fValue) { // switch does not have a default clause, mark that it can skip straight to the end cfg.addExit(start, switchExit); } fLoopExits.pop(); cfg.fCurrent = switchExit; break; } default: printf("statement: %s\n", s->description().c_str()); ABORT("unsupported statement kind"); } } CFG CFGGenerator::getCFG(const FunctionDefinition& f) { CFG result; result.fStart = result.newBlock(); result.fCurrent = result.fStart; this->addStatement(result, f.fBody.get()); result.newBlock(); result.fExit = result.fCurrent; return result; } } // namespace