/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAdvancedTypefaceMetrics.h" #include "SkDataTable.h" #include "SkFixed.h" #include "SkFontDescriptor.h" #include "SkFontHost_FreeType_common.h" #include "SkFontMgr.h" #include "SkFontStyle.h" #include "SkMakeUnique.h" #include "SkMath.h" #include "SkMutex.h" #include "SkOSFile.h" #include "SkRefCnt.h" #include "SkStream.h" #include "SkString.h" #include "SkTDArray.h" #include "SkTemplates.h" #include "SkTypeface.h" #include "SkTypefaceCache.h" #include "SkTypes.h" #include #include class SkData; // FC_POSTSCRIPT_NAME was added with b561ff20 which ended up in 2.10.92 // Ubuntu 14.04 is on 2.11.0 // Debian 8 is on 2.11 // OpenSUSE Leap 42.1 is on 2.11.0 (42.3 is on 2.11.1) // Fedora 24 is on 2.11.94 #ifndef FC_POSTSCRIPT_NAME # define FC_POSTSCRIPT_NAME "postscriptname" #endif #ifdef SK_DEBUG # include "SkTLS.h" #endif /** Since FontConfig is poorly documented, this gives a high level overview: * * FcConfig is a handle to a FontConfig configuration instance. Each 'configuration' is independent * from any others which may exist. There exists a default global configuration which is created * and destroyed by FcInit and FcFini, but this default should not normally be used. * Instead, one should use FcConfigCreate and FcInit* to have a named local state. * * FcPatterns are {objectName -> [element]} (maps from object names to a list of elements). * Each element is some internal data plus an FcValue which is a variant (a union with a type tag). * Lists of elements are not typed, except by convention. Any collection of FcValues must be * assumed to be heterogeneous by the code, but the code need not do anything particularly * interesting if the values go against convention. * * Somewhat like DirectWrite, FontConfig supports synthetics through FC_EMBOLDEN and FC_MATRIX. * Like all synthetic information, such information must be passed with the font data. */ namespace { // Fontconfig is not threadsafe before 2.10.91. Before that, we lock with a global mutex. // See https://bug.skia.org/1497 for background. SK_DECLARE_STATIC_MUTEX(gFCMutex); #ifdef SK_DEBUG void* CreateThreadFcLocked() { return new bool(false); } void DeleteThreadFcLocked(void* v) { delete static_cast(v); } # define THREAD_FC_LOCKED \ static_cast(SkTLS::Get(CreateThreadFcLocked, DeleteThreadFcLocked)) #endif class FCLocker { // Assume FcGetVersion() has always been thread safe. static void lock() { if (FcGetVersion() < 21091) { gFCMutex.acquire(); } else { SkDEBUGCODE(bool* threadLocked = THREAD_FC_LOCKED); SkASSERT(false == *threadLocked); SkDEBUGCODE(*threadLocked = true); } } static void unlock() { AssertHeld(); if (FcGetVersion() < 21091) { gFCMutex.release(); } else { SkDEBUGCODE(*THREAD_FC_LOCKED = false); } } public: FCLocker() { lock(); } ~FCLocker() { unlock(); } /** If acquire and release were free, FCLocker would be used around each call into FontConfig. * Instead a much more granular approach is taken, but this means there are times when the * mutex is held when it should not be. A Suspend will drop the lock until it is destroyed. * While a Suspend exists, FontConfig should not be used without re-taking the lock. */ struct Suspend { Suspend() { unlock(); } ~Suspend() { lock(); } }; static void AssertHeld() { SkDEBUGCODE( if (FcGetVersion() < 21091) { gFCMutex.assertHeld(); } else { SkASSERT(true == *THREAD_FC_LOCKED); } ) } }; } // namespace template void FcTDestroy(T* t) { FCLocker::AssertHeld(); D(t); } template class SkAutoFc : public SkAutoTCallVProc > { public: SkAutoFc() : SkAutoTCallVProc >(C()) { T* obj = this->operator T*(); SkASSERT_RELEASE(nullptr != obj); } explicit SkAutoFc(T* obj) : SkAutoTCallVProc >(obj) {} }; typedef SkAutoFc SkAutoFcCharSet; typedef SkAutoFc SkAutoFcConfig; typedef SkAutoFc SkAutoFcFontSet; typedef SkAutoFc SkAutoFcLangSet; typedef SkAutoFc SkAutoFcObjectSet; typedef SkAutoFc SkAutoFcPattern; static bool get_bool(FcPattern* pattern, const char object[], bool missing = false) { FcBool value; if (FcPatternGetBool(pattern, object, 0, &value) != FcResultMatch) { return missing; } return value; } static int get_int(FcPattern* pattern, const char object[], int missing) { int value; if (FcPatternGetInteger(pattern, object, 0, &value) != FcResultMatch) { return missing; } return value; } static const char* get_string(FcPattern* pattern, const char object[], const char* missing = "") { FcChar8* value; if (FcPatternGetString(pattern, object, 0, &value) != FcResultMatch) { return missing; } return (const char*)value; } static const FcMatrix* get_matrix(FcPattern* pattern, const char object[]) { FcMatrix* matrix; if (FcPatternGetMatrix(pattern, object, 0, &matrix) != FcResultMatch) { return nullptr; } return matrix; } enum SkWeakReturn { kIsWeak_WeakReturn, kIsStrong_WeakReturn, kNoId_WeakReturn }; /** Ideally there would exist a call like * FcResult FcPatternIsWeak(pattern, object, id, FcBool* isWeak); * Sometime after 2.12.4 FcPatternGetWithBinding was added which can retrieve the binding. * * However, there is no such call and as of Fc 2.11.0 even FcPatternEquals ignores the weak bit. * Currently, the only reliable way of finding the weak bit is by its effect on matching. * The weak bit only affects the matching of FC_FAMILY and FC_POSTSCRIPT_NAME object values. * A element with the weak bit is scored after FC_LANG, without the weak bit is scored before. * Note that the weak bit is stored on the element, not on the value it holds. */ static SkWeakReturn is_weak(FcPattern* pattern, const char object[], int id) { FCLocker::AssertHeld(); FcResult result; // Create a copy of the pattern with only the value 'pattern'['object'['id']] in it. // Internally, FontConfig pattern objects are linked lists, so faster to remove from head. SkAutoFcObjectSet requestedObjectOnly(FcObjectSetBuild(object, nullptr)); SkAutoFcPattern minimal(FcPatternFilter(pattern, requestedObjectOnly)); FcBool hasId = true; for (int i = 0; hasId && i < id; ++i) { hasId = FcPatternRemove(minimal, object, 0); } if (!hasId) { return kNoId_WeakReturn; } FcValue value; result = FcPatternGet(minimal, object, 0, &value); if (result != FcResultMatch) { return kNoId_WeakReturn; } while (hasId) { hasId = FcPatternRemove(minimal, object, 1); } // Create a font set with two patterns. // 1. the same 'object' as minimal and a lang object with only 'nomatchlang'. // 2. a different 'object' from minimal and a lang object with only 'matchlang'. SkAutoFcFontSet fontSet; SkAutoFcLangSet strongLangSet; FcLangSetAdd(strongLangSet, (const FcChar8*)"nomatchlang"); SkAutoFcPattern strong(FcPatternDuplicate(minimal)); FcPatternAddLangSet(strong, FC_LANG, strongLangSet); SkAutoFcLangSet weakLangSet; FcLangSetAdd(weakLangSet, (const FcChar8*)"matchlang"); SkAutoFcPattern weak; FcPatternAddString(weak, object, (const FcChar8*)"nomatchstring"); FcPatternAddLangSet(weak, FC_LANG, weakLangSet); FcFontSetAdd(fontSet, strong.release()); FcFontSetAdd(fontSet, weak.release()); // Add 'matchlang' to the copy of the pattern. FcPatternAddLangSet(minimal, FC_LANG, weakLangSet); // Run a match against the copy of the pattern. // If the 'id' was weak, then we should match the pattern with 'matchlang'. // If the 'id' was strong, then we should match the pattern with 'nomatchlang'. // Note that this config is only used for FcFontRenderPrepare, which we don't even want. // However, there appears to be no way to match/sort without it. SkAutoFcConfig config; FcFontSet* fontSets[1] = { fontSet }; SkAutoFcPattern match(FcFontSetMatch(config, fontSets, SK_ARRAY_COUNT(fontSets), minimal, &result)); FcLangSet* matchLangSet; FcPatternGetLangSet(match, FC_LANG, 0, &matchLangSet); return FcLangEqual == FcLangSetHasLang(matchLangSet, (const FcChar8*)"matchlang") ? kIsWeak_WeakReturn : kIsStrong_WeakReturn; } /** Removes weak elements from either FC_FAMILY or FC_POSTSCRIPT_NAME objects in the property. * This can be quite expensive, and should not be used more than once per font lookup. * This removes all of the weak elements after the last strong element. */ static void remove_weak(FcPattern* pattern, const char object[]) { FCLocker::AssertHeld(); SkAutoFcObjectSet requestedObjectOnly(FcObjectSetBuild(object, nullptr)); SkAutoFcPattern minimal(FcPatternFilter(pattern, requestedObjectOnly)); int lastStrongId = -1; int numIds; SkWeakReturn result; for (int id = 0; ; ++id) { result = is_weak(minimal, object, 0); if (kNoId_WeakReturn == result) { numIds = id; break; } if (kIsStrong_WeakReturn == result) { lastStrongId = id; } SkAssertResult(FcPatternRemove(minimal, object, 0)); } // If they were all weak, then leave the pattern alone. if (lastStrongId < 0) { return; } // Remove everything after the last strong. for (int id = lastStrongId + 1; id < numIds; ++id) { SkAssertResult(FcPatternRemove(pattern, object, lastStrongId + 1)); } } static int map_range(SkScalar value, SkScalar old_min, SkScalar old_max, SkScalar new_min, SkScalar new_max) { SkASSERT(old_min < old_max); SkASSERT(new_min <= new_max); return new_min + ((value - old_min) * (new_max - new_min) / (old_max - old_min)); } struct MapRanges { SkScalar old_val; SkScalar new_val; }; static SkScalar map_ranges(SkScalar val, MapRanges const ranges[], int rangesCount) { // -Inf to [0] if (val < ranges[0].old_val) { return ranges[0].new_val; } // Linear from [i] to [i+1] for (int i = 0; i < rangesCount - 1; ++i) { if (val < ranges[i+1].old_val) { return map_range(val, ranges[i].old_val, ranges[i+1].old_val, ranges[i].new_val, ranges[i+1].new_val); } } // From [n] to +Inf // if (fcweight < Inf) return ranges[rangesCount-1].new_val; } #ifndef FC_WEIGHT_DEMILIGHT #define FC_WEIGHT_DEMILIGHT 65 #endif static SkFontStyle skfontstyle_from_fcpattern(FcPattern* pattern) { typedef SkFontStyle SkFS; // FcWeightToOpenType was buggy until 2.12.4 static constexpr MapRanges weightRanges[] = { { FC_WEIGHT_THIN, SkFS::kThin_Weight }, { FC_WEIGHT_EXTRALIGHT, SkFS::kExtraLight_Weight }, { FC_WEIGHT_LIGHT, SkFS::kLight_Weight }, { FC_WEIGHT_DEMILIGHT, 350 }, { FC_WEIGHT_BOOK, 380 }, { FC_WEIGHT_REGULAR, SkFS::kNormal_Weight }, { FC_WEIGHT_MEDIUM, SkFS::kMedium_Weight }, { FC_WEIGHT_DEMIBOLD, SkFS::kSemiBold_Weight }, { FC_WEIGHT_BOLD, SkFS::kBold_Weight }, { FC_WEIGHT_EXTRABOLD, SkFS::kExtraBold_Weight }, { FC_WEIGHT_BLACK, SkFS::kBlack_Weight }, { FC_WEIGHT_EXTRABLACK, SkFS::kExtraBlack_Weight }, }; SkScalar weight = map_ranges(get_int(pattern, FC_WEIGHT, FC_WEIGHT_REGULAR), weightRanges, SK_ARRAY_COUNT(weightRanges)); static constexpr MapRanges widthRanges[] = { { FC_WIDTH_ULTRACONDENSED, SkFS::kUltraCondensed_Width }, { FC_WIDTH_EXTRACONDENSED, SkFS::kExtraCondensed_Width }, { FC_WIDTH_CONDENSED, SkFS::kCondensed_Width }, { FC_WIDTH_SEMICONDENSED, SkFS::kSemiCondensed_Width }, { FC_WIDTH_NORMAL, SkFS::kNormal_Width }, { FC_WIDTH_SEMIEXPANDED, SkFS::kSemiExpanded_Width }, { FC_WIDTH_EXPANDED, SkFS::kExpanded_Width }, { FC_WIDTH_EXTRAEXPANDED, SkFS::kExtraExpanded_Width }, { FC_WIDTH_ULTRAEXPANDED, SkFS::kUltraExpanded_Width }, }; SkScalar width = map_ranges(get_int(pattern, FC_WIDTH, FC_WIDTH_NORMAL), widthRanges, SK_ARRAY_COUNT(widthRanges)); SkFS::Slant slant = SkFS::kUpright_Slant; switch (get_int(pattern, FC_SLANT, FC_SLANT_ROMAN)) { case FC_SLANT_ROMAN: slant = SkFS::kUpright_Slant; break; case FC_SLANT_ITALIC : slant = SkFS::kItalic_Slant ; break; case FC_SLANT_OBLIQUE: slant = SkFS::kOblique_Slant; break; default: SkASSERT(false); break; } return SkFontStyle(SkScalarRoundToInt(weight), SkScalarRoundToInt(width), slant); } static void fcpattern_from_skfontstyle(SkFontStyle style, FcPattern* pattern) { FCLocker::AssertHeld(); typedef SkFontStyle SkFS; // FcWeightFromOpenType was buggy until 2.12.4 static constexpr MapRanges weightRanges[] = { { SkFS::kThin_Weight, FC_WEIGHT_THIN }, { SkFS::kExtraLight_Weight, FC_WEIGHT_EXTRALIGHT }, { SkFS::kLight_Weight, FC_WEIGHT_LIGHT }, { 350, FC_WEIGHT_DEMILIGHT }, { 380, FC_WEIGHT_BOOK }, { SkFS::kNormal_Weight, FC_WEIGHT_REGULAR }, { SkFS::kMedium_Weight, FC_WEIGHT_MEDIUM }, { SkFS::kSemiBold_Weight, FC_WEIGHT_DEMIBOLD }, { SkFS::kBold_Weight, FC_WEIGHT_BOLD }, { SkFS::kExtraBold_Weight, FC_WEIGHT_EXTRABOLD }, { SkFS::kBlack_Weight, FC_WEIGHT_BLACK }, { SkFS::kExtraBlack_Weight, FC_WEIGHT_EXTRABLACK }, }; int weight = map_ranges(style.weight(), weightRanges, SK_ARRAY_COUNT(weightRanges)); static constexpr MapRanges widthRanges[] = { { SkFS::kUltraCondensed_Width, FC_WIDTH_ULTRACONDENSED }, { SkFS::kExtraCondensed_Width, FC_WIDTH_EXTRACONDENSED }, { SkFS::kCondensed_Width, FC_WIDTH_CONDENSED }, { SkFS::kSemiCondensed_Width, FC_WIDTH_SEMICONDENSED }, { SkFS::kNormal_Width, FC_WIDTH_NORMAL }, { SkFS::kSemiExpanded_Width, FC_WIDTH_SEMIEXPANDED }, { SkFS::kExpanded_Width, FC_WIDTH_EXPANDED }, { SkFS::kExtraExpanded_Width, FC_WIDTH_EXTRAEXPANDED }, { SkFS::kUltraExpanded_Width, FC_WIDTH_ULTRAEXPANDED }, }; int width = map_ranges(style.width(), widthRanges, SK_ARRAY_COUNT(widthRanges)); int slant = FC_SLANT_ROMAN; switch (style.slant()) { case SkFS::kUpright_Slant: slant = FC_SLANT_ROMAN ; break; case SkFS::kItalic_Slant : slant = FC_SLANT_ITALIC ; break; case SkFS::kOblique_Slant: slant = FC_SLANT_OBLIQUE; break; default: SkASSERT(false); break; } FcPatternAddInteger(pattern, FC_WEIGHT, weight); FcPatternAddInteger(pattern, FC_WIDTH , width); FcPatternAddInteger(pattern, FC_SLANT , slant); } class SkTypeface_stream : public SkTypeface_FreeType { public: /** @param data takes ownership of the font data.*/ SkTypeface_stream(std::unique_ptr data, SkString familyName, const SkFontStyle& style, bool fixedWidth) : INHERITED(style, fixedWidth) , fFamilyName(std::move(familyName)) , fData(std::move(data)) { } void onGetFamilyName(SkString* familyName) const override { *familyName = fFamilyName; } void onGetFontDescriptor(SkFontDescriptor* desc, bool* serialize) const override { *serialize = true; } SkStreamAsset* onOpenStream(int* ttcIndex) const override { *ttcIndex = fData->getIndex(); return fData->getStream()->duplicate().release(); } std::unique_ptr onMakeFontData() const override { return skstd::make_unique(*fData); } sk_sp onMakeClone(const SkFontArguments& args) const override { std::unique_ptr data = this->cloneFontData(args); if (!data) { return nullptr; } return sk_make_sp(std::move(data), fFamilyName, this->fontStyle(), this->isFixedPitch()); } private: SkString fFamilyName; const std::unique_ptr fData; typedef SkTypeface_FreeType INHERITED; }; class SkTypeface_fontconfig : public SkTypeface_FreeType { public: /** @param pattern takes ownership of the reference. */ static SkTypeface_fontconfig* Create(FcPattern* pattern) { return new SkTypeface_fontconfig(pattern); } mutable SkAutoFcPattern fPattern; void onGetFamilyName(SkString* familyName) const override { *familyName = get_string(fPattern, FC_FAMILY); } void onGetFontDescriptor(SkFontDescriptor* desc, bool* serialize) const override { FCLocker lock; desc->setFamilyName(get_string(fPattern, FC_FAMILY)); desc->setFullName(get_string(fPattern, FC_FULLNAME)); desc->setPostscriptName(get_string(fPattern, FC_POSTSCRIPT_NAME)); desc->setStyle(this->fontStyle()); *serialize = false; } SkStreamAsset* onOpenStream(int* ttcIndex) const override { FCLocker lock; *ttcIndex = get_int(fPattern, FC_INDEX, 0); return SkStream::MakeFromFile(get_string(fPattern, FC_FILE)).release(); } void onFilterRec(SkScalerContextRec* rec) const override { const FcMatrix* fcMatrix = get_matrix(fPattern, FC_MATRIX); if (fcMatrix) { // fPost2x2 is column-major, left handed (y down). // FcMatrix is column-major, right handed (y up). SkMatrix fm; fm.setAll(fcMatrix->xx,-fcMatrix->xy, 0, -fcMatrix->yx, fcMatrix->yy, 0, 0 , 0 , 1); SkMatrix sm; rec->getMatrixFrom2x2(&sm); sm.preConcat(fm); rec->fPost2x2[0][0] = sm.getScaleX(); rec->fPost2x2[0][1] = sm.getSkewX(); rec->fPost2x2[1][0] = sm.getSkewY(); rec->fPost2x2[1][1] = sm.getScaleY(); } if (get_bool(fPattern, FC_EMBOLDEN)) { rec->fFlags |= SkScalerContext::kEmbolden_Flag; } this->INHERITED::onFilterRec(rec); } std::unique_ptr onGetAdvancedMetrics() const override { std::unique_ptr info = this->INHERITED::onGetAdvancedMetrics(); // Simulated fonts shouldn't be considered to be of the type of their data. if (get_matrix(fPattern, FC_MATRIX) || get_bool(fPattern, FC_EMBOLDEN)) { info->fType = SkAdvancedTypefaceMetrics::kOther_Font; } return info; } sk_sp onMakeClone(const SkFontArguments& args) const override { std::unique_ptr data = this->cloneFontData(args); if (!data) { return nullptr; } SkString familyName; this->getFamilyName(&familyName); return sk_make_sp(std::move(data), familyName, this->fontStyle(), this->isFixedPitch()); } ~SkTypeface_fontconfig() override { // Hold the lock while unrefing the pattern. FCLocker lock; fPattern.reset(); } private: /** @param pattern takes ownership of the reference. */ SkTypeface_fontconfig(FcPattern* pattern) : INHERITED(skfontstyle_from_fcpattern(pattern), FC_PROPORTIONAL != get_int(pattern, FC_SPACING, FC_PROPORTIONAL)) , fPattern(pattern) { } typedef SkTypeface_FreeType INHERITED; }; class SkFontMgr_fontconfig : public SkFontMgr { mutable SkAutoFcConfig fFC; sk_sp fFamilyNames; SkTypeface_FreeType::Scanner fScanner; class StyleSet : public SkFontStyleSet { public: /** @param parent does not take ownership of the reference. * @param fontSet takes ownership of the reference. */ StyleSet(const SkFontMgr_fontconfig* parent, FcFontSet* fontSet) : fFontMgr(SkRef(parent)), fFontSet(fontSet) { } ~StyleSet() override { // Hold the lock while unrefing the font set. FCLocker lock; fFontSet.reset(); } int count() override { return fFontSet->nfont; } void getStyle(int index, SkFontStyle* style, SkString* styleName) override { if (index < 0 || fFontSet->nfont <= index) { return; } FCLocker lock; if (style) { *style = skfontstyle_from_fcpattern(fFontSet->fonts[index]); } if (styleName) { *styleName = get_string(fFontSet->fonts[index], FC_STYLE); } } SkTypeface* createTypeface(int index) override { FCLocker lock; FcPattern* match = fFontSet->fonts[index]; return fFontMgr->createTypefaceFromFcPattern(match); } SkTypeface* matchStyle(const SkFontStyle& style) override { FCLocker lock; SkAutoFcPattern pattern; fcpattern_from_skfontstyle(style, pattern); FcConfigSubstitute(fFontMgr->fFC, pattern, FcMatchPattern); FcDefaultSubstitute(pattern); FcResult result; FcFontSet* fontSets[1] = { fFontSet }; SkAutoFcPattern match(FcFontSetMatch(fFontMgr->fFC, fontSets, SK_ARRAY_COUNT(fontSets), pattern, &result)); if (nullptr == match) { return nullptr; } return fFontMgr->createTypefaceFromFcPattern(match); } private: sk_sp fFontMgr; SkAutoFcFontSet fFontSet; }; static bool FindName(const SkTDArray& list, const char* str) { int count = list.count(); for (int i = 0; i < count; ++i) { if (!strcmp(list[i], str)) { return true; } } return false; } static sk_sp GetFamilyNames(FcConfig* fcconfig) { FCLocker lock; SkTDArray names; SkTDArray sizes; static const FcSetName fcNameSet[] = { FcSetSystem, FcSetApplication }; for (int setIndex = 0; setIndex < (int)SK_ARRAY_COUNT(fcNameSet); ++setIndex) { // Return value of FcConfigGetFonts must not be destroyed. FcFontSet* allFonts(FcConfigGetFonts(fcconfig, fcNameSet[setIndex])); if (nullptr == allFonts) { continue; } for (int fontIndex = 0; fontIndex < allFonts->nfont; ++fontIndex) { FcPattern* current = allFonts->fonts[fontIndex]; for (int id = 0; ; ++id) { FcChar8* fcFamilyName; FcResult result = FcPatternGetString(current, FC_FAMILY, id, &fcFamilyName); if (FcResultNoId == result) { break; } if (FcResultMatch != result) { continue; } const char* familyName = reinterpret_cast(fcFamilyName); if (familyName && !FindName(names, familyName)) { *names.append() = familyName; *sizes.append() = strlen(familyName) + 1; } } } } return SkDataTable::MakeCopyArrays((void const *const *)names.begin(), sizes.begin(), names.count()); } static bool FindByFcPattern(SkTypeface* cached, void* ctx) { SkTypeface_fontconfig* cshFace = static_cast(cached); FcPattern* ctxPattern = static_cast(ctx); return FcTrue == FcPatternEqual(cshFace->fPattern, ctxPattern); } mutable SkMutex fTFCacheMutex; mutable SkTypefaceCache fTFCache; /** Creates a typeface using a typeface cache. * @param pattern a complete pattern from FcFontRenderPrepare. */ SkTypeface* createTypefaceFromFcPattern(FcPattern* pattern) const { FCLocker::AssertHeld(); SkAutoMutexAcquire ama(fTFCacheMutex); SkTypeface* face = fTFCache.findByProcAndRef(FindByFcPattern, pattern); if (nullptr == face) { FcPatternReference(pattern); face = SkTypeface_fontconfig::Create(pattern); if (face) { // Cannot hold the lock when calling add; an evicted typeface may need to lock. FCLocker::Suspend suspend; fTFCache.add(face); } } return face; } public: /** Takes control of the reference to 'config'. */ explicit SkFontMgr_fontconfig(FcConfig* config) : fFC(config ? config : FcInitLoadConfigAndFonts()) , fFamilyNames(GetFamilyNames(fFC)) { } ~SkFontMgr_fontconfig() override { // Hold the lock while unrefing the config. FCLocker lock; fFC.reset(); } protected: int onCountFamilies() const override { return fFamilyNames->count(); } void onGetFamilyName(int index, SkString* familyName) const override { familyName->set(fFamilyNames->atStr(index)); } SkFontStyleSet* onCreateStyleSet(int index) const override { return this->onMatchFamily(fFamilyNames->atStr(index)); } /** True if any string object value in the font is the same * as a string object value in the pattern. */ static bool AnyMatching(FcPattern* font, FcPattern* pattern, const char* object) { FcChar8* fontString; FcChar8* patternString; FcResult result; // Set an arbitrary limit on the number of pattern object values to consider. // TODO: re-write this to avoid N*M static const int maxId = 16; for (int patternId = 0; patternId < maxId; ++patternId) { result = FcPatternGetString(pattern, object, patternId, &patternString); if (FcResultNoId == result) { break; } if (FcResultMatch != result) { continue; } for (int fontId = 0; fontId < maxId; ++fontId) { result = FcPatternGetString(font, object, fontId, &fontString); if (FcResultNoId == result) { break; } if (FcResultMatch != result) { continue; } if (0 == FcStrCmpIgnoreCase(patternString, fontString)) { return true; } } } return false; } static bool FontAccessible(FcPattern* font) { // FontConfig can return fonts which are unreadable. const char* filename = get_string(font, FC_FILE, nullptr); if (nullptr == filename) { return false; } return sk_exists(filename, kRead_SkFILE_Flag); } static bool FontFamilyNameMatches(FcPattern* font, FcPattern* pattern) { return AnyMatching(font, pattern, FC_FAMILY); } static bool FontContainsCharacter(FcPattern* font, uint32_t character) { FcResult result; FcCharSet* matchCharSet; for (int charSetId = 0; ; ++charSetId) { result = FcPatternGetCharSet(font, FC_CHARSET, charSetId, &matchCharSet); if (FcResultNoId == result) { break; } if (FcResultMatch != result) { continue; } if (FcCharSetHasChar(matchCharSet, character)) { return true; } } return false; } SkFontStyleSet* onMatchFamily(const char familyName[]) const override { if (!familyName) { return nullptr; } FCLocker lock; SkAutoFcPattern pattern; FcPatternAddString(pattern, FC_FAMILY, (FcChar8*)familyName); FcConfigSubstitute(fFC, pattern, FcMatchPattern); FcDefaultSubstitute(pattern); FcPattern* matchPattern; SkAutoFcPattern strongPattern(nullptr); if (familyName) { strongPattern.reset(FcPatternDuplicate(pattern)); remove_weak(strongPattern, FC_FAMILY); matchPattern = strongPattern; } else { matchPattern = pattern; } SkAutoFcFontSet matches; // TODO: Some families have 'duplicates' due to symbolic links. // The patterns are exactly the same except for the FC_FILE. // It should be possible to collapse these patterns by normalizing. static const FcSetName fcNameSet[] = { FcSetSystem, FcSetApplication }; for (int setIndex = 0; setIndex < (int)SK_ARRAY_COUNT(fcNameSet); ++setIndex) { // Return value of FcConfigGetFonts must not be destroyed. FcFontSet* allFonts(FcConfigGetFonts(fFC, fcNameSet[setIndex])); if (nullptr == allFonts) { continue; } for (int fontIndex = 0; fontIndex < allFonts->nfont; ++fontIndex) { FcPattern* font = allFonts->fonts[fontIndex]; if (FontAccessible(font) && FontFamilyNameMatches(font, matchPattern)) { FcFontSetAdd(matches, FcFontRenderPrepare(fFC, pattern, font)); } } } return new StyleSet(this, matches.release()); } virtual SkTypeface* onMatchFamilyStyle(const char familyName[], const SkFontStyle& style) const override { FCLocker lock; SkAutoFcPattern pattern; FcPatternAddString(pattern, FC_FAMILY, (FcChar8*)familyName); fcpattern_from_skfontstyle(style, pattern); FcConfigSubstitute(fFC, pattern, FcMatchPattern); FcDefaultSubstitute(pattern); // We really want to match strong (prefered) and same (acceptable) only here. // If a family name was specified, assume that any weak matches after the last strong match // are weak (default) and ignore them. // The reason for is that after substitution the pattern for 'sans-serif' looks like // "wwwwwwwwwwwwwwswww" where there are many weak but preferred names, followed by defaults. // So it is possible to have weakly matching but preferred names. // In aliases, bindings are weak by default, so this is easy and common. // If no family name was specified, we'll probably only get weak matches, but that's ok. FcPattern* matchPattern; SkAutoFcPattern strongPattern(nullptr); if (familyName) { strongPattern.reset(FcPatternDuplicate(pattern)); remove_weak(strongPattern, FC_FAMILY); matchPattern = strongPattern; } else { matchPattern = pattern; } FcResult result; SkAutoFcPattern font(FcFontMatch(fFC, pattern, &result)); if (nullptr == font || !FontAccessible(font) || !FontFamilyNameMatches(font, matchPattern)) { return nullptr; } return createTypefaceFromFcPattern(font); } virtual SkTypeface* onMatchFamilyStyleCharacter(const char familyName[], const SkFontStyle& style, const char* bcp47[], int bcp47Count, SkUnichar character) const override { FCLocker lock; SkAutoFcPattern pattern; if (familyName) { FcValue familyNameValue; familyNameValue.type = FcTypeString; familyNameValue.u.s = reinterpret_cast(familyName); FcPatternAddWeak(pattern, FC_FAMILY, familyNameValue, FcFalse); } fcpattern_from_skfontstyle(style, pattern); SkAutoFcCharSet charSet; FcCharSetAddChar(charSet, character); FcPatternAddCharSet(pattern, FC_CHARSET, charSet); if (bcp47Count > 0) { SkASSERT(bcp47); SkAutoFcLangSet langSet; for (int i = bcp47Count; i --> 0;) { FcLangSetAdd(langSet, (const FcChar8*)bcp47[i]); } FcPatternAddLangSet(pattern, FC_LANG, langSet); } FcConfigSubstitute(fFC, pattern, FcMatchPattern); FcDefaultSubstitute(pattern); FcResult result; SkAutoFcPattern font(FcFontMatch(fFC, pattern, &result)); if (nullptr == font || !FontAccessible(font) || !FontContainsCharacter(font, character)) { return nullptr; } return createTypefaceFromFcPattern(font); } virtual SkTypeface* onMatchFaceStyle(const SkTypeface* typeface, const SkFontStyle& style) const override { //TODO: should the SkTypeface_fontconfig know its family? const SkTypeface_fontconfig* fcTypeface = static_cast(typeface); return this->matchFamilyStyle(get_string(fcTypeface->fPattern, FC_FAMILY), style); } sk_sp onMakeFromStreamIndex(std::unique_ptr stream, int ttcIndex) const override { const size_t length = stream->getLength(); if (length <= 0 || (1u << 30) < length) { return nullptr; } SkString name; SkFontStyle style; bool isFixedWidth = false; if (!fScanner.scanFont(stream.get(), ttcIndex, &name, &style, &isFixedWidth, nullptr)) { return nullptr; } auto data = skstd::make_unique(std::move(stream), ttcIndex, nullptr, 0); return sk_sp(new SkTypeface_stream(std::move(data), std::move(name), style, isFixedWidth)); } sk_sp onMakeFromStreamArgs(std::unique_ptr stream, const SkFontArguments& args) const override { using Scanner = SkTypeface_FreeType::Scanner; bool isFixedPitch; SkFontStyle style; SkString name; Scanner::AxisDefinitions axisDefinitions; if (!fScanner.scanFont(stream.get(), args.getCollectionIndex(), &name, &style, &isFixedPitch, &axisDefinitions)) { return nullptr; } SkAutoSTMalloc<4, SkFixed> axisValues(axisDefinitions.count()); Scanner::computeAxisValues(axisDefinitions, args.getVariationDesignPosition(), axisValues, name); auto data = skstd::make_unique(std::move(stream), args.getCollectionIndex(), axisValues.get(), axisDefinitions.count()); return sk_sp(new SkTypeface_stream(std::move(data), std::move(name), style, isFixedPitch)); } sk_sp onMakeFromData(sk_sp data, int ttcIndex) const override { return this->makeFromStream(skstd::make_unique(std::move(data)), ttcIndex); } sk_sp onMakeFromFile(const char path[], int ttcIndex) const override { return this->makeFromStream(SkStream::MakeFromFile(path), ttcIndex); } sk_sp onMakeFromFontData(std::unique_ptr fontData) const override { SkStreamAsset* stream(fontData->getStream()); const size_t length = stream->getLength(); if (length <= 0 || (1u << 30) < length) { return nullptr; } const int ttcIndex = fontData->getIndex(); SkString name; SkFontStyle style; bool isFixedWidth = false; if (!fScanner.scanFont(stream, ttcIndex, &name, &style, &isFixedWidth, nullptr)) { return nullptr; } return sk_sp(new SkTypeface_stream(std::move(fontData), std::move(name), style, isFixedWidth)); } sk_sp onLegacyMakeTypeface(const char familyName[], SkFontStyle style) const override { sk_sp typeface(this->matchFamilyStyle(familyName, style)); if (typeface) { return typeface; } return sk_sp(this->matchFamilyStyle(nullptr, style)); } }; SK_API sk_sp SkFontMgr_New_FontConfig(FcConfig* fc) { return sk_make_sp(fc); }