/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTwoPointConicalGradient.h" #if SK_SUPPORT_GPU #include "GrCoordTransform.h" #include "GrPaint.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "SkTwoPointConicalGradient_gpu.h" #include // For brevity typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; static const SkScalar kErrorTol = 0.00001f; static const SkScalar kEdgeErrorTol = 5.f * kErrorTol; /** * We have three general cases for 2pt conical gradients. First we always assume that * the start radius <= end radius. Our first case (kInside_) is when the start circle * is completely enclosed by the end circle. The second case (kOutside_) is the case * when the start circle is either completely outside the end circle or the circles * overlap. The final case (kEdge_) is when the start circle is inside the end one, * but the two are just barely touching at 1 point along their edges. */ enum ConicalType { kInside_ConicalType, kOutside_ConicalType, kEdge_ConicalType, }; ////////////////////////////////////////////////////////////////////////////// static void set_matrix_edge_conical(const SkTwoPointConicalGradient& shader, SkMatrix* invLMatrix) { // Inverse of the current local matrix is passed in then, // translate to center1, rotate so center2 is on x axis. const SkPoint& center1 = shader.getStartCenter(); const SkPoint& center2 = shader.getEndCenter(); invLMatrix->postTranslate(-center1.fX, -center1.fY); SkPoint diff = center2 - center1; SkScalar diffLen = diff.length(); if (0 != diffLen) { SkScalar invDiffLen = SkScalarInvert(diffLen); SkMatrix rot; rot.setSinCos(-invDiffLen * diff.fY, invDiffLen * diff.fX); invLMatrix->postConcat(rot); } } class Edge2PtConicalEffect : public GrGradientEffect { public: class GLSLEdge2PtConicalProcessor; static std::unique_ptr Make(const CreateArgs& args) { return GrGradientEffect::AdjustFP(std::unique_ptr( new Edge2PtConicalEffect(args)), args); } const char* name() const override { return "Two-Point Conical Gradient Edge Touching"; } // The radial gradient parameters can collapse to a linear (instead of quadratic) equation. SkScalar center() const { return fCenterX1; } SkScalar diffRadius() const { return fDiffRadius; } SkScalar radius() const { return fRadius0; } std::unique_ptr clone() const override { return std::unique_ptr(new Edge2PtConicalEffect(*this)); } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; bool onIsEqual(const GrFragmentProcessor& sBase) const override { const Edge2PtConicalEffect& s = sBase.cast(); return (INHERITED::onIsEqual(sBase) && this->fCenterX1 == s.fCenterX1 && this->fRadius0 == s.fRadius0 && this->fDiffRadius == s.fDiffRadius); } explicit Edge2PtConicalEffect(const CreateArgs& args) : INHERITED(kEdge2PtConicalEffect_ClassID, args, false /* opaque: draws transparent black outside of the cone. */) { const SkTwoPointConicalGradient& shader = *static_cast(args.fShader); fCenterX1 = shader.getCenterX1(); fRadius0 = shader.getStartRadius(); fDiffRadius = shader.getDiffRadius(); // We should only be calling this shader if we are degenerate case with touching circles // When deciding if we are in edge case, we scaled by the end radius for cases when the // start radius was close to zero, otherwise we scaled by the start radius. In addition // Our test for the edge case in set_matrix_circle_conical has a higher tolerance so we // need the sqrt value below SkASSERT(SkScalarAbs(SkScalarAbs(fDiffRadius) - fCenterX1) < (fRadius0 < kErrorTol ? shader.getEndRadius() * kEdgeErrorTol : fRadius0 * sqrt(kEdgeErrorTol))); // We pass the linear part of the quadratic as a varying. // float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z) fBTransform = this->getCoordTransform(); SkMatrix& bMatrix = *fBTransform.accessMatrix(); SkScalar r0dr = fRadius0 * fDiffRadius; bMatrix[SkMatrix::kMScaleX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMScaleX] + r0dr * bMatrix[SkMatrix::kMPersp0]); bMatrix[SkMatrix::kMSkewX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMSkewX] + r0dr * bMatrix[SkMatrix::kMPersp1]); bMatrix[SkMatrix::kMTransX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMTransX] + r0dr * bMatrix[SkMatrix::kMPersp2]); this->addCoordTransform(&fBTransform); } explicit Edge2PtConicalEffect(const Edge2PtConicalEffect& that) : INHERITED(that) , fBTransform(that.fBTransform) , fCenterX1(that.fCenterX1) , fRadius0(that.fRadius0) , fDiffRadius(that.fDiffRadius) { this->addCoordTransform(&fBTransform); } GR_DECLARE_FRAGMENT_PROCESSOR_TEST // @{ // Cache of values - these can change arbitrarily, EXCEPT // we shouldn't change between degenerate and non-degenerate?! GrCoordTransform fBTransform; SkScalar fCenterX1; SkScalar fRadius0; SkScalar fDiffRadius; // @} typedef GrGradientEffect INHERITED; }; class Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor : public GrGradientEffect::GLSLProcessor { public: GLSLEdge2PtConicalProcessor(const GrProcessor&); virtual void emitCode(EmitArgs&) override; protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; UniformHandle fParamUni; const char* fVSVaryingName; const char* fFSVaryingName; // @{ /// Values last uploaded as uniforms SkScalar fCachedRadius; SkScalar fCachedDiffRadius; // @} private: typedef GrGradientEffect::GLSLProcessor INHERITED; }; GrGLSLFragmentProcessor* Edge2PtConicalEffect::onCreateGLSLInstance() const { return new Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor(*this); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(Edge2PtConicalEffect); /* * All Two point conical gradient test create functions may occasionally create edge case shaders */ #if GR_TEST_UTILS std::unique_ptr Edge2PtConicalEffect::TestCreate(GrProcessorTestData* d) { SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; SkScalar radius1 = d->fRandom->nextUScalar1(); SkPoint center2; SkScalar radius2; do { center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); // If the circles are identical the factory will give us an empty shader. // This will happen if we pick identical centers } while (center1 == center2); // Below makes sure that circle one is contained within circle two // and both circles are touching on an edge SkPoint diff = center2 - center1; SkScalar diffLen = diff.length(); radius2 = radius1 + diffLen; RandomGradientParams params(d->fRandom); auto shader = params.fUseColors4f ? SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors4f, params.fColorSpace, params.fStops, params.fColorCount, params.fTileMode) : SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors, params.fStops, params.fColorCount, params.fTileMode); GrTest::TestAsFPArgs asFPArgs(d); std::unique_ptr fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); GrAlwaysAssert(fp); return fp; } #endif Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::GLSLEdge2PtConicalProcessor(const GrProcessor&) : fVSVaryingName(nullptr) , fFSVaryingName(nullptr) , fCachedRadius(-SK_ScalarMax) , fCachedDiffRadius(-SK_ScalarMax) {} void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::emitCode(EmitArgs& args) { const Edge2PtConicalEffect& ge = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; this->emitUniforms(uniformHandler, ge); fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf3_GrSLType, "Conical2FSParams"); SkString cName("c"); SkString tName("t"); SkString p0; // start radius SkString p1; // start radius squared SkString p2; // difference in radii (r1 - r0) p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); p2.appendf("%s.z", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); // We interpolate the linear component in coords[1]. SkASSERT(args.fTransformedCoords[0].getType() == args.fTransformedCoords[1].getType()); const char* coords2D; SkString bVar; GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; if (kHalf3_GrSLType == args.fTransformedCoords[0].getType()) { fragBuilder->codeAppendf("\thalf3 interpolants = half3(%s.xy / %s.z, %s.x / %s.z);\n", args.fTransformedCoords[0].c_str(), args.fTransformedCoords[0].c_str(), args.fTransformedCoords[1].c_str(), args.fTransformedCoords[1].c_str()); coords2D = "interpolants.xy"; bVar = "interpolants.z"; } else { coords2D = args.fTransformedCoords[0].c_str(); bVar.printf("%s.x", args.fTransformedCoords[1].c_str()); } // output will default to transparent black (we simply won't write anything // else to it if invalid, instead of discarding or returning prematurely) fragBuilder->codeAppendf("\t%s = half4(0.0,0.0,0.0,0.0);\n", args.fOutputColor); // c = (x^2)+(y^2) - params[1] fragBuilder->codeAppendf("\thalf %s = dot(%s, %s) - %s;\n", cName.c_str(), coords2D, coords2D, p1.c_str()); // linear case: t = -c/b fragBuilder->codeAppendf("\thalf %s = -(%s / %s);\n", tName.c_str(), cName.c_str(), bVar.c_str()); // if r(t) > 0, then t will be the x coordinate fragBuilder->codeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(), p2.c_str(), p0.c_str()); fragBuilder->codeAppend("\t"); this->emitColor(fragBuilder, uniformHandler, args.fShaderCaps, ge, tName.c_str(), args.fOutputColor, args.fInputColor, args.fTexSamplers); fragBuilder->codeAppend("\t}\n"); } void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::onSetData( const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { INHERITED::onSetData(pdman, processor); const Edge2PtConicalEffect& data = processor.cast(); SkScalar radius0 = data.radius(); SkScalar diffRadius = data.diffRadius(); if (fCachedRadius != radius0 || fCachedDiffRadius != diffRadius) { pdman.set3f(fParamUni, radius0, radius0 * radius0, diffRadius); fCachedRadius = radius0; fCachedDiffRadius = diffRadius; } } ////////////////////////////////////////////////////////////////////////////// // Focal Conical Gradients ////////////////////////////////////////////////////////////////////////////// static ConicalType set_matrix_focal_conical(const SkTwoPointConicalGradient& shader, SkMatrix* invLMatrix, SkScalar* focalX) { // Inverse of the current local matrix is passed in then, // translate, scale, and rotate such that endCircle is unit circle on x-axis, // and focal point is at the origin. ConicalType conicalType; const SkPoint& focal = shader.getStartCenter(); const SkPoint& centerEnd = shader.getEndCenter(); SkScalar radius = shader.getEndRadius(); SkScalar invRadius = 1.f / radius; SkMatrix matrix; matrix.setTranslate(-centerEnd.fX, -centerEnd.fY); matrix.postScale(invRadius, invRadius); SkPoint focalTrans; matrix.mapPoints(&focalTrans, &focal, 1); *focalX = focalTrans.length(); if (0.f != *focalX) { SkScalar invFocalX = SkScalarInvert(*focalX); SkMatrix rot; rot.setSinCos(-invFocalX * focalTrans.fY, invFocalX * focalTrans.fX); matrix.postConcat(rot); } matrix.postTranslate(-(*focalX), 0.f); // If the focal point is touching the edge of the circle it will // cause a degenerate case that must be handled separately // kEdgeErrorTol = 5 * kErrorTol was picked after manual testing the // stability trade off versus the linear approx used in the Edge Shader if (SkScalarAbs(1.f - (*focalX)) < kEdgeErrorTol) { return kEdge_ConicalType; } // Scale factor 1 / (1 - focalX * focalX) SkScalar oneMinusF2 = 1.f - *focalX * *focalX; SkScalar s = SkScalarInvert(oneMinusF2); if (s >= 0.f) { conicalType = kInside_ConicalType; matrix.postScale(s, s * SkScalarSqrt(oneMinusF2)); } else { conicalType = kOutside_ConicalType; matrix.postScale(s, s); } invLMatrix->postConcat(matrix); return conicalType; } ////////////////////////////////////////////////////////////////////////////// class FocalOutside2PtConicalEffect : public GrGradientEffect { public: class GLSLFocalOutside2PtConicalProcessor; static std::unique_ptr Make(const CreateArgs& args, SkScalar focalX, bool isFlipped) { return GrGradientEffect::AdjustFP(std::unique_ptr( new FocalOutside2PtConicalEffect(args, focalX, isFlipped)), args); } const char* name() const override { return "Two-Point Conical Gradient Focal Outside"; } std::unique_ptr clone() const override { return std::unique_ptr(new FocalOutside2PtConicalEffect(*this)); } bool isFlipped() const { return fIsFlipped; } SkScalar focal() const { return fFocalX; } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; bool onIsEqual(const GrFragmentProcessor& sBase) const override { const FocalOutside2PtConicalEffect& s = sBase.cast(); return (INHERITED::onIsEqual(sBase) && this->fFocalX == s.fFocalX && this->fIsFlipped == s.fIsFlipped); } FocalOutside2PtConicalEffect(const CreateArgs& args, SkScalar focalX, bool isFlipped) : INHERITED(kFocalOutside2PtConicalEffect_ClassID, args, false /* opaque: draws transparent black outside of the cone. */) , fFocalX(focalX) , fIsFlipped(isFlipped) {} explicit FocalOutside2PtConicalEffect(const FocalOutside2PtConicalEffect& that) : INHERITED(that), fFocalX(that.fFocalX), fIsFlipped(that.fIsFlipped) { } GR_DECLARE_FRAGMENT_PROCESSOR_TEST SkScalar fFocalX; bool fIsFlipped; typedef GrGradientEffect INHERITED; }; class FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor : public GrGradientEffect::GLSLProcessor { public: GLSLFocalOutside2PtConicalProcessor(const GrProcessor&); virtual void emitCode(EmitArgs&) override; protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; UniformHandle fParamUni; const char* fVSVaryingName; const char* fFSVaryingName; // @{ /// Values last uploaded as uniforms SkScalar fCachedFocal; SkScalar fCachedFlipSign; // @} private: typedef GrGradientEffect::GLSLProcessor INHERITED; }; GrGLSLFragmentProcessor* FocalOutside2PtConicalEffect::onCreateGLSLInstance() const { return new FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor(*this); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(FocalOutside2PtConicalEffect); /* * All Two point conical gradient test create functions may occasionally create edge case shaders */ #if GR_TEST_UTILS std::unique_ptr FocalOutside2PtConicalEffect::TestCreate( GrProcessorTestData* d) { SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; SkScalar radius1 = 0.f; SkPoint center2; SkScalar radius2; do { center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); // Need to make sure the centers are not the same or else focal point will be inside } while (center1 == center2); SkPoint diff = center2 - center1; SkScalar diffLen = diff.length(); // Below makes sure that the focal point is not contained within circle two radius2 = d->fRandom->nextRangeF(0.f, diffLen); RandomGradientParams params(d->fRandom); auto shader = params.fUseColors4f ? SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors4f, params.fColorSpace, params.fStops, params.fColorCount, params.fTileMode) : SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors, params.fStops, params.fColorCount, params.fTileMode); GrTest::TestAsFPArgs asFPArgs(d); std::unique_ptr fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); GrAlwaysAssert(fp); return fp; } #endif FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor ::GLSLFocalOutside2PtConicalProcessor(const GrProcessor& processor) : fVSVaryingName(nullptr) , fFSVaryingName(nullptr) , fCachedFocal(SK_ScalarMax) , fCachedFlipSign(SK_ScalarMax) {} void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::emitCode(EmitArgs& args) { const FocalOutside2PtConicalEffect& ge = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; this->emitUniforms(uniformHandler, ge); fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf3_GrSLType, "Conical2FSParams"); SkString tName("t"); // TODO: get rid of these locals? SkString p0; // focalX SkString p1; // 1 - focalX * focalX p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str()); // params.x = focalX // params.y = 1 - focalX * focalX // params.z = flipSign GrShaderVar params = uniformHandler->getUniformVariable(fParamUni); // if we have a float3 from being in perspective, convert it to a float2 first GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); const char* coords2D = coords2DString.c_str(); // t = p.x * focal.x +/- sqrt(p.x^2 + (1 - focal.x^2) * p.y^2) // output will default to transparent black (we simply won't write anything // else to it if invalid, instead of discarding or returning prematurely) fragBuilder->codeAppendf("\t%s = half4(0.0,0.0,0.0,0.0);\n", args.fOutputColor); fragBuilder->codeAppendf("\thalf xs = %s.x * %s.x;\n", coords2D, coords2D); fragBuilder->codeAppendf("\thalf ys = %s.y * %s.y;\n", coords2D, coords2D); fragBuilder->codeAppendf("\thalf d = xs + %s * ys;\n", p1.c_str()); fragBuilder->codeAppendf("\thalf %s = %s.x * %s + sqrt(d);\n", tName.c_str(), coords2D, p0.c_str()); fragBuilder->codeAppendf("\tif (%s.z * %s >= 0.0 && d >= 0.0) {\n", params.c_str(), tName.c_str()); fragBuilder->codeAppend("\t\t"); this->emitColor(fragBuilder, uniformHandler, args.fShaderCaps, ge, tName.c_str(), args.fOutputColor, args.fInputColor, args.fTexSamplers); fragBuilder->codeAppend("\t}\n"); } void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::onSetData( const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { INHERITED::onSetData(pdman, processor); const FocalOutside2PtConicalEffect& data = processor.cast(); SkScalar focal = data.focal(); SkScalar flipSign = data.isFlipped() ? -1 : 1; if (fCachedFocal != focal || fCachedFlipSign != flipSign) { SkScalar oneMinus2F = 1.f - focal * focal; pdman.set3f(fParamUni, focal, oneMinus2F, flipSign); fCachedFocal = focal; fCachedFlipSign = flipSign; } } ////////////////////////////////////////////////////////////////////////////// class FocalInside2PtConicalEffect : public GrGradientEffect { public: class GLSLFocalInside2PtConicalProcessor; static std::unique_ptr Make(const CreateArgs& args, SkScalar focalX) { return GrGradientEffect::AdjustFP(std::unique_ptr( new FocalInside2PtConicalEffect(args, focalX)), args); } const char* name() const override { return "Two-Point Conical Gradient Focal Inside"; } std::unique_ptr clone() const override { return std::unique_ptr(new FocalInside2PtConicalEffect(*this)); } SkScalar focal() const { return fFocalX; } typedef FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor GLSLProcessor; private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; bool onIsEqual(const GrFragmentProcessor& sBase) const override { const FocalInside2PtConicalEffect& s = sBase.cast(); return (INHERITED::onIsEqual(sBase) && this->fFocalX == s.fFocalX); } FocalInside2PtConicalEffect(const CreateArgs& args, SkScalar focalX) : INHERITED(kFocalInside2PtConicalEffect_ClassID, args, args.fShader->colorsAreOpaque()), fFocalX(focalX) {} explicit FocalInside2PtConicalEffect(const FocalInside2PtConicalEffect& that) : INHERITED(that), fFocalX(that.fFocalX) {} GR_DECLARE_FRAGMENT_PROCESSOR_TEST SkScalar fFocalX; typedef GrGradientEffect INHERITED; }; class FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor : public GrGradientEffect::GLSLProcessor { public: GLSLFocalInside2PtConicalProcessor(const GrProcessor&); virtual void emitCode(EmitArgs&) override; protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; UniformHandle fFocalUni; const char* fVSVaryingName; const char* fFSVaryingName; // @{ /// Values last uploaded as uniforms SkScalar fCachedFocal; // @} private: typedef GrGradientEffect::GLSLProcessor INHERITED; }; GrGLSLFragmentProcessor* FocalInside2PtConicalEffect::onCreateGLSLInstance() const { return new FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor(*this); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(FocalInside2PtConicalEffect); /* * All Two point conical gradient test create functions may occasionally create edge case shaders */ #if GR_TEST_UTILS std::unique_ptr FocalInside2PtConicalEffect::TestCreate( GrProcessorTestData* d) { SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; SkScalar radius1 = 0.f; SkPoint center2; SkScalar radius2; do { center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); // Below makes sure radius2 is larger enouch such that the focal point // is inside the end circle SkScalar increase = d->fRandom->nextUScalar1(); SkPoint diff = center2 - center1; SkScalar diffLen = diff.length(); radius2 = diffLen + increase; // If the circles are identical the factory will give us an empty shader. } while (radius1 == radius2 && center1 == center2); RandomGradientParams params(d->fRandom); auto shader = params.fUseColors4f ? SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors4f, params.fColorSpace, params.fStops, params.fColorCount, params.fTileMode) : SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors, params.fStops, params.fColorCount, params.fTileMode); GrTest::TestAsFPArgs asFPArgs(d); std::unique_ptr fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); GrAlwaysAssert(fp); return fp; } #endif FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor ::GLSLFocalInside2PtConicalProcessor(const GrProcessor&) : fVSVaryingName(nullptr) , fFSVaryingName(nullptr) , fCachedFocal(SK_ScalarMax) {} void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::emitCode(EmitArgs& args) { const FocalInside2PtConicalEffect& ge = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; this->emitUniforms(uniformHandler, ge); fFocalUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Conical2FSParams"); SkString tName("t"); // this is the distance along x-axis from the end center to focal point in // transformed coordinates GrShaderVar focal = uniformHandler->getUniformVariable(fFocalUni); // if we have a float3 from being in perspective, convert it to a float2 first GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); const char* coords2D = coords2DString.c_str(); // t = p.x * focalX + length(p) fragBuilder->codeAppendf("\thalf %s = %s.x * %s + length(%s);\n", tName.c_str(), coords2D, focal.c_str(), coords2D); this->emitColor(fragBuilder, uniformHandler, args.fShaderCaps, ge, tName.c_str(), args.fOutputColor, args.fInputColor, args.fTexSamplers); } void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::onSetData( const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { INHERITED::onSetData(pdman, processor); const FocalInside2PtConicalEffect& data = processor.cast(); SkScalar focal = data.focal(); if (fCachedFocal != focal) { pdman.set1f(fFocalUni, SkScalarToFloat(focal)); fCachedFocal = focal; } } ////////////////////////////////////////////////////////////////////////////// // Circle Conical Gradients ////////////////////////////////////////////////////////////////////////////// struct CircleConicalInfo { SkPoint fCenterEnd; SkScalar fA; SkScalar fB; SkScalar fC; bool operator==(const CircleConicalInfo& other) const { return fCenterEnd == other.fCenterEnd && fA == other.fA && fB == other.fB && fC == other.fC; } bool operator!=(const CircleConicalInfo& other) const { return !(*this == other); } // true when endRadius < startRadius bool isFlipped() const { // B = (endRadius/startRadius - 1) * C return std::signbit(fB) != std::signbit(fC); } }; // Returns focal distance along x-axis in transformed coords static ConicalType set_matrix_circle_conical(const SkTwoPointConicalGradient& shader, SkMatrix* invLMatrix, CircleConicalInfo* info) { // Inverse of the current local matrix is passed in then, // translate and scale such that start circle is on the origin and has radius 1 const SkPoint& centerStart = shader.getStartCenter(); const SkPoint& centerEnd = shader.getEndCenter(); SkScalar radiusStart = shader.getStartRadius(); SkScalar radiusEnd = shader.getEndRadius(); SkMatrix matrix; matrix.setTranslate(-centerStart.fX, -centerStart.fY); SkScalar invStartRad = 1.f / radiusStart; matrix.postScale(invStartRad, invStartRad); radiusEnd /= radiusStart; SkPoint centerEndTrans; matrix.mapPoints(¢erEndTrans, ¢erEnd, 1); SkScalar A = centerEndTrans.fX * centerEndTrans.fX + centerEndTrans.fY * centerEndTrans.fY - radiusEnd * radiusEnd + 2 * radiusEnd - 1; // Check to see if start circle is inside end circle with edges touching. // If touching we return that it is of kEdge_ConicalType, and leave the matrix setting // to the edge shader. kEdgeErrorTol = 5 * kErrorTol was picked after manual testing // so that C = 1 / A is stable, and the linear approximation used in the Edge shader is // still accurate. if (SkScalarAbs(A) < kEdgeErrorTol) { return kEdge_ConicalType; } SkScalar C = 1.f / A; SkScalar B = (radiusEnd - 1.f) * C; matrix.postScale(C, C); invLMatrix->postConcat(matrix); info->fCenterEnd = centerEndTrans; info->fA = A; info->fB = B; info->fC = C; // if A ends up being negative, the start circle is contained completely inside the end cirlce if (A < 0.f) { return kInside_ConicalType; } return kOutside_ConicalType; } class CircleInside2PtConicalEffect : public GrGradientEffect { public: class GLSLCircleInside2PtConicalProcessor; static std::unique_ptr Make(const CreateArgs& args, const CircleConicalInfo& info) { return GrGradientEffect::AdjustFP(std::unique_ptr( new CircleInside2PtConicalEffect(args, info)), args); } const char* name() const override { return "Two-Point Conical Gradient Inside"; } std::unique_ptr clone() const override { return std::unique_ptr(new CircleInside2PtConicalEffect(*this)); } SkScalar centerX() const { return fInfo.fCenterEnd.fX; } SkScalar centerY() const { return fInfo.fCenterEnd.fY; } SkScalar A() const { return fInfo.fA; } SkScalar B() const { return fInfo.fB; } SkScalar C() const { return fInfo.fC; } bool isFlipped() const { return fInfo.isFlipped(); } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; bool onIsEqual(const GrFragmentProcessor& sBase) const override { const CircleInside2PtConicalEffect& s = sBase.cast(); return INHERITED::onIsEqual(sBase) && fInfo == s.fInfo; } CircleInside2PtConicalEffect(const CreateArgs& args, const CircleConicalInfo& info) : INHERITED(kCircleInside2PtConicalEffect_ClassID, args, args.fShader->colorsAreOpaque()), fInfo(info) {} explicit CircleInside2PtConicalEffect(const CircleInside2PtConicalEffect& that) : INHERITED(that), fInfo(that.fInfo) {} GR_DECLARE_FRAGMENT_PROCESSOR_TEST const CircleConicalInfo fInfo; typedef GrGradientEffect INHERITED; }; class CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor : public GrGradientEffect::GLSLProcessor { public: GLSLCircleInside2PtConicalProcessor(const GrProcessor&); virtual void emitCode(EmitArgs&) override; protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; UniformHandle fCenterUni; UniformHandle fParamUni; const char* fVSVaryingName; const char* fFSVaryingName; // @{ /// Values last uploaded as uniforms SkScalar fCachedCenterX; SkScalar fCachedCenterY; SkScalar fCachedA; SkScalar fCachedB; SkScalar fCachedC; SkScalar fCachedFlipSign; // @} private: typedef GrGradientEffect::GLSLProcessor INHERITED; }; GrGLSLFragmentProcessor* CircleInside2PtConicalEffect::onCreateGLSLInstance() const { return new CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor(*this); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleInside2PtConicalEffect); /* * All Two point conical gradient test create functions may occasionally create edge case shaders */ #if GR_TEST_UTILS std::unique_ptr CircleInside2PtConicalEffect::TestCreate( GrProcessorTestData* d) { SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; SkScalar radius1 = d->fRandom->nextUScalar1() + 0.0001f; // make sure radius1 != 0 SkPoint center2; SkScalar radius2; do { center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); // Below makes sure that circle one is contained within circle two SkScalar increase = d->fRandom->nextUScalar1(); SkPoint diff = center2 - center1; SkScalar diffLen = diff.length(); radius2 = radius1 + diffLen + increase; // If the circles are identical the factory will give us an empty shader. } while (radius1 == radius2 && center1 == center2); RandomGradientParams params(d->fRandom); auto shader = params.fUseColors4f ? SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors4f, params.fColorSpace, params.fStops, params.fColorCount, params.fTileMode) : SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors, params.fStops, params.fColorCount, params.fTileMode); GrTest::TestAsFPArgs asFPArgs(d); std::unique_ptr fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); GrAlwaysAssert(fp); return fp; } #endif CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor ::GLSLCircleInside2PtConicalProcessor(const GrProcessor& processor) : fVSVaryingName(nullptr) , fFSVaryingName(nullptr) , fCachedCenterX(SK_ScalarMax) , fCachedCenterY(SK_ScalarMax) , fCachedA(SK_ScalarMax) , fCachedB(SK_ScalarMax) , fCachedC(SK_ScalarMax) , fCachedFlipSign(SK_ScalarMax) {} void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::emitCode(EmitArgs& args) { const CircleInside2PtConicalEffect& ge = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; this->emitUniforms(uniformHandler, ge); fCenterUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, "Conical2FSCenter"); fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType, "Conical2FSParams"); SkString tName("t"); GrShaderVar center = uniformHandler->getUniformVariable(fCenterUni); // params.x = A // params.y = B // params.z = C // params.w = flipSign GrShaderVar params = uniformHandler->getUniformVariable(fParamUni); // if we have a float3 from being in perspective, convert it to a float2 first GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); const char* coords2D = coords2DString.c_str(); // p = coords2D // e = center end // r = radius end // A = dot(e, e) - r^2 + 2 * r - 1 // B = (r -1) / A // C = 1 / A // d = dot(e, p) + B // t = d +/- sqrt(d^2 - A * dot(p, p) + C) fragBuilder->codeAppendf("\thalf pDotp = dot(%s, %s);\n", coords2D, coords2D); fragBuilder->codeAppendf("\thalf d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(), params.c_str()); fragBuilder->codeAppendf("\thalf %s = d + %s.w * sqrt(d * d - %s.x * pDotp + %s.z);\n", tName.c_str(), params.c_str(), params.c_str(), params.c_str()); this->emitColor(fragBuilder, uniformHandler, args.fShaderCaps, ge, tName.c_str(), args.fOutputColor, args.fInputColor, args.fTexSamplers); } void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::onSetData( const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { INHERITED::onSetData(pdman, processor); const CircleInside2PtConicalEffect& data = processor.cast(); SkScalar centerX = data.centerX(); SkScalar centerY = data.centerY(); SkScalar A = data.A(); SkScalar B = data.B(); SkScalar C = data.C(); SkScalar flipSign = data.isFlipped() ? -1 : 1; if (fCachedCenterX != centerX || fCachedCenterY != centerY) { pdman.set2f(fCenterUni, centerX, centerY); fCachedCenterX = centerX; fCachedCenterY = centerY; } if (fCachedA != A || fCachedB != B || fCachedC != C || fCachedFlipSign != flipSign) { pdman.set4f(fParamUni, A, B, C, flipSign); fCachedA = A; fCachedB = B; fCachedC = C; fCachedFlipSign = flipSign; } } ////////////////////////////////////////////////////////////////////////////// class CircleOutside2PtConicalEffect : public GrGradientEffect { public: class GLSLCircleOutside2PtConicalProcessor; static std::unique_ptr Make(const CreateArgs& args, const CircleConicalInfo& info) { return GrGradientEffect::AdjustFP(std::unique_ptr( new CircleOutside2PtConicalEffect(args, info)), args); } const char* name() const override { return "Two-Point Conical Gradient Outside"; } std::unique_ptr clone() const override { return std::unique_ptr(new CircleOutside2PtConicalEffect(*this)); } SkScalar centerX() const { return fInfo.fCenterEnd.fX; } SkScalar centerY() const { return fInfo.fCenterEnd.fY; } SkScalar A() const { return fInfo.fA; } SkScalar B() const { return fInfo.fB; } SkScalar C() const { return fInfo.fC; } SkScalar tLimit() const { return fTLimit; } bool isFlipped() const { return fInfo.isFlipped(); } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; bool onIsEqual(const GrFragmentProcessor& sBase) const override { const CircleOutside2PtConicalEffect& s = sBase.cast(); return INHERITED::onIsEqual(sBase) && fInfo == s.fInfo && fTLimit == s.fTLimit; } CircleOutside2PtConicalEffect(const CreateArgs& args, const CircleConicalInfo& info) : INHERITED(kCircleOutside2PtConicalEffect_ClassID, args, false /* opaque: draws transparent black outside of the cone. */) , fInfo(info) { const SkTwoPointConicalGradient& shader = *static_cast(args.fShader); if (shader.getStartRadius() != shader.getEndRadius()) { fTLimit = shader.getStartRadius() / (shader.getStartRadius() - shader.getEndRadius()); } else { fTLimit = SK_ScalarMin; } } explicit CircleOutside2PtConicalEffect(const CircleOutside2PtConicalEffect& that) : INHERITED(that) , fInfo(that.fInfo) , fTLimit(that.fTLimit) {} GR_DECLARE_FRAGMENT_PROCESSOR_TEST const CircleConicalInfo fInfo; SkScalar fTLimit; typedef GrGradientEffect INHERITED; }; class CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor : public GrGradientEffect::GLSLProcessor { public: GLSLCircleOutside2PtConicalProcessor(const GrProcessor&); virtual void emitCode(EmitArgs&) override; protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; UniformHandle fCenterUni; UniformHandle fParamUni; UniformHandle fFlipSignUni; const char* fVSVaryingName; const char* fFSVaryingName; // @{ /// Values last uploaded as uniforms SkScalar fCachedCenterX; SkScalar fCachedCenterY; SkScalar fCachedA; SkScalar fCachedB; SkScalar fCachedC; SkScalar fCachedTLimit; SkScalar fCachedFlipSign; // @} private: typedef GrGradientEffect::GLSLProcessor INHERITED; }; GrGLSLFragmentProcessor* CircleOutside2PtConicalEffect::onCreateGLSLInstance() const { return new CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor(*this); } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleOutside2PtConicalEffect); /* * All Two point conical gradient test create functions may occasionally create edge case shaders */ #if GR_TEST_UTILS std::unique_ptr CircleOutside2PtConicalEffect::TestCreate( GrProcessorTestData* d) { SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}; SkScalar radius1 = d->fRandom->nextUScalar1() + 0.0001f; // make sure radius1 != 0 SkPoint center2; SkScalar radius2; SkScalar diffLen; do { center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()); // If the circles share a center than we can't be in the outside case } while (center1 == center2); SkPoint diff = center2 - center1; diffLen = diff.length(); // Below makes sure that circle one is not contained within circle two // and have radius2 >= radius to match sorting on cpu side radius2 = radius1 + d->fRandom->nextRangeF(0.f, diffLen); RandomGradientParams params(d->fRandom); auto shader = params.fUseColors4f ? SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors4f, params.fColorSpace, params.fStops, params.fColorCount, params.fTileMode) : SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2, params.fColors, params.fStops, params.fColorCount, params.fTileMode); GrTest::TestAsFPArgs asFPArgs(d); std::unique_ptr fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); GrAlwaysAssert(fp); return fp; } #endif CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor ::GLSLCircleOutside2PtConicalProcessor(const GrProcessor& processor) : fVSVaryingName(nullptr) , fFSVaryingName(nullptr) , fCachedCenterX(SK_ScalarMax) , fCachedCenterY(SK_ScalarMax) , fCachedA(SK_ScalarMax) , fCachedB(SK_ScalarMax) , fCachedC(SK_ScalarMax) , fCachedTLimit(SK_ScalarMax) , fCachedFlipSign(SK_ScalarMax) {} void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::emitCode(EmitArgs& args) { const CircleOutside2PtConicalEffect& ge = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; this->emitUniforms(uniformHandler, ge); fCenterUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, "Conical2FSCenter"); fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType, "Conical2FSParams"); fFlipSignUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Conical2FSFlipSign"); SkString tName("t"); GrShaderVar center = uniformHandler->getUniformVariable(fCenterUni); // params.x = A // params.y = B // params.z = C GrShaderVar params = uniformHandler->getUniformVariable(fParamUni); GrShaderVar flipsign = uniformHandler->getUniformVariable(fFlipSignUni); // if we have a float3 from being in perspective, convert it to a float2 first GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); const char* coords2D = coords2DString.c_str(); // output will default to transparent black (we simply won't write anything // else to it if invalid, instead of discarding or returning prematurely) fragBuilder->codeAppendf("\t%s = half4(0.0,0.0,0.0,0.0);\n", args.fOutputColor); // p = coords2D // e = center end // r = radius end // A = dot(e, e) - r^2 + 2 * r - 1 // B = (r -1) / A // C = 1 / A // d = dot(e, p) + B // t = d +/- sqrt(d^2 - A * dot(p, p) + C) fragBuilder->codeAppendf("\thalf pDotp = dot(%s, %s);\n", coords2D, coords2D); fragBuilder->codeAppendf("\thalf d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(), params.c_str()); fragBuilder->codeAppendf("\thalf deter = d * d - %s.x * pDotp + %s.z;\n", params.c_str(), params.c_str()); fragBuilder->codeAppendf("\thalf %s = d + sqrt(deter);\n", tName.c_str()); fragBuilder->codeAppendf("\tif (%s * (%s - %s.w) >= 0 && deter >= 0.0) {\n", flipsign.c_str(), tName.c_str(), params.c_str()); fragBuilder->codeAppend("\t\t"); this->emitColor(fragBuilder, uniformHandler, args.fShaderCaps, ge, tName.c_str(), args.fOutputColor, args.fInputColor, args.fTexSamplers); fragBuilder->codeAppend("\t}\n"); } void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::onSetData( const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { INHERITED::onSetData(pdman, processor); const CircleOutside2PtConicalEffect& data = processor.cast(); SkScalar centerX = data.centerX(); SkScalar centerY = data.centerY(); SkScalar A = data.A(); SkScalar B = data.B(); SkScalar C = data.C(); SkScalar tLimit = data.tLimit(); SkScalar flipSign = data.isFlipped() ? -1 : 1; if (fCachedCenterX != centerX || fCachedCenterY != centerY) { pdman.set2f(fCenterUni, centerX, centerY); fCachedCenterX = centerX; fCachedCenterY = centerY; } if (fCachedA != A || fCachedB != B || fCachedC != C || fCachedTLimit != tLimit) { pdman.set4f(fParamUni, A, B, C, tLimit); fCachedA = A; fCachedB = B; fCachedC = C; fCachedTLimit = tLimit; } if (fCachedFlipSign != flipSign) { pdman.set1f(fFlipSignUni, flipSign); fCachedFlipSign = flipSign; } } ////////////////////////////////////////////////////////////////////////////// std::unique_ptr Gr2PtConicalGradientEffect::Make( const GrGradientEffect::CreateArgs& args) { const SkTwoPointConicalGradient& shader = *static_cast(args.fShader); SkMatrix matrix; if (!shader.getLocalMatrix().invert(&matrix)) { return nullptr; } if (args.fMatrix) { SkMatrix inv; if (!args.fMatrix->invert(&inv)) { return nullptr; } matrix.postConcat(inv); } GrGradientEffect::CreateArgs newArgs(args.fContext, args.fShader, &matrix, args.fWrapMode, args.fDstColorSpace); if (shader.getStartRadius() < kErrorTol) { SkScalar focalX; ConicalType type = set_matrix_focal_conical(shader, &matrix, &focalX); if (type == kInside_ConicalType) { return FocalInside2PtConicalEffect::Make(newArgs, focalX); } else if(type == kEdge_ConicalType) { set_matrix_edge_conical(shader, &matrix); return Edge2PtConicalEffect::Make(newArgs); } else { const bool isFlipped = shader.getStartRadius() > shader.getEndRadius(); return FocalOutside2PtConicalEffect::Make(newArgs, focalX, isFlipped); } } CircleConicalInfo info; ConicalType type = set_matrix_circle_conical(shader, &matrix, &info); if (type == kInside_ConicalType) { return CircleInside2PtConicalEffect::Make(newArgs, info); } else if (type == kEdge_ConicalType) { set_matrix_edge_conical(shader, &matrix); return Edge2PtConicalEffect::Make(newArgs); } else { return CircleOutside2PtConicalEffect::Make(newArgs, info); } } #endif