/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkCanvas.h" #include "SkData.h" #include "SkDevice.h" #include "SkPaint.h" #include "SkPathEffect.h" #include "SkGPipe.h" #include "SkGPipePriv.h" #include "SkImageFilter.h" #include "SkStream.h" #include "SkTSearch.h" #include "SkTypeface.h" #include "SkWriter32.h" #include "SkColorFilter.h" #include "SkDrawLooper.h" #include "SkMaskFilter.h" #include "SkRasterizer.h" #include "SkShader.h" #include "SkOrderedWriteBuffer.h" static SkFlattenable* get_paintflat(const SkPaint& paint, unsigned paintFlat) { SkASSERT(paintFlat < kCount_PaintFlats); switch (paintFlat) { case kColorFilter_PaintFlat: return paint.getColorFilter(); case kDrawLooper_PaintFlat: return paint.getLooper(); case kMaskFilter_PaintFlat: return paint.getMaskFilter(); case kPathEffect_PaintFlat: return paint.getPathEffect(); case kRasterizer_PaintFlat: return paint.getRasterizer(); case kShader_PaintFlat: return paint.getShader(); case kImageFilter_PaintFlat: return paint.getImageFilter(); case kXfermode_PaintFlat: return paint.getXfermode(); } SkDEBUGFAIL("never gets here"); return NULL; } static size_t writeTypeface(SkWriter32* writer, SkTypeface* typeface) { SkASSERT(typeface); SkDynamicMemoryWStream stream; typeface->serialize(&stream); size_t size = stream.getOffset(); if (writer) { writer->write32(size); SkAutoDataUnref data(stream.copyToData()); writer->writePad(data.data(), size); } return 4 + SkAlign4(size); } /////////////////////////////////////////////////////////////////////////////// /* * Shared heap for storing large things that can be shared, for a stream * used by multiple readers. * TODO: Make the allocations all come from cross process safe address space * TODO: Store paths (others?) * TODO: Allow reclaiming of memory. Will require us to know when all readers * have used the object. */ class Heap { public: Heap(bool shallow) : fCanDoShallowCopies(shallow) {} ~Heap() { for (int i = 0; i < fBitmaps.count(); i++) { delete fBitmaps[i].fBitmap; } } /* * Add a copy of a bitmap to the heap. * @param bm The SkBitmap to be copied and placed in the heap. * @return void* Pointer to the heap's copy of the bitmap. If NULL, * the bitmap could not be copied. */ const SkBitmap* addBitmap(const SkBitmap& orig) { const uint32_t genID = orig.getGenerationID(); SkPixelRef* sharedPixelRef = NULL; for (int i = fBitmaps.count() - 1; i >= 0; i--) { if (genID == fBitmaps[i].fGenID) { if (orig.pixelRefOffset() != fBitmaps[i].fBitmap->pixelRefOffset()) { // In this case, the bitmaps share a pixelRef, but have // different offsets. Keep track of the other bitmap so that // instead of making another copy of the pixelRef we can use // the copy we already made. sharedPixelRef = fBitmaps[i].fBitmap->pixelRef(); break; } return fBitmaps[i].fBitmap; } } SkBitmap* copy; // If the bitmap is mutable, we still need to do a deep copy, since the // caller may modify it afterwards. That said, if the bitmap is mutable, // but has no pixelRef, the copy constructor actually does a deep copy. if (fCanDoShallowCopies && (orig.isImmutable() || !orig.pixelRef())) { copy = new SkBitmap(orig); } else { if (sharedPixelRef != NULL) { // Do a shallow copy of the bitmap to get the width, height, etc copy = new SkBitmap(orig); // Replace the pixelRef with the copy that was already made, and // use the appropriate offset. copy->setPixelRef(sharedPixelRef, orig.pixelRefOffset()); } else { copy = new SkBitmap(); if (!orig.copyTo(copy, orig.getConfig())) { delete copy; return NULL; } } } BitmapInfo* info = fBitmaps.append(); info->fBitmap = copy; info->fGenID = genID; return copy; } private: struct BitmapInfo { SkBitmap* fBitmap; // Store the generation ID of the original bitmap, since copying does // not copy this field, so fBitmap's generation ID will not be useful // for comparing. uint32_t fGenID; }; SkTDArray fBitmaps; const bool fCanDoShallowCopies; }; /////////////////////////////////////////////////////////////////////////////// class SkGPipeCanvas : public SkCanvas { public: SkGPipeCanvas(SkGPipeController*, SkWriter32*, SkFactorySet*, uint32_t flags); virtual ~SkGPipeCanvas(); void finish() { if (!fDone) { if (this->needOpBytes()) { this->writeOp(kDone_DrawOp); this->doNotify(); } fDone = true; } } // overrides from SkCanvas virtual int save(SaveFlags) SK_OVERRIDE; virtual int saveLayer(const SkRect* bounds, const SkPaint*, SaveFlags) SK_OVERRIDE; virtual void restore() SK_OVERRIDE; virtual bool translate(SkScalar dx, SkScalar dy) SK_OVERRIDE; virtual bool scale(SkScalar sx, SkScalar sy) SK_OVERRIDE; virtual bool rotate(SkScalar degrees) SK_OVERRIDE; virtual bool skew(SkScalar sx, SkScalar sy) SK_OVERRIDE; virtual bool concat(const SkMatrix& matrix) SK_OVERRIDE; virtual void setMatrix(const SkMatrix& matrix) SK_OVERRIDE; virtual bool clipRect(const SkRect& rect, SkRegion::Op op, bool doAntiAlias = false) SK_OVERRIDE; virtual bool clipPath(const SkPath& path, SkRegion::Op op, bool doAntiAlias = false) SK_OVERRIDE; virtual bool clipRegion(const SkRegion& region, SkRegion::Op op) SK_OVERRIDE; virtual void clear(SkColor) SK_OVERRIDE; virtual void drawPaint(const SkPaint& paint) SK_OVERRIDE; virtual void drawPoints(PointMode, size_t count, const SkPoint pts[], const SkPaint&) SK_OVERRIDE; virtual void drawRect(const SkRect& rect, const SkPaint&) SK_OVERRIDE; virtual void drawPath(const SkPath& path, const SkPaint&) SK_OVERRIDE; virtual void drawBitmap(const SkBitmap&, SkScalar left, SkScalar top, const SkPaint*) SK_OVERRIDE; virtual void drawBitmapRect(const SkBitmap&, const SkIRect* src, const SkRect& dst, const SkPaint*) SK_OVERRIDE; virtual void drawBitmapMatrix(const SkBitmap&, const SkMatrix&, const SkPaint*) SK_OVERRIDE; virtual void drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst, const SkPaint* paint = NULL) SK_OVERRIDE; virtual void drawSprite(const SkBitmap&, int left, int top, const SkPaint*) SK_OVERRIDE; virtual void drawText(const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint&) SK_OVERRIDE; virtual void drawPosText(const void* text, size_t byteLength, const SkPoint pos[], const SkPaint&) SK_OVERRIDE; virtual void drawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[], SkScalar constY, const SkPaint&) SK_OVERRIDE; virtual void drawTextOnPath(const void* text, size_t byteLength, const SkPath& path, const SkMatrix* matrix, const SkPaint&) SK_OVERRIDE; virtual void drawPicture(SkPicture& picture) SK_OVERRIDE; virtual void drawVertices(VertexMode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode*, const uint16_t indices[], int indexCount, const SkPaint&) SK_OVERRIDE; virtual void drawData(const void*, size_t) SK_OVERRIDE; private: Heap fHeap; SkFactorySet* fFactorySet; // optional, only used if cross-process SkGPipeController* fController; SkWriter32& fWriter; size_t fBlockSize; // amount allocated for writer size_t fBytesNotified; bool fDone; uint32_t fFlags; SkRefCntSet fTypefaceSet; uint32_t getTypefaceID(SkTypeface*); inline void writeOp(DrawOps op, unsigned flags, unsigned data) { fWriter.write32(DrawOp_packOpFlagData(op, flags, data)); } inline void writeOp(DrawOps op) { fWriter.write32(DrawOp_packOpFlagData(op, 0, 0)); } bool needOpBytes(size_t size = 0); inline void doNotify() { if (!fDone) { size_t bytes = fWriter.size() - fBytesNotified; if (bytes > 0) { fController->notifyWritten(bytes); fBytesNotified += bytes; } } } struct FlatData { uint32_t fIndex; // always > 0 uint32_t fSize; void* data() { return (char*)this + sizeof(*this); } static int Compare(const FlatData* a, const FlatData* b) { return memcmp(&a->fSize, &b->fSize, a->fSize + sizeof(a->fSize)); } }; SkTDArray fBitmapArray; int flattenToIndex(const SkBitmap&); SkTDArray fFlatArray; int fCurrFlatIndex[kCount_PaintFlats]; int flattenToIndex(SkFlattenable* obj, PaintFlats); SkPaint fPaint; void writePaint(const SkPaint&); class AutoPipeNotify { public: AutoPipeNotify(SkGPipeCanvas* canvas) : fCanvas(canvas) {} ~AutoPipeNotify() { fCanvas->doNotify(); } private: SkGPipeCanvas* fCanvas; }; friend class AutoPipeNotify; typedef SkCanvas INHERITED; }; int SkGPipeCanvas::flattenToIndex(const SkBitmap & bitmap) { SkASSERT(shouldFlattenBitmaps(fFlags)); SkOrderedWriteBuffer tmpWriter(1024); tmpWriter.setFlags((SkFlattenableWriteBuffer::Flags) (SkFlattenableWriteBuffer::kInlineFactoryNames_Flag | SkFlattenableWriteBuffer::kCrossProcess_Flag)); tmpWriter.setFactoryRecorder(fFactorySet); bitmap.flatten(tmpWriter); size_t len = tmpWriter.size(); size_t allocSize = len + sizeof(FlatData); SkAutoSMalloc<1024> storage(allocSize); FlatData* flat = (FlatData*)storage.get(); flat->fSize = len; tmpWriter.flatten(flat->data()); int index = SkTSearch((const FlatData**)fBitmapArray.begin(), fBitmapArray.count(), flat, sizeof(flat), &FlatData::Compare); if (index < 0) { index = ~index; FlatData* copy = (FlatData*)sk_malloc_throw(allocSize); memcpy(copy, flat, allocSize); // For bitmaps, we can use zero based indices, since we will never ask // for a NULL bitmap (unlike with paint flattenables). copy->fIndex = fBitmapArray.count(); *fBitmapArray.insert(index) = copy; if (this->needOpBytes(len)) { this->writeOp(kDef_Bitmap_DrawOp, 0, copy->fIndex); fWriter.write(copy->data(), len); } } return fBitmapArray[index]->fIndex; } // return 0 for NULL (or unflattenable obj), or index-base-1 int SkGPipeCanvas::flattenToIndex(SkFlattenable* obj, PaintFlats paintflat) { if (NULL == obj) { return 0; } SkOrderedWriteBuffer tmpWriter(1024); if (fFlags & SkGPipeWriter::kCrossProcess_Flag) { tmpWriter.setFlags((SkFlattenableWriteBuffer::Flags) (SkFlattenableWriteBuffer::kInlineFactoryNames_Flag | SkFlattenableWriteBuffer::kCrossProcess_Flag)); tmpWriter.setFactoryRecorder(fFactorySet); } else { // Needed for bitmap shaders. tmpWriter.setFlags(SkFlattenableWriteBuffer::kForceFlattenBitmapPixels_Flag); } tmpWriter.writeFlattenable(obj); size_t len = tmpWriter.size(); size_t allocSize = len + sizeof(FlatData); SkAutoSMalloc<1024> storage(allocSize); FlatData* flat = (FlatData*)storage.get(); flat->fSize = len; tmpWriter.flatten(flat->data()); int index = SkTSearch((const FlatData**)fFlatArray.begin(), fFlatArray.count(), flat, sizeof(flat), &FlatData::Compare); if (index < 0) { index = ~index; FlatData* copy = (FlatData*)sk_malloc_throw(allocSize); memcpy(copy, flat, allocSize); *fFlatArray.insert(index) = copy; // call this after the insert, so that count() will have been grown copy->fIndex = fFlatArray.count(); // SkDebugf("--- add flattenable[%d] size=%d index=%d\n", paintflat, len, copy->fIndex); if (this->needOpBytes(len)) { this->writeOp(kDef_Flattenable_DrawOp, paintflat, copy->fIndex); fWriter.write(copy->data(), len); } } return fFlatArray[index]->fIndex; } /////////////////////////////////////////////////////////////////////////////// #define MIN_BLOCK_SIZE (16 * 1024) SkGPipeCanvas::SkGPipeCanvas(SkGPipeController* controller, SkWriter32* writer, SkFactorySet* fset, uint32_t flags) : fHeap(!(flags & SkGPipeWriter::kCrossProcess_Flag)), fWriter(*writer), fFlags(flags) { fFactorySet = fset; fController = controller; fDone = false; fBlockSize = 0; // need first block from controller fBytesNotified = 0; sk_bzero(fCurrFlatIndex, sizeof(fCurrFlatIndex)); // we need a device to limit our clip // should the caller give us the bounds? // We don't allocate pixels for the bitmap SkBitmap bitmap; bitmap.setConfig(SkBitmap::kARGB_8888_Config, 32767, 32767); SkDevice* device = SkNEW_ARGS(SkDevice, (bitmap)); this->setDevice(device)->unref(); // Tell the reader the appropriate flags to use. if (this->needOpBytes()) { this->writeOp(kReportFlags_DrawOp, fFlags, 0); } } SkGPipeCanvas::~SkGPipeCanvas() { this->finish(); fFlatArray.freeAll(); fBitmapArray.freeAll(); } bool SkGPipeCanvas::needOpBytes(size_t needed) { if (fDone) { return false; } needed += 4; // size of DrawOp atom if (fWriter.size() + needed > fBlockSize) { // Before we wipe out any data that has already been written, read it // out. this->doNotify(); size_t blockSize = SkMax32(MIN_BLOCK_SIZE, needed); void* block = fController->requestBlock(blockSize, &fBlockSize); if (NULL == block) { fDone = true; return false; } fWriter.reset(block, fBlockSize); fBytesNotified = 0; } return true; } uint32_t SkGPipeCanvas::getTypefaceID(SkTypeface* face) { uint32_t id = 0; // 0 means default/null typeface if (face) { id = fTypefaceSet.find(face); if (0 == id) { id = fTypefaceSet.add(face); size_t size = writeTypeface(NULL, face); if (this->needOpBytes(size)) { this->writeOp(kDef_Typeface_DrawOp); writeTypeface(&fWriter, face); } } } return id; } /////////////////////////////////////////////////////////////////////////////// #define NOTIFY_SETUP(canvas) \ AutoPipeNotify apn(canvas) int SkGPipeCanvas::save(SaveFlags flags) { NOTIFY_SETUP(this); if (this->needOpBytes()) { this->writeOp(kSave_DrawOp, 0, flags); } return this->INHERITED::save(flags); } int SkGPipeCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint, SaveFlags saveFlags) { NOTIFY_SETUP(this); size_t size = 0; unsigned opFlags = 0; if (bounds) { opFlags |= kSaveLayer_HasBounds_DrawOpFlag; size += sizeof(SkRect); } if (paint) { opFlags |= kSaveLayer_HasPaint_DrawOpFlag; this->writePaint(*paint); } if (this->needOpBytes(size)) { this->writeOp(kSaveLayer_DrawOp, opFlags, saveFlags); if (bounds) { fWriter.writeRect(*bounds); } } // we just pass on the save, so we don't create a layer return this->INHERITED::save(saveFlags); } void SkGPipeCanvas::restore() { NOTIFY_SETUP(this); if (this->needOpBytes()) { this->writeOp(kRestore_DrawOp); } this->INHERITED::restore(); } bool SkGPipeCanvas::translate(SkScalar dx, SkScalar dy) { if (dx || dy) { NOTIFY_SETUP(this); if (this->needOpBytes(2 * sizeof(SkScalar))) { this->writeOp(kTranslate_DrawOp); fWriter.writeScalar(dx); fWriter.writeScalar(dy); } } return this->INHERITED::translate(dx, dy); } bool SkGPipeCanvas::scale(SkScalar sx, SkScalar sy) { if (sx || sy) { NOTIFY_SETUP(this); if (this->needOpBytes(2 * sizeof(SkScalar))) { this->writeOp(kScale_DrawOp); fWriter.writeScalar(sx); fWriter.writeScalar(sy); } } return this->INHERITED::scale(sx, sy); } bool SkGPipeCanvas::rotate(SkScalar degrees) { if (degrees) { NOTIFY_SETUP(this); if (this->needOpBytes(sizeof(SkScalar))) { this->writeOp(kRotate_DrawOp); fWriter.writeScalar(degrees); } } return this->INHERITED::rotate(degrees); } bool SkGPipeCanvas::skew(SkScalar sx, SkScalar sy) { if (sx || sy) { NOTIFY_SETUP(this); if (this->needOpBytes(2 * sizeof(SkScalar))) { this->writeOp(kSkew_DrawOp); fWriter.writeScalar(sx); fWriter.writeScalar(sy); } } return this->INHERITED::skew(sx, sy); } bool SkGPipeCanvas::concat(const SkMatrix& matrix) { if (!matrix.isIdentity()) { NOTIFY_SETUP(this); if (this->needOpBytes(matrix.writeToMemory(NULL))) { this->writeOp(kConcat_DrawOp); fWriter.writeMatrix(matrix); } } return this->INHERITED::concat(matrix); } void SkGPipeCanvas::setMatrix(const SkMatrix& matrix) { NOTIFY_SETUP(this); if (this->needOpBytes(matrix.writeToMemory(NULL))) { this->writeOp(kSetMatrix_DrawOp); fWriter.writeMatrix(matrix); } this->INHERITED::setMatrix(matrix); } bool SkGPipeCanvas::clipRect(const SkRect& rect, SkRegion::Op rgnOp, bool doAntiAlias) { NOTIFY_SETUP(this); if (this->needOpBytes(sizeof(SkRect)) + sizeof(bool)) { this->writeOp(kClipRect_DrawOp, 0, rgnOp); fWriter.writeRect(rect); fWriter.writeBool(doAntiAlias); } return this->INHERITED::clipRect(rect, rgnOp, doAntiAlias); } bool SkGPipeCanvas::clipPath(const SkPath& path, SkRegion::Op rgnOp, bool doAntiAlias) { NOTIFY_SETUP(this); if (this->needOpBytes(path.writeToMemory(NULL)) + sizeof(bool)) { this->writeOp(kClipPath_DrawOp, 0, rgnOp); fWriter.writePath(path); fWriter.writeBool(doAntiAlias); } // we just pass on the bounds of the path return this->INHERITED::clipRect(path.getBounds(), rgnOp, doAntiAlias); } bool SkGPipeCanvas::clipRegion(const SkRegion& region, SkRegion::Op rgnOp) { NOTIFY_SETUP(this); if (this->needOpBytes(region.writeToMemory(NULL))) { this->writeOp(kClipRegion_DrawOp, 0, rgnOp); fWriter.writeRegion(region); } return this->INHERITED::clipRegion(region, rgnOp); } /////////////////////////////////////////////////////////////////////////////// void SkGPipeCanvas::clear(SkColor color) { NOTIFY_SETUP(this); unsigned flags = 0; if (color) { flags |= kClear_HasColor_DrawOpFlag; } if (this->needOpBytes(sizeof(SkColor))) { this->writeOp(kDrawClear_DrawOp, flags, 0); if (color) { fWriter.write32(color); } } } void SkGPipeCanvas::drawPaint(const SkPaint& paint) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes()) { this->writeOp(kDrawPaint_DrawOp); } } void SkGPipeCanvas::drawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { if (count) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(4 + count * sizeof(SkPoint))) { this->writeOp(kDrawPoints_DrawOp, mode, 0); fWriter.write32(count); fWriter.write(pts, count * sizeof(SkPoint)); } } } void SkGPipeCanvas::drawRect(const SkRect& rect, const SkPaint& paint) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(sizeof(SkRect))) { this->writeOp(kDrawRect_DrawOp); fWriter.writeRect(rect); } } void SkGPipeCanvas::drawPath(const SkPath& path, const SkPaint& paint) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(path.writeToMemory(NULL))) { this->writeOp(kDrawPath_DrawOp); fWriter.writePath(path); } } void SkGPipeCanvas::drawBitmap(const SkBitmap& bm, SkScalar left, SkScalar top, const SkPaint* paint) { bool flatten = shouldFlattenBitmaps(fFlags); const void* ptr = 0; int bitmapIndex = 0; if (flatten) { bitmapIndex = this->flattenToIndex(bm); } else { ptr = fHeap.addBitmap(bm); if (NULL == ptr) { return; } } NOTIFY_SETUP(this); if (paint) { this->writePaint(*paint); } size_t opBytesNeeded = sizeof(SkScalar) * 2 + sizeof(bool); if (!flatten) { opBytesNeeded += sizeof(void*); } if (this->needOpBytes(opBytesNeeded)) { this->writeOp(kDrawBitmap_DrawOp, 0, bitmapIndex); if (!flatten) { fWriter.writePtr(const_cast(ptr)); } fWriter.writeBool(paint != NULL); fWriter.writeScalar(left); fWriter.writeScalar(top); } } void SkGPipeCanvas::drawBitmapRect(const SkBitmap& bm, const SkIRect* src, const SkRect& dst, const SkPaint* paint) { bool flatten = shouldFlattenBitmaps(fFlags); const void* ptr = 0; int bitmapIndex = 0; if (flatten) { bitmapIndex = this->flattenToIndex(bm); } else { ptr = fHeap.addBitmap(bm); if (NULL == ptr) { return; } } NOTIFY_SETUP(this); if (paint) { this->writePaint(*paint); } size_t opBytesNeeded = sizeof(SkRect) + sizeof(bool) * 2; bool hasSrc = src != NULL; if (hasSrc) { opBytesNeeded += sizeof(int32_t) * 4; } if (!flatten) { opBytesNeeded += sizeof(void*); } if (this->needOpBytes(opBytesNeeded)) { this->writeOp(kDrawBitmapRect_DrawOp, 0, bitmapIndex); if (!flatten) { fWriter.writePtr(const_cast(ptr)); } fWriter.writeBool(paint != NULL); fWriter.writeBool(hasSrc); if (hasSrc) { fWriter.write32(src->fLeft); fWriter.write32(src->fTop); fWriter.write32(src->fRight); fWriter.write32(src->fBottom); } fWriter.writeRect(dst); } } void SkGPipeCanvas::drawBitmapMatrix(const SkBitmap&, const SkMatrix&, const SkPaint*) { UNIMPLEMENTED } void SkGPipeCanvas::drawBitmapNine(const SkBitmap& bm, const SkIRect& center, const SkRect& dst, const SkPaint* paint) { bool flatten = shouldFlattenBitmaps(fFlags); const void* ptr = 0; int bitmapIndex = 0; if (flatten) { bitmapIndex = this->flattenToIndex(bm); } else { ptr = fHeap.addBitmap(bm); if (NULL == ptr) { return; } } NOTIFY_SETUP(this); if (paint) { this->writePaint(*paint); } size_t opBytesNeeded = sizeof(int32_t) * 4 + sizeof(bool) + sizeof(SkRect); if (!flatten) { opBytesNeeded += sizeof(void*); } if (this->needOpBytes(opBytesNeeded)) { this->writeOp(kDrawBitmapNine_DrawOp, 0, bitmapIndex); if (!flatten) { fWriter.writePtr(const_cast(ptr)); } fWriter.writeBool(paint != NULL); fWriter.write32(center.fLeft); fWriter.write32(center.fTop); fWriter.write32(center.fRight); fWriter.write32(center.fBottom); fWriter.writeRect(dst); } } void SkGPipeCanvas::drawSprite(const SkBitmap& bm, int left, int top, const SkPaint* paint) { bool flatten = shouldFlattenBitmaps(fFlags); const void* ptr = 0; int bitmapIndex = 0; if (flatten) { bitmapIndex = this->flattenToIndex(bm); } else { ptr = fHeap.addBitmap(bm); if (NULL == ptr) { return; } } NOTIFY_SETUP(this); if (paint) { this->writePaint(*paint); } size_t opBytesNeeded = sizeof(int32_t) * 2 + sizeof(bool); if (!flatten) { opBytesNeeded += sizeof(void*); } if (this->needOpBytes(opBytesNeeded)) { this->writeOp(kDrawSprite_DrawOp, 0, bitmapIndex); if (!flatten) { fWriter.writePtr(const_cast(ptr)); } fWriter.writeBool(paint != NULL); fWriter.write32(left); fWriter.write32(top); } } void SkGPipeCanvas::drawText(const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) { if (byteLength) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(4 + SkAlign4(byteLength) + 2 * sizeof(SkScalar))) { this->writeOp(kDrawText_DrawOp); fWriter.write32(byteLength); fWriter.writePad(text, byteLength); fWriter.writeScalar(x); fWriter.writeScalar(y); } } } void SkGPipeCanvas::drawPosText(const void* text, size_t byteLength, const SkPoint pos[], const SkPaint& paint) { if (byteLength) { NOTIFY_SETUP(this); this->writePaint(paint); int count = paint.textToGlyphs(text, byteLength, NULL); if (this->needOpBytes(4 + SkAlign4(byteLength) + 4 + count * sizeof(SkPoint))) { this->writeOp(kDrawPosText_DrawOp); fWriter.write32(byteLength); fWriter.writePad(text, byteLength); fWriter.write32(count); fWriter.write(pos, count * sizeof(SkPoint)); } } } void SkGPipeCanvas::drawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[], SkScalar constY, const SkPaint& paint) { if (byteLength) { NOTIFY_SETUP(this); this->writePaint(paint); int count = paint.textToGlyphs(text, byteLength, NULL); if (this->needOpBytes(4 + SkAlign4(byteLength) + 4 + count * sizeof(SkScalar) + 4)) { this->writeOp(kDrawPosTextH_DrawOp); fWriter.write32(byteLength); fWriter.writePad(text, byteLength); fWriter.write32(count); fWriter.write(xpos, count * sizeof(SkScalar)); fWriter.writeScalar(constY); } } } void SkGPipeCanvas::drawTextOnPath(const void* text, size_t byteLength, const SkPath& path, const SkMatrix* matrix, const SkPaint& paint) { if (byteLength) { NOTIFY_SETUP(this); unsigned flags = 0; size_t size = 4 + SkAlign4(byteLength) + path.writeToMemory(NULL); if (matrix) { flags |= kDrawTextOnPath_HasMatrix_DrawOpFlag; size += matrix->writeToMemory(NULL); } this->writePaint(paint); if (this->needOpBytes(size)) { this->writeOp(kDrawTextOnPath_DrawOp, flags, 0); fWriter.write32(byteLength); fWriter.writePad(text, byteLength); fWriter.writePath(path); if (matrix) { fWriter.writeMatrix(*matrix); } } } } void SkGPipeCanvas::drawPicture(SkPicture& picture) { // we want to playback the picture into individual draw calls this->INHERITED::drawPicture(picture); } void SkGPipeCanvas::drawVertices(VertexMode mode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode*, const uint16_t indices[], int indexCount, const SkPaint& paint) { if (0 == vertexCount) { return; } NOTIFY_SETUP(this); size_t size = 4 + vertexCount * sizeof(SkPoint); this->writePaint(paint); unsigned flags = 0; if (texs) { flags |= kDrawVertices_HasTexs_DrawOpFlag; size += vertexCount * sizeof(SkPoint); } if (colors) { flags |= kDrawVertices_HasColors_DrawOpFlag; size += vertexCount * sizeof(SkColor); } if (indices && indexCount > 0) { flags |= kDrawVertices_HasIndices_DrawOpFlag; size += 4 + SkAlign4(indexCount * sizeof(uint16_t)); } if (this->needOpBytes(size)) { this->writeOp(kDrawVertices_DrawOp, flags, 0); fWriter.write32(mode); fWriter.write32(vertexCount); fWriter.write(vertices, vertexCount * sizeof(SkPoint)); if (texs) { fWriter.write(texs, vertexCount * sizeof(SkPoint)); } if (colors) { fWriter.write(colors, vertexCount * sizeof(SkColor)); } // TODO: flatten xfermode if (indices && indexCount > 0) { fWriter.write32(indexCount); fWriter.writePad(indices, indexCount * sizeof(uint16_t)); } } } void SkGPipeCanvas::drawData(const void* ptr, size_t size) { if (size && ptr) { NOTIFY_SETUP(this); unsigned data = 0; if (size < (1 << DRAWOPS_DATA_BITS)) { data = (unsigned)size; } if (this->needOpBytes(4 + SkAlign4(size))) { this->writeOp(kDrawData_DrawOp, 0, data); if (0 == data) { fWriter.write32(size); } fWriter.writePad(ptr, size); } } } /////////////////////////////////////////////////////////////////////////////// template uint32_t castToU32(T value) { union { T fSrc; uint32_t fDst; } data; data.fSrc = value; return data.fDst; } void SkGPipeCanvas::writePaint(const SkPaint& paint) { SkPaint& base = fPaint; uint32_t storage[32]; uint32_t* ptr = storage; if (base.getFlags() != paint.getFlags()) { *ptr++ = PaintOp_packOpData(kFlags_PaintOp, paint.getFlags()); base.setFlags(paint.getFlags()); } if (base.getColor() != paint.getColor()) { *ptr++ = PaintOp_packOp(kColor_PaintOp); *ptr++ = paint.getColor(); base.setColor(paint.getColor()); } if (base.getStyle() != paint.getStyle()) { *ptr++ = PaintOp_packOpData(kStyle_PaintOp, paint.getStyle()); base.setStyle(paint.getStyle()); } if (base.getStrokeJoin() != paint.getStrokeJoin()) { *ptr++ = PaintOp_packOpData(kJoin_PaintOp, paint.getStrokeJoin()); base.setStrokeJoin(paint.getStrokeJoin()); } if (base.getStrokeCap() != paint.getStrokeCap()) { *ptr++ = PaintOp_packOpData(kCap_PaintOp, paint.getStrokeCap()); base.setStrokeCap(paint.getStrokeCap()); } if (base.getStrokeWidth() != paint.getStrokeWidth()) { *ptr++ = PaintOp_packOp(kWidth_PaintOp); *ptr++ = castToU32(paint.getStrokeWidth()); base.setStrokeWidth(paint.getStrokeWidth()); } if (base.getStrokeMiter() != paint.getStrokeMiter()) { *ptr++ = PaintOp_packOp(kMiter_PaintOp); *ptr++ = castToU32(paint.getStrokeMiter()); base.setStrokeMiter(paint.getStrokeMiter()); } if (base.getTextEncoding() != paint.getTextEncoding()) { *ptr++ = PaintOp_packOpData(kEncoding_PaintOp, paint.getTextEncoding()); base.setTextEncoding(paint.getTextEncoding()); } if (base.getHinting() != paint.getHinting()) { *ptr++ = PaintOp_packOpData(kHinting_PaintOp, paint.getHinting()); base.setHinting(paint.getHinting()); } if (base.getTextAlign() != paint.getTextAlign()) { *ptr++ = PaintOp_packOpData(kAlign_PaintOp, paint.getTextAlign()); base.setTextAlign(paint.getTextAlign()); } if (base.getTextSize() != paint.getTextSize()) { *ptr++ = PaintOp_packOp(kTextSize_PaintOp); *ptr++ = castToU32(paint.getTextSize()); base.setTextSize(paint.getTextSize()); } if (base.getTextScaleX() != paint.getTextScaleX()) { *ptr++ = PaintOp_packOp(kTextScaleX_PaintOp); *ptr++ = castToU32(paint.getTextScaleX()); base.setTextScaleX(paint.getTextScaleX()); } if (base.getTextSkewX() != paint.getTextSkewX()) { *ptr++ = PaintOp_packOp(kTextSkewX_PaintOp); *ptr++ = castToU32(paint.getTextSkewX()); base.setTextSkewX(paint.getTextSkewX()); } if (!SkTypeface::Equal(base.getTypeface(), paint.getTypeface())) { uint32_t id = this->getTypefaceID(paint.getTypeface()); *ptr++ = PaintOp_packOpData(kTypeface_PaintOp, id); base.setTypeface(paint.getTypeface()); } for (int i = 0; i < kCount_PaintFlats; i++) { int index = this->flattenToIndex(get_paintflat(paint, i), (PaintFlats)i); SkASSERT(index >= 0 && index <= fFlatArray.count()); if (index != fCurrFlatIndex[i]) { *ptr++ = PaintOp_packOpFlagData(kFlatIndex_PaintOp, i, index); fCurrFlatIndex[i] = index; } } size_t size = (char*)ptr - (char*)storage; if (size && this->needOpBytes(size)) { this->writeOp(kPaintOp_DrawOp, 0, size); fWriter.write(storage, size); for (size_t i = 0; i < size/4; i++) { // SkDebugf("[%d] %08X\n", i, storage[i]); } } } /////////////////////////////////////////////////////////////////////////////// #include "SkGPipe.h" SkGPipeWriter::SkGPipeWriter() : fWriter(0) { fCanvas = NULL; } SkGPipeWriter::~SkGPipeWriter() { this->endRecording(); SkSafeUnref(fCanvas); } SkCanvas* SkGPipeWriter::startRecording(SkGPipeController* controller, uint32_t flags) { if (NULL == fCanvas) { fWriter.reset(NULL, 0); fFactorySet.reset(); fCanvas = SkNEW_ARGS(SkGPipeCanvas, (controller, &fWriter, (flags & kCrossProcess_Flag) ? &fFactorySet : NULL, flags)); } return fCanvas; } void SkGPipeWriter::endRecording() { if (fCanvas) { fCanvas->finish(); fCanvas->unref(); fCanvas = NULL; } }