/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Sk4fLinearGradient.h" #include "SkColorSpaceXformer.h" #include "SkLinearGradient.h" #include "SkRefCnt.h" // define to test the 4f gradient path // #define FORCE_4F_CONTEXT static const float kInv255Float = 1.0f / 255; static inline int repeat_8bits(int x) { return x & 0xFF; } static inline int mirror_8bits(int x) { if (x & 256) { x = ~x; } return x & 255; } static SkMatrix pts_to_unit_matrix(const SkPoint pts[2]) { SkVector vec = pts[1] - pts[0]; SkScalar mag = vec.length(); SkScalar inv = mag ? SkScalarInvert(mag) : 0; vec.scale(inv); SkMatrix matrix; matrix.setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY); matrix.postTranslate(-pts[0].fX, -pts[0].fY); matrix.postScale(inv, inv); return matrix; } static bool use_4f_context(const SkShaderBase::ContextRec& rec, uint32_t flags) { #ifdef FORCE_4F_CONTEXT return true; #else return rec.fPreferredDstType == SkShaderBase::ContextRec::kPM4f_DstType || SkToBool(flags & SkLinearGradient::kForce4fContext_PrivateFlag); #endif } /////////////////////////////////////////////////////////////////////////////// SkLinearGradient::SkLinearGradient(const SkPoint pts[2], const Descriptor& desc) : SkGradientShaderBase(desc, pts_to_unit_matrix(pts)) , fStart(pts[0]) , fEnd(pts[1]) { } sk_sp SkLinearGradient::CreateProc(SkReadBuffer& buffer) { DescriptorScope desc; if (!desc.unflatten(buffer)) { return nullptr; } SkPoint pts[2]; pts[0] = buffer.readPoint(); pts[1] = buffer.readPoint(); return SkGradientShader::MakeLinear(pts, desc.fColors, std::move(desc.fColorSpace), desc.fPos, desc.fCount, desc.fTileMode, desc.fGradFlags, desc.fLocalMatrix); } void SkLinearGradient::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writePoint(fStart); buffer.writePoint(fEnd); } SkShaderBase::Context* SkLinearGradient::onMakeContext( const ContextRec& rec, SkArenaAlloc* alloc) const { return use_4f_context(rec, fGradFlags) ? CheckedMakeContext(alloc, *this, rec) : CheckedMakeContext< LinearGradientContext>(alloc, *this, rec); } bool SkLinearGradient::adjustMatrixAndAppendStages(SkArenaAlloc* alloc, SkMatrix* matrix, SkRasterPipeline* p) const { *matrix = SkMatrix::Concat(fPtsToUnit, *matrix); // If the gradient is less than a quarter of a pixel, this falls into the // subpixel gradient code handled on a different path. SkVector dx = matrix->mapVector(1, 0); if (dx.fX >= 4) { return false; } return true; } sk_sp SkLinearGradient::onMakeColorSpace(SkColorSpaceXformer* xformer) const { SkPoint pts[2] = { fStart, fEnd }; SkSTArray<8, SkColor> xformedColors(fColorCount); xformer->apply(xformedColors.begin(), fOrigColors, fColorCount); return SkGradientShader::MakeLinear(pts, xformedColors.begin(), fOrigPos, fColorCount, fTileMode, fGradFlags, &this->getLocalMatrix()); } // This swizzles SkColor into the same component order as SkPMColor, but does not actually // "pre" multiply the color components. // // This allows us to map directly to Sk4f, and eventually scale down to bytes to output a // SkPMColor from the floats, without having to swizzle each time. // static uint32_t SkSwizzle_Color_to_PMColor(SkColor c) { return SkPackARGB32NoCheck(SkColorGetA(c), SkColorGetR(c), SkColorGetG(c), SkColorGetB(c)); } SkLinearGradient::LinearGradientContext::LinearGradientContext( const SkLinearGradient& shader, const ContextRec& ctx) : INHERITED(shader, ctx) { // setup for Sk4f const int count = shader.fColorCount; SkASSERT(count > 1); fRecs.setCount(count); Rec* rec = fRecs.begin(); if (shader.fOrigPos) { rec[0].fPos = 0; SkDEBUGCODE(rec[0].fPosScale = SK_FloatNaN;) // should never get used for (int i = 1; i < count; ++i) { rec[i].fPos = SkTPin(shader.fOrigPos[i], rec[i - 1].fPos, 1.0f); float diff = rec[i].fPos - rec[i - 1].fPos; if (diff > 0) { rec[i].fPosScale = 1.0f / diff; } else { rec[i].fPosScale = 0; } } } else { // no pos specified, so we compute evenly spaced values const float scale = float(count - 1); const float invScale = 1.0f / scale; for (int i = 0; i < count; ++i) { rec[i].fPos = i * invScale; rec[i].fPosScale = scale; } } rec[count - 1].fPos = 1; // overwrite the last value just to be sure we end at 1.0 fApplyAlphaAfterInterp = true; if ((shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag) || shader.colorsAreOpaque()) { fApplyAlphaAfterInterp = false; } if (fApplyAlphaAfterInterp) { // Our fColor values are in PMColor order, but are still unpremultiplied, allowing us to // interpolate in unpremultiplied space first, and then scale by alpha right before we // convert to SkPMColor bytes. const float paintAlpha = ctx.fPaint->getAlpha() * kInv255Float; const Sk4f scale(1, 1, 1, paintAlpha); for (int i = 0; i < count; ++i) { uint32_t c = SkSwizzle_Color_to_PMColor(shader.fOrigColors[i]); rec[i].fColor = SkNx_cast(Sk4b::Load(&c)) * scale; if (i > 0) { SkASSERT(rec[i - 1].fPos <= rec[i].fPos); } } } else { // Our fColor values are premultiplied, so converting to SkPMColor is just a matter // of converting the floats down to bytes. unsigned alphaScale = ctx.fPaint->getAlpha() + (ctx.fPaint->getAlpha() >> 7); for (int i = 0; i < count; ++i) { SkPMColor pmc = SkPreMultiplyColor(shader.fOrigColors[i]); pmc = SkAlphaMulQ(pmc, alphaScale); rec[i].fColor = SkNx_cast(Sk4b::Load(&pmc)); if (i > 0) { SkASSERT(rec[i - 1].fPos <= rec[i].fPos); } } } } #define NO_CHECK_ITER \ do { \ unsigned fi = SkGradFixedToFixed(fx) >> SkGradientShaderBase::kCache32Shift; \ SkASSERT(fi <= 0xFF); \ fx += dx; \ *dstC++ = cache[toggle + fi]; \ toggle = next_dither_toggle(toggle); \ } while (0) namespace { typedef void (*LinearShadeProc)(TileProc proc, SkGradFixed dx, SkGradFixed fx, SkPMColor* dstC, const SkPMColor* cache, int toggle, int count); // Linear interpolation (lerp) is unnecessary if there are no sharp // discontinuities in the gradient - which must be true if there are // only 2 colors - but it's cheap. void shadeSpan_linear_vertical_lerp(TileProc proc, SkGradFixed dx, SkGradFixed fx, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int toggle, int count) { // We're a vertical gradient, so no change in a span. // If colors change sharply across the gradient, dithering is // insufficient (it subsamples the color space) and we need to lerp. unsigned fullIndex = proc(SkGradFixedToFixed(fx)); unsigned fi = fullIndex >> SkGradientShaderBase::kCache32Shift; unsigned remainder = fullIndex & ((1 << SkGradientShaderBase::kCache32Shift) - 1); int index0 = fi + toggle; int index1 = index0; if (fi < SkGradientShaderBase::kCache32Count - 1) { index1 += 1; } SkPMColor lerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder); index0 ^= SkGradientShaderBase::kDitherStride32; index1 ^= SkGradientShaderBase::kDitherStride32; SkPMColor dlerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder); sk_memset32_dither(dstC, lerp, dlerp, count); } void shadeSpan_linear_clamp(TileProc proc, SkGradFixed dx, SkGradFixed fx, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int toggle, int count) { SkClampRange range; range.init(fx, dx, count, 0, SkGradientShaderBase::kCache32Count - 1); range.validate(count); if ((count = range.fCount0) > 0) { sk_memset32_dither(dstC, cache[toggle + range.fV0], cache[next_dither_toggle(toggle) + range.fV0], count); dstC += count; } if ((count = range.fCount1) > 0) { int unroll = count >> 3; fx = range.fFx1; for (int i = 0; i < unroll; i++) { NO_CHECK_ITER; NO_CHECK_ITER; NO_CHECK_ITER; NO_CHECK_ITER; NO_CHECK_ITER; NO_CHECK_ITER; NO_CHECK_ITER; NO_CHECK_ITER; } if ((count &= 7) > 0) { do { NO_CHECK_ITER; } while (--count != 0); } } if ((count = range.fCount2) > 0) { sk_memset32_dither(dstC, cache[toggle + range.fV1], cache[next_dither_toggle(toggle) + range.fV1], count); } } void shadeSpan_linear_mirror(TileProc proc, SkGradFixed dx, SkGradFixed fx, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int toggle, int count) { do { unsigned fi = mirror_8bits(SkGradFixedToFixed(fx) >> 8); SkASSERT(fi <= 0xFF); fx += dx; *dstC++ = cache[toggle + fi]; toggle = next_dither_toggle(toggle); } while (--count != 0); } void shadeSpan_linear_repeat(TileProc proc, SkGradFixed dx, SkGradFixed fx, SkPMColor* SK_RESTRICT dstC, const SkPMColor* SK_RESTRICT cache, int toggle, int count) { do { unsigned fi = repeat_8bits(SkGradFixedToFixed(fx) >> 8); SkASSERT(fi <= 0xFF); fx += dx; *dstC++ = cache[toggle + fi]; toggle = next_dither_toggle(toggle); } while (--count != 0); } } void SkLinearGradient::LinearGradientContext::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC, int count) { SkASSERT(count > 0); const SkLinearGradient& linearGradient = static_cast(fShader); if (SkShader::kClamp_TileMode == linearGradient.fTileMode && kLinear_MatrixClass == fDstToIndexClass) { this->shade4_clamp(x, y, dstC, count); return; } SkPoint srcPt; SkMatrix::MapXYProc dstProc = fDstToIndexProc; TileProc proc = linearGradient.fTileProc; const SkPMColor* SK_RESTRICT cache = fCache->getCache32(); int toggle = init_dither_toggle(x, y); if (fDstToIndexClass != kPerspective_MatrixClass) { dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf, SkIntToScalar(y) + SK_ScalarHalf, &srcPt); SkGradFixed dx, fx = SkScalarPinToGradFixed(srcPt.fX); if (fDstToIndexClass == kFixedStepInX_MatrixClass) { const auto step = fDstToIndex.fixedStepInX(SkIntToScalar(y)); // todo: do we need a real/high-precision value for dx here? dx = SkScalarPinToGradFixed(step.fX); } else { SkASSERT(fDstToIndexClass == kLinear_MatrixClass); dx = SkScalarPinToGradFixed(fDstToIndex.getScaleX()); } LinearShadeProc shadeProc = shadeSpan_linear_repeat; if (0 == dx) { shadeProc = shadeSpan_linear_vertical_lerp; } else if (SkShader::kClamp_TileMode == linearGradient.fTileMode) { shadeProc = shadeSpan_linear_clamp; } else if (SkShader::kMirror_TileMode == linearGradient.fTileMode) { shadeProc = shadeSpan_linear_mirror; } else { SkASSERT(SkShader::kRepeat_TileMode == linearGradient.fTileMode); } (*shadeProc)(proc, dx, fx, dstC, cache, toggle, count); } else { SkScalar dstX = SkIntToScalar(x); SkScalar dstY = SkIntToScalar(y); do { dstProc(fDstToIndex, dstX, dstY, &srcPt); unsigned fi = proc(SkScalarToFixed(srcPt.fX)); SkASSERT(fi <= 0xFFFF); *dstC++ = cache[toggle + (fi >> kCache32Shift)]; toggle = next_dither_toggle(toggle); dstX += SK_Scalar1; } while (--count != 0); } } SkShader::GradientType SkLinearGradient::asAGradient(GradientInfo* info) const { if (info) { commonAsAGradient(info); info->fPoint[0] = fStart; info->fPoint[1] = fEnd; } return kLinear_GradientType; } #if SK_SUPPORT_GPU #include "GrColorSpaceXform.h" #include "GrShaderCaps.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "SkGr.h" ///////////////////////////////////////////////////////////////////// class GrLinearGradient : public GrGradientEffect { public: class GLSLLinearProcessor; static sk_sp Make(const CreateArgs& args) { return sk_sp(new GrLinearGradient(args)); } ~GrLinearGradient() override {} const char* name() const override { return "Linear Gradient"; } private: GrLinearGradient(const CreateArgs& args) : INHERITED(args, args.fShader->colorsAreOpaque()) { this->initClassID(); } GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; typedef GrGradientEffect INHERITED; }; ///////////////////////////////////////////////////////////////////// class GrLinearGradient::GLSLLinearProcessor : public GrGradientEffect::GLSLProcessor { public: GLSLLinearProcessor(const GrProcessor&) {} ~GLSLLinearProcessor() override {} virtual void emitCode(EmitArgs&) override; static void GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) { b->add32(GenBaseGradientKey(processor)); } private: typedef GrGradientEffect::GLSLProcessor INHERITED; }; ///////////////////////////////////////////////////////////////////// GrGLSLFragmentProcessor* GrLinearGradient::onCreateGLSLInstance() const { return new GrLinearGradient::GLSLLinearProcessor(*this); } void GrLinearGradient::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrLinearGradient::GLSLLinearProcessor::GenKey(*this, caps, b); } ///////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrLinearGradient); #if GR_TEST_UTILS sk_sp GrLinearGradient::TestCreate(GrProcessorTestData* d) { SkPoint points[] = {{d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}, {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()}}; RandomGradientParams params(d->fRandom); auto shader = params.fUseColors4f ? SkGradientShader::MakeLinear(points, params.fColors4f, params.fColorSpace, params.fStops, params.fColorCount, params.fTileMode) : SkGradientShader::MakeLinear(points, params.fColors, params.fStops, params.fColorCount, params.fTileMode); GrTest::TestAsFPArgs asFPArgs(d); sk_sp fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args()); GrAlwaysAssert(fp); return fp; } #endif ///////////////////////////////////////////////////////////////////// void GrLinearGradient::GLSLLinearProcessor::emitCode(EmitArgs& args) { const GrLinearGradient& ge = args.fFp.cast(); this->emitUniforms(args.fUniformHandler, ge); SkString t = args.fFragBuilder->ensureCoords2D(args.fTransformedCoords[0]); t.append(".x"); this->emitColor(args.fFragBuilder, args.fUniformHandler, args.fShaderCaps, ge, t.c_str(), args.fOutputColor, args.fInputColor, args.fTexSamplers); } ///////////////////////////////////////////////////////////////////// sk_sp SkLinearGradient::asFragmentProcessor(const AsFPArgs& args) const { SkASSERT(args.fContext); SkMatrix matrix; if (!this->getLocalMatrix().invert(&matrix)) { return nullptr; } if (args.fLocalMatrix) { SkMatrix inv; if (!args.fLocalMatrix->invert(&inv)) { return nullptr; } matrix.postConcat(inv); } matrix.postConcat(fPtsToUnit); sk_sp colorSpaceXform = GrColorSpaceXform::Make(fColorSpace.get(), args.fDstColorSpace); sk_sp inner(GrLinearGradient::Make( GrGradientEffect::CreateArgs(args.fContext, this, &matrix, fTileMode, std::move(colorSpaceXform), SkToBool(args.fDstColorSpace)))); return GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner)); } #endif #ifndef SK_IGNORE_TO_STRING void SkLinearGradient::toString(SkString* str) const { str->append("SkLinearGradient ("); str->appendf("start: (%f, %f)", fStart.fX, fStart.fY); str->appendf(" end: (%f, %f) ", fEnd.fX, fEnd.fY); this->INHERITED::toString(str); str->append(")"); } #endif /////////////////////////////////////////////////////////////////////////////////////////////////// #include "SkNx.h" static const SkLinearGradient::LinearGradientContext::Rec* find_forward(const SkLinearGradient::LinearGradientContext::Rec rec[], float tiledX) { SkASSERT(tiledX >= 0 && tiledX <= 1); SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1); SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1); SkASSERT(rec[0].fPos <= rec[1].fPos); rec += 1; while (rec->fPos < tiledX || rec->fPosScale == 0) { SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1); SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1); SkASSERT(rec[0].fPos <= rec[1].fPos); rec += 1; } return rec - 1; } static const SkLinearGradient::LinearGradientContext::Rec* find_backward(const SkLinearGradient::LinearGradientContext::Rec rec[], float tiledX) { SkASSERT(tiledX >= 0 && tiledX <= 1); SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1); SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1); SkASSERT(rec[0].fPos <= rec[1].fPos); while (tiledX < rec->fPos || rec[1].fPosScale == 0) { rec -= 1; SkASSERT(rec[0].fPos >= 0 && rec[0].fPos <= 1); SkASSERT(rec[1].fPos >= 0 && rec[1].fPos <= 1); SkASSERT(rec[0].fPos <= rec[1].fPos); } return rec; } // As an optimization, we can apply the dither bias before interpolation -- but only when // operating in premul space (apply_alpha == false). When apply_alpha == true, we must // defer the bias application until after premul. // // The following two helpers encapsulate this logic: pre_bias is called before interpolation, // and effects the bias when apply_alpha == false, while post_bias is called after premul and // effects the bias for the apply_alpha == true case. template Sk4f pre_bias(const Sk4f& x, const Sk4f& bias) { return apply_alpha ? x : x + bias; } template Sk4f post_bias(const Sk4f& x, const Sk4f& bias) { return apply_alpha ? x + bias : x; } template SkPMColor trunc_from_255(const Sk4f& x, const Sk4f& bias) { SkPMColor c; Sk4f c4f255 = x; if (apply_alpha) { #ifdef SK_SUPPORT_LEGACY_GRADIENT_ALPHATRUNC static constexpr float alphaScale = 1; #else // Due to use of multiplication by the 1/255 reciprocal instead of division by 255, // non-integer alpha values very close to their ceiling can push the color values // above the alpha value, which will become an invalid premultiplied color. So nudge // alpha up slightly by a compensating scale to keep it above the color values. // To do this, multiply alpha by a number slightly greater than 1 to compensate // for error in scaling from the 1/255 approximation. Since this error is then // scaled by the alpha value, we need to scale the epsilon by 255 to get a safe // upper bound on the error. static constexpr float alphaScale = 1 + 255*std::numeric_limits::epsilon(); #endif const float scale = x[SkPM4f::A] * (1 / 255.f); c4f255 *= Sk4f(scale, scale, scale, alphaScale); } SkNx_cast(post_bias(c4f255, bias)).store(&c); return c; } template void fill(SkPMColor dst[], int count, const Sk4f& c4, const Sk4f& bias0, const Sk4f& bias1) { const SkPMColor c0 = trunc_from_255(pre_bias(c4, bias0), bias0); const SkPMColor c1 = trunc_from_255(pre_bias(c4, bias1), bias1); sk_memset32_dither(dst, c0, c1, count); } template void fill(SkPMColor dst[], int count, const Sk4f& c4) { // Assumes that c4 does not need to be dithered. sk_memset32(dst, trunc_from_255(c4, 0), count); } /* * TODOs * * - tilemodes * - interp before or after premul * - perspective * - optimizations * - use fixed (32bit or 16bit) instead of floats? */ static Sk4f lerp_color(float fx, const SkLinearGradient::LinearGradientContext::Rec* rec) { SkASSERT(fx >= rec[0].fPos); SkASSERT(fx <= rec[1].fPos); const float p0 = rec[0].fPos; const Sk4f c0 = rec[0].fColor; const Sk4f c1 = rec[1].fColor; const Sk4f diffc = c1 - c0; const float scale = rec[1].fPosScale; const float t = (fx - p0) * scale; return c0 + Sk4f(t) * diffc; } template void ramp(SkPMColor dstC[], int n, const Sk4f& c, const Sk4f& dc, const Sk4f& dither0, const Sk4f& dither1) { Sk4f dc2 = dc + dc; Sk4f dc4 = dc2 + dc2; Sk4f cd0 = pre_bias(c , dither0); Sk4f cd1 = pre_bias(c + dc, dither1); Sk4f cd2 = cd0 + dc2; Sk4f cd3 = cd1 + dc2; while (n >= 4) { if (!apply_alpha) { Sk4f_ToBytes((uint8_t*)dstC, cd0, cd1, cd2, cd3); dstC += 4; } else { *dstC++ = trunc_from_255(cd0, dither0); *dstC++ = trunc_from_255(cd1, dither1); *dstC++ = trunc_from_255(cd2, dither0); *dstC++ = trunc_from_255(cd3, dither1); } cd0 = cd0 + dc4; cd1 = cd1 + dc4; cd2 = cd2 + dc4; cd3 = cd3 + dc4; n -= 4; } if (n & 2) { *dstC++ = trunc_from_255(cd0, dither0); *dstC++ = trunc_from_255(cd1, dither1); cd0 = cd0 + dc2; } if (n & 1) { *dstC++ = trunc_from_255(cd0, dither0); } } template void SkLinearGradient::LinearGradientContext::shade4_dx_clamp(SkPMColor dstC[], int count, float fx, float dx, float invDx, const float dither[2]) { Sk4f dither0(dither[0]); Sk4f dither1(dither[1]); const Rec* rec = fRecs.begin(); const Sk4f dx4 = Sk4f(dx); SkDEBUGCODE(SkPMColor* endDstC = dstC + count;) if (dx_is_pos) { if (fx < 0) { // count is guaranteed to be positive, but the first arg may overflow int32 after // increment => casting to uint32 ensures correct clamping. int n = SkTMin(static_cast(SkFloatToIntFloor(-fx * invDx)) + 1, count); SkASSERT(n > 0); fill(dstC, n, rec[0].fColor); count -= n; dstC += n; fx += n * dx; SkASSERT(0 == count || fx >= 0); if (n & 1) { SkTSwap(dither0, dither1); } } } else { // dx < 0 if (fx > 1) { // count is guaranteed to be positive, but the first arg may overflow int32 after // increment => casting to uint32 ensures correct clamping. int n = SkTMin(static_cast(SkFloatToIntFloor((1 - fx) * invDx)) + 1, count); SkASSERT(n > 0); fill(dstC, n, rec[fRecs.count() - 1].fColor); count -= n; dstC += n; fx += n * dx; SkASSERT(0 == count || fx <= 1); if (n & 1) { SkTSwap(dither0, dither1); } } } SkASSERT(count >= 0); const Rec* r; if (dx_is_pos) { r = fRecs.begin(); // start at the beginning } else { r = fRecs.begin() + fRecs.count() - 2; // start at the end } while (count > 0) { if (dx_is_pos) { if (fx >= 1) { fill(dstC, count, rec[fRecs.count() - 1].fColor); return; } } else { // dx < 0 if (fx <= 0) { fill(dstC, count, rec[0].fColor); return; } } if (dx_is_pos) { r = find_forward(r, fx); } else { r = find_backward(r, fx); } SkASSERT(r >= fRecs.begin() && r < fRecs.begin() + fRecs.count() - 1); const float p0 = r[0].fPos; const Sk4f c0 = r[0].fColor; const float p1 = r[1].fPos; const Sk4f diffc = Sk4f(r[1].fColor) - c0; const float scale = r[1].fPosScale; const float t = (fx - p0) * scale; const Sk4f c = c0 + Sk4f(t) * diffc; const Sk4f dc = diffc * dx4 * Sk4f(scale); int n; if (dx_is_pos) { n = SkTMin((int)((p1 - fx) * invDx) + 1, count); } else { n = SkTMin((int)((p0 - fx) * invDx) + 1, count); } fx += n * dx; // fx should now outside of the p0..p1 interval. However, due to float precision loss, // its possible that fx is slightly too small/large, so we clamp it. if (dx_is_pos) { fx = SkTMax(fx, p1); } else { fx = SkTMin(fx, p0); } ramp(dstC, n, c, dc, dither0, dither1); dstC += n; SkASSERT(dstC <= endDstC); if (n & 1) { SkTSwap(dither0, dither1); } count -= n; SkASSERT(count >= 0); } } void SkLinearGradient::LinearGradientContext::shade4_clamp(int x, int y, SkPMColor dstC[], int count) { SkASSERT(count > 0); SkASSERT(kLinear_MatrixClass == fDstToIndexClass); SkPoint srcPt; fDstToIndexProc(fDstToIndex, x + SK_ScalarHalf, y + SK_ScalarHalf, &srcPt); float fx = srcPt.x(); const float dx = fDstToIndex.getScaleX(); // Default our dither bias values to 1/2, (rounding), which is no dithering float dither0 = 0.5f; float dither1 = 0.5f; if (fDither) { const float ditherCell[] = { 1/8.0f, 5/8.0f, 7/8.0f, 3/8.0f, }; const int rowIndex = (y & 1) << 1; dither0 = ditherCell[rowIndex]; dither1 = ditherCell[rowIndex + 1]; if (x & 1) { SkTSwap(dither0, dither1); } } const float dither[2] = { dither0, dither1 }; if (SkScalarNearlyZero(dx * count)) { // gradient is vertical const float pinFx = SkTPin(fx, 0.0f, 1.0f); Sk4f c = lerp_color(pinFx, find_forward(fRecs.begin(), pinFx)); if (fApplyAlphaAfterInterp) { fill(dstC, count, c, dither0, dither1); } else { fill(dstC, count, c, dither0, dither1); } return; } SkASSERT(0.f != dx); const float invDx = 1 / dx; if (dx > 0) { if (fApplyAlphaAfterInterp) { this->shade4_dx_clamp(dstC, count, fx, dx, invDx, dither); } else { this->shade4_dx_clamp(dstC, count, fx, dx, invDx, dither); } } else { if (fApplyAlphaAfterInterp) { this->shade4_dx_clamp(dstC, count, fx, dx, invDx, dither); } else { this->shade4_dx_clamp(dstC, count, fx, dx, invDx, dither); } } }