/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAnnotation.h" #include "SkBitmapHeap.h" #include "SkCanvas.h" #include "SkColorFilter.h" #include "SkData.h" #include "SkDrawLooper.h" #include "SkDevice.h" #include "SkGPipe.h" #include "SkGPipePriv.h" #include "SkImageFilter.h" #include "SkMaskFilter.h" #include "SkOrderedWriteBuffer.h" #include "SkPaint.h" #include "SkPathEffect.h" #include "SkPictureFlat.h" #include "SkRasterizer.h" #include "SkRRect.h" #include "SkShader.h" #include "SkStream.h" #include "SkTSearch.h" #include "SkTypeface.h" #include "SkWriter32.h" enum { kSizeOfFlatRRect = sizeof(SkRect) + 4 * sizeof(SkVector) }; static bool isCrossProcess(uint32_t flags) { return SkToBool(flags & SkGPipeWriter::kCrossProcess_Flag); } static SkFlattenable* get_paintflat(const SkPaint& paint, unsigned paintFlat) { SkASSERT(paintFlat < kCount_PaintFlats); switch (paintFlat) { case kColorFilter_PaintFlat: return paint.getColorFilter(); case kDrawLooper_PaintFlat: return paint.getLooper(); case kMaskFilter_PaintFlat: return paint.getMaskFilter(); case kPathEffect_PaintFlat: return paint.getPathEffect(); case kRasterizer_PaintFlat: return paint.getRasterizer(); case kShader_PaintFlat: return paint.getShader(); case kImageFilter_PaintFlat: return paint.getImageFilter(); case kXfermode_PaintFlat: return paint.getXfermode(); case kAnnotation_PaintFlat: return paint.getAnnotation(); } SkDEBUGFAIL("never gets here"); return NULL; } static size_t writeTypeface(SkWriter32* writer, SkTypeface* typeface) { SkASSERT(typeface); SkDynamicMemoryWStream stream; typeface->serialize(&stream); size_t size = stream.getOffset(); if (writer) { writer->write32(size); SkAutoDataUnref data(stream.copyToData()); writer->writePad(data->data(), size); } return 4 + SkAlign4(size); } /////////////////////////////////////////////////////////////////////////////// class FlattenableHeap : public SkFlatController { public: FlattenableHeap(int numFlatsToKeep, SkNamedFactorySet* fset, bool isCrossProcess) : fNumFlatsToKeep(numFlatsToKeep) { SkASSERT((isCrossProcess && fset != NULL) || (!isCrossProcess && NULL == fset)); if (isCrossProcess) { this->setNamedFactorySet(fset); this->setWriteBufferFlags(SkFlattenableWriteBuffer::kCrossProcess_Flag); } } ~FlattenableHeap() { fPointers.freeAll(); } virtual void* allocThrow(size_t bytes) SK_OVERRIDE; virtual void unalloc(void* ptr) SK_OVERRIDE; void setBitmapStorage(SkBitmapHeap* heap) { this->setBitmapHeap(heap); } const SkFlatData* flatToReplace() const; // Mark an SkFlatData as one that should not be returned by flatToReplace. // Takes the result of SkFlatData::index() as its parameter. void markFlatForKeeping(int index) { *fFlatsThatMustBeKept.append() = index; } void markAllFlatsSafeToDelete() { fFlatsThatMustBeKept.reset(); } private: // Keep track of the indices (i.e. the result of SkFlatData::index()) of // flats that must be kept, since they are on the current paint. SkTDArray fFlatsThatMustBeKept; SkTDArray fPointers; const int fNumFlatsToKeep; }; void FlattenableHeap::unalloc(void* ptr) { int indexToRemove = fPointers.rfind(ptr); if (indexToRemove >= 0) { sk_free(ptr); fPointers.remove(indexToRemove); } } void* FlattenableHeap::allocThrow(size_t bytes) { void* ptr = sk_malloc_throw(bytes); *fPointers.append() = ptr; return ptr; } const SkFlatData* FlattenableHeap::flatToReplace() const { // First, determine whether we should replace one. if (fPointers.count() > fNumFlatsToKeep) { // Look through the flattenable heap. // TODO: Return the LRU flat. for (int i = 0; i < fPointers.count(); i++) { SkFlatData* potential = (SkFlatData*)fPointers[i]; // Make sure that it is not one that must be kept. bool mustKeep = false; for (int j = 0; j < fFlatsThatMustBeKept.count(); j++) { if (potential->index() == fFlatsThatMustBeKept[j]) { mustKeep = true; break; } } if (!mustKeep) { return potential; } } } return NULL; } /////////////////////////////////////////////////////////////////////////////// class FlatDictionary : public SkFlatDictionary { public: FlatDictionary(FlattenableHeap* heap) : SkFlatDictionary(heap) { fFlattenProc = &flattenFlattenableProc; // No need to define fUnflattenProc since the writer will never // unflatten the data. } static void flattenFlattenableProc(SkOrderedWriteBuffer& buffer, const void* obj) { buffer.writeFlattenable((SkFlattenable*)obj); } }; /////////////////////////////////////////////////////////////////////////////// class SkGPipeCanvas : public SkCanvas { public: SkGPipeCanvas(SkGPipeController*, SkWriter32*, uint32_t flags, uint32_t width, uint32_t height); virtual ~SkGPipeCanvas(); void finish() { if (!fDone) { if (this->needOpBytes()) { this->writeOp(kDone_DrawOp); this->doNotify(); if (shouldFlattenBitmaps(fFlags)) { // In this case, a BitmapShuttle is reffed by the SkBitmapHeap // and refs this canvas. Unref the SkBitmapHeap to end the // circular reference. When shouldFlattenBitmaps is false, // there is no circular reference, so the SkBitmapHeap can be // safely unreffed in the destructor. fBitmapHeap->unref(); // This eliminates a similar circular reference (Canvas owns // the FlattenableHeap which holds a ref to the SkBitmapHeap). fFlattenableHeap.setBitmapStorage(NULL); fBitmapHeap = NULL; } } fDone = true; } } void flushRecording(bool detachCurrentBlock); size_t freeMemoryIfPossible(size_t bytesToFree); size_t storageAllocatedForRecording() { return (NULL == fBitmapHeap) ? 0 : fBitmapHeap->bytesAllocated(); } // overrides from SkCanvas virtual int save(SaveFlags) SK_OVERRIDE; virtual int saveLayer(const SkRect* bounds, const SkPaint*, SaveFlags) SK_OVERRIDE; virtual void restore() SK_OVERRIDE; virtual bool isDrawingToLayer() const SK_OVERRIDE; virtual bool translate(SkScalar dx, SkScalar dy) SK_OVERRIDE; virtual bool scale(SkScalar sx, SkScalar sy) SK_OVERRIDE; virtual bool rotate(SkScalar degrees) SK_OVERRIDE; virtual bool skew(SkScalar sx, SkScalar sy) SK_OVERRIDE; virtual bool concat(const SkMatrix& matrix) SK_OVERRIDE; virtual void setMatrix(const SkMatrix& matrix) SK_OVERRIDE; virtual bool clipRect(const SkRect&, SkRegion::Op op, bool doAntiAlias = false) SK_OVERRIDE; virtual bool clipRRect(const SkRRect&, SkRegion::Op op, bool doAntiAlias = false) SK_OVERRIDE; virtual bool clipPath(const SkPath& path, SkRegion::Op op, bool doAntiAlias = false) SK_OVERRIDE; virtual bool clipRegion(const SkRegion& region, SkRegion::Op op) SK_OVERRIDE; virtual void clear(SkColor) SK_OVERRIDE; virtual void drawPaint(const SkPaint& paint) SK_OVERRIDE; virtual void drawPoints(PointMode, size_t count, const SkPoint pts[], const SkPaint&) SK_OVERRIDE; virtual void drawOval(const SkRect&, const SkPaint&) SK_OVERRIDE; virtual void drawRect(const SkRect& rect, const SkPaint&) SK_OVERRIDE; virtual void drawRRect(const SkRRect&, const SkPaint&) SK_OVERRIDE; virtual void drawPath(const SkPath& path, const SkPaint&) SK_OVERRIDE; virtual void drawBitmap(const SkBitmap&, SkScalar left, SkScalar top, const SkPaint*) SK_OVERRIDE; virtual void drawBitmapRectToRect(const SkBitmap&, const SkRect* src, const SkRect& dst, const SkPaint*) SK_OVERRIDE; virtual void drawBitmapMatrix(const SkBitmap&, const SkMatrix&, const SkPaint*) SK_OVERRIDE; virtual void drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst, const SkPaint* paint = NULL) SK_OVERRIDE; virtual void drawSprite(const SkBitmap&, int left, int top, const SkPaint*) SK_OVERRIDE; virtual void drawText(const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint&) SK_OVERRIDE; virtual void drawPosText(const void* text, size_t byteLength, const SkPoint pos[], const SkPaint&) SK_OVERRIDE; virtual void drawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[], SkScalar constY, const SkPaint&) SK_OVERRIDE; virtual void drawTextOnPath(const void* text, size_t byteLength, const SkPath& path, const SkMatrix* matrix, const SkPaint&) SK_OVERRIDE; virtual void drawPicture(SkPicture& picture) SK_OVERRIDE; virtual void drawVertices(VertexMode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode*, const uint16_t indices[], int indexCount, const SkPaint&) SK_OVERRIDE; virtual void drawData(const void*, size_t) SK_OVERRIDE; /** * Flatten an SkBitmap to send to the reader, where it will be referenced * according to slot. */ bool shuttleBitmap(const SkBitmap&, int32_t slot); private: enum { kNoSaveLayer = -1, }; SkNamedFactorySet* fFactorySet; int fFirstSaveLayerStackLevel; SkBitmapHeap* fBitmapHeap; SkGPipeController* fController; SkWriter32& fWriter; size_t fBlockSize; // amount allocated for writer size_t fBytesNotified; bool fDone; const uint32_t fFlags; SkRefCntSet fTypefaceSet; uint32_t getTypefaceID(SkTypeface*); inline void writeOp(DrawOps op, unsigned flags, unsigned data) { fWriter.write32(DrawOp_packOpFlagData(op, flags, data)); } inline void writeOp(DrawOps op) { fWriter.write32(DrawOp_packOpFlagData(op, 0, 0)); } bool needOpBytes(size_t size = 0); inline void doNotify() { if (!fDone) { size_t bytes = fWriter.size() - fBytesNotified; if (bytes > 0) { fController->notifyWritten(bytes); fBytesNotified += bytes; } } } // Should be called after any calls to an SkFlatDictionary::findAndReplace // if a new SkFlatData was added when in cross process mode void flattenFactoryNames(); FlattenableHeap fFlattenableHeap; FlatDictionary fFlatDictionary; int fCurrFlatIndex[kCount_PaintFlats]; int flattenToIndex(SkFlattenable* obj, PaintFlats); // Common code used by drawBitmap*. Behaves differently depending on the // type of SkBitmapHeap being used, which is determined by the flags used. bool commonDrawBitmap(const SkBitmap& bm, DrawOps op, unsigned flags, size_t opBytesNeeded, const SkPaint* paint); SkPaint fPaint; void writePaint(const SkPaint&); class AutoPipeNotify { public: AutoPipeNotify(SkGPipeCanvas* canvas) : fCanvas(canvas) {} ~AutoPipeNotify() { fCanvas->doNotify(); } private: SkGPipeCanvas* fCanvas; }; friend class AutoPipeNotify; typedef SkCanvas INHERITED; }; void SkGPipeCanvas::flattenFactoryNames() { const char* name; while ((name = fFactorySet->getNextAddedFactoryName()) != NULL) { size_t len = strlen(name); if (this->needOpBytes(len)) { this->writeOp(kDef_Factory_DrawOp); fWriter.writeString(name, len); } } } bool SkGPipeCanvas::shuttleBitmap(const SkBitmap& bm, int32_t slot) { SkASSERT(shouldFlattenBitmaps(fFlags)); SkOrderedWriteBuffer buffer(1024); buffer.setNamedFactoryRecorder(fFactorySet); bm.flatten(buffer); this->flattenFactoryNames(); uint32_t size = buffer.size(); if (this->needOpBytes(size)) { this->writeOp(kDef_Bitmap_DrawOp, 0, slot); void* dst = static_cast(fWriter.reserve(size)); buffer.writeToMemory(dst); return true; } return false; } // return 0 for NULL (or unflattenable obj), or index-base-1 // return ~(index-base-1) if an old flattenable was replaced int SkGPipeCanvas::flattenToIndex(SkFlattenable* obj, PaintFlats paintflat) { SkASSERT(!fDone && fBitmapHeap != NULL); if (NULL == obj) { return 0; } fBitmapHeap->deferAddingOwners(); bool added, replaced; const SkFlatData* flat = fFlatDictionary.findAndReplace(*obj, fFlattenableHeap.flatToReplace(), &added, &replaced); fBitmapHeap->endAddingOwnersDeferral(added); int index = flat->index(); if (added) { if (isCrossProcess(fFlags)) { this->flattenFactoryNames(); } size_t flatSize = flat->flatSize(); if (this->needOpBytes(flatSize)) { this->writeOp(kDef_Flattenable_DrawOp, paintflat, index); fWriter.write(flat->data(), flatSize); } } if (replaced) { index = ~index; } return index; } /////////////////////////////////////////////////////////////////////////////// /** * If SkBitmaps are to be flattened to send to the reader, this class is * provided to the SkBitmapHeap to tell the SkGPipeCanvas to do so. */ class BitmapShuttle : public SkBitmapHeap::ExternalStorage { public: BitmapShuttle(SkGPipeCanvas*); ~BitmapShuttle(); virtual bool insert(const SkBitmap& bitmap, int32_t slot) SK_OVERRIDE; private: SkGPipeCanvas* fCanvas; }; /////////////////////////////////////////////////////////////////////////////// #define MIN_BLOCK_SIZE (16 * 1024) #define BITMAPS_TO_KEEP 5 #define FLATTENABLES_TO_KEEP 10 SkGPipeCanvas::SkGPipeCanvas(SkGPipeController* controller, SkWriter32* writer, uint32_t flags, uint32_t width, uint32_t height) : fFactorySet(isCrossProcess(flags) ? SkNEW(SkNamedFactorySet) : NULL) , fWriter(*writer) , fFlags(flags) , fFlattenableHeap(FLATTENABLES_TO_KEEP, fFactorySet, isCrossProcess(flags)) , fFlatDictionary(&fFlattenableHeap) { fController = controller; fDone = false; fBlockSize = 0; // need first block from controller fBytesNotified = 0; fFirstSaveLayerStackLevel = kNoSaveLayer; sk_bzero(fCurrFlatIndex, sizeof(fCurrFlatIndex)); // we need a device to limit our clip // We don't allocate pixels for the bitmap SkBitmap bitmap; bitmap.setConfig(SkBitmap::kARGB_8888_Config, width, height); SkDevice* device = SkNEW_ARGS(SkDevice, (bitmap)); this->setDevice(device)->unref(); // Tell the reader the appropriate flags to use. if (this->needOpBytes()) { this->writeOp(kReportFlags_DrawOp, fFlags, 0); } if (shouldFlattenBitmaps(flags)) { BitmapShuttle* shuttle = SkNEW_ARGS(BitmapShuttle, (this)); fBitmapHeap = SkNEW_ARGS(SkBitmapHeap, (shuttle, BITMAPS_TO_KEEP)); shuttle->unref(); } else { fBitmapHeap = SkNEW_ARGS(SkBitmapHeap, (BITMAPS_TO_KEEP, controller->numberOfReaders())); if (this->needOpBytes(sizeof(void*))) { this->writeOp(kShareBitmapHeap_DrawOp); fWriter.writePtr(static_cast(fBitmapHeap)); } } fFlattenableHeap.setBitmapStorage(fBitmapHeap); this->doNotify(); } SkGPipeCanvas::~SkGPipeCanvas() { this->finish(); SkSafeUnref(fFactorySet); SkSafeUnref(fBitmapHeap); } bool SkGPipeCanvas::needOpBytes(size_t needed) { if (fDone) { return false; } needed += 4; // size of DrawOp atom if (fWriter.size() + needed > fBlockSize) { // Before we wipe out any data that has already been written, read it // out. this->doNotify(); size_t blockSize = SkMax32(MIN_BLOCK_SIZE, needed); void* block = fController->requestBlock(blockSize, &fBlockSize); if (NULL == block) { fDone = true; return false; } SkASSERT(SkIsAlign4(fBlockSize)); fWriter.reset(block, fBlockSize); fBytesNotified = 0; } return true; } uint32_t SkGPipeCanvas::getTypefaceID(SkTypeface* face) { uint32_t id = 0; // 0 means default/null typeface if (face) { id = fTypefaceSet.find(face); if (0 == id) { id = fTypefaceSet.add(face); size_t size = writeTypeface(NULL, face); if (this->needOpBytes(size)) { this->writeOp(kDef_Typeface_DrawOp); writeTypeface(&fWriter, face); } } } return id; } /////////////////////////////////////////////////////////////////////////////// #define NOTIFY_SETUP(canvas) \ AutoPipeNotify apn(canvas) int SkGPipeCanvas::save(SaveFlags flags) { NOTIFY_SETUP(this); if (this->needOpBytes()) { this->writeOp(kSave_DrawOp, 0, flags); } return this->INHERITED::save(flags); } int SkGPipeCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint, SaveFlags saveFlags) { NOTIFY_SETUP(this); size_t size = 0; unsigned opFlags = 0; if (bounds) { opFlags |= kSaveLayer_HasBounds_DrawOpFlag; size += sizeof(SkRect); } if (paint) { opFlags |= kSaveLayer_HasPaint_DrawOpFlag; this->writePaint(*paint); } if (this->needOpBytes(size)) { this->writeOp(kSaveLayer_DrawOp, opFlags, saveFlags); if (bounds) { fWriter.writeRect(*bounds); } } if (kNoSaveLayer == fFirstSaveLayerStackLevel){ fFirstSaveLayerStackLevel = this->getSaveCount(); } // we just pass on the save, so we don't create a layer return this->INHERITED::save(saveFlags); } void SkGPipeCanvas::restore() { NOTIFY_SETUP(this); if (this->needOpBytes()) { this->writeOp(kRestore_DrawOp); } this->INHERITED::restore(); if (this->getSaveCount() == fFirstSaveLayerStackLevel){ fFirstSaveLayerStackLevel = kNoSaveLayer; } } bool SkGPipeCanvas::isDrawingToLayer() const { return kNoSaveLayer != fFirstSaveLayerStackLevel; } bool SkGPipeCanvas::translate(SkScalar dx, SkScalar dy) { if (dx || dy) { NOTIFY_SETUP(this); if (this->needOpBytes(2 * sizeof(SkScalar))) { this->writeOp(kTranslate_DrawOp); fWriter.writeScalar(dx); fWriter.writeScalar(dy); } } return this->INHERITED::translate(dx, dy); } bool SkGPipeCanvas::scale(SkScalar sx, SkScalar sy) { if (sx || sy) { NOTIFY_SETUP(this); if (this->needOpBytes(2 * sizeof(SkScalar))) { this->writeOp(kScale_DrawOp); fWriter.writeScalar(sx); fWriter.writeScalar(sy); } } return this->INHERITED::scale(sx, sy); } bool SkGPipeCanvas::rotate(SkScalar degrees) { if (degrees) { NOTIFY_SETUP(this); if (this->needOpBytes(sizeof(SkScalar))) { this->writeOp(kRotate_DrawOp); fWriter.writeScalar(degrees); } } return this->INHERITED::rotate(degrees); } bool SkGPipeCanvas::skew(SkScalar sx, SkScalar sy) { if (sx || sy) { NOTIFY_SETUP(this); if (this->needOpBytes(2 * sizeof(SkScalar))) { this->writeOp(kSkew_DrawOp); fWriter.writeScalar(sx); fWriter.writeScalar(sy); } } return this->INHERITED::skew(sx, sy); } bool SkGPipeCanvas::concat(const SkMatrix& matrix) { if (!matrix.isIdentity()) { NOTIFY_SETUP(this); if (this->needOpBytes(matrix.writeToMemory(NULL))) { this->writeOp(kConcat_DrawOp); fWriter.writeMatrix(matrix); } } return this->INHERITED::concat(matrix); } void SkGPipeCanvas::setMatrix(const SkMatrix& matrix) { NOTIFY_SETUP(this); if (this->needOpBytes(matrix.writeToMemory(NULL))) { this->writeOp(kSetMatrix_DrawOp); fWriter.writeMatrix(matrix); } this->INHERITED::setMatrix(matrix); } bool SkGPipeCanvas::clipRect(const SkRect& rect, SkRegion::Op rgnOp, bool doAntiAlias) { NOTIFY_SETUP(this); if (this->needOpBytes(sizeof(SkRect))) { unsigned flags = doAntiAlias & kClip_HasAntiAlias_DrawOpFlag; this->writeOp(kClipRect_DrawOp, flags, rgnOp); fWriter.writeRect(rect); } return this->INHERITED::clipRect(rect, rgnOp, doAntiAlias); } bool SkGPipeCanvas::clipRRect(const SkRRect& rrect, SkRegion::Op rgnOp, bool doAntiAlias) { NOTIFY_SETUP(this); if (this->needOpBytes(kSizeOfFlatRRect)) { unsigned flags = doAntiAlias & kClip_HasAntiAlias_DrawOpFlag; this->writeOp(kClipRRect_DrawOp, flags, rgnOp); fWriter.writeRRect(rrect); } return this->INHERITED::clipRRect(rrect, rgnOp, doAntiAlias); } bool SkGPipeCanvas::clipPath(const SkPath& path, SkRegion::Op rgnOp, bool doAntiAlias) { NOTIFY_SETUP(this); if (this->needOpBytes(path.writeToMemory(NULL))) { unsigned flags = doAntiAlias & kClip_HasAntiAlias_DrawOpFlag; this->writeOp(kClipPath_DrawOp, flags, rgnOp); fWriter.writePath(path); } // we just pass on the bounds of the path return this->INHERITED::clipRect(path.getBounds(), rgnOp, doAntiAlias); } bool SkGPipeCanvas::clipRegion(const SkRegion& region, SkRegion::Op rgnOp) { NOTIFY_SETUP(this); if (this->needOpBytes(region.writeToMemory(NULL))) { this->writeOp(kClipRegion_DrawOp, 0, rgnOp); fWriter.writeRegion(region); } return this->INHERITED::clipRegion(region, rgnOp); } /////////////////////////////////////////////////////////////////////////////// void SkGPipeCanvas::clear(SkColor color) { NOTIFY_SETUP(this); unsigned flags = 0; if (color) { flags |= kClear_HasColor_DrawOpFlag; } if (this->needOpBytes(sizeof(SkColor))) { this->writeOp(kDrawClear_DrawOp, flags, 0); if (color) { fWriter.write32(color); } } } void SkGPipeCanvas::drawPaint(const SkPaint& paint) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes()) { this->writeOp(kDrawPaint_DrawOp); } } void SkGPipeCanvas::drawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) { if (count) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(4 + count * sizeof(SkPoint))) { this->writeOp(kDrawPoints_DrawOp, mode, 0); fWriter.write32(count); fWriter.write(pts, count * sizeof(SkPoint)); } } } void SkGPipeCanvas::drawOval(const SkRect& rect, const SkPaint& paint) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(sizeof(SkRect))) { this->writeOp(kDrawOval_DrawOp); fWriter.writeRect(rect); } } void SkGPipeCanvas::drawRect(const SkRect& rect, const SkPaint& paint) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(sizeof(SkRect))) { this->writeOp(kDrawRect_DrawOp); fWriter.writeRect(rect); } } void SkGPipeCanvas::drawRRect(const SkRRect& rrect, const SkPaint& paint) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(kSizeOfFlatRRect)) { this->writeOp(kDrawRRect_DrawOp); fWriter.writeRRect(rrect); } } void SkGPipeCanvas::drawPath(const SkPath& path, const SkPaint& paint) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(path.writeToMemory(NULL))) { this->writeOp(kDrawPath_DrawOp); fWriter.writePath(path); } } bool SkGPipeCanvas::commonDrawBitmap(const SkBitmap& bm, DrawOps op, unsigned flags, size_t opBytesNeeded, const SkPaint* paint) { if (paint != NULL) { flags |= kDrawBitmap_HasPaint_DrawOpFlag; this->writePaint(*paint); } if (this->needOpBytes(opBytesNeeded)) { SkASSERT(fBitmapHeap != NULL); int32_t bitmapIndex = fBitmapHeap->insert(bm); if (SkBitmapHeap::INVALID_SLOT == bitmapIndex) { return false; } this->writeOp(op, flags, bitmapIndex); return true; } return false; } void SkGPipeCanvas::drawBitmap(const SkBitmap& bm, SkScalar left, SkScalar top, const SkPaint* paint) { NOTIFY_SETUP(this); size_t opBytesNeeded = sizeof(SkScalar) * 2; if (this->commonDrawBitmap(bm, kDrawBitmap_DrawOp, 0, opBytesNeeded, paint)) { fWriter.writeScalar(left); fWriter.writeScalar(top); } } void SkGPipeCanvas::drawBitmapRectToRect(const SkBitmap& bm, const SkRect* src, const SkRect& dst, const SkPaint* paint) { NOTIFY_SETUP(this); size_t opBytesNeeded = sizeof(SkRect); bool hasSrc = src != NULL; unsigned flags; if (hasSrc) { flags = kDrawBitmap_HasSrcRect_DrawOpFlag; opBytesNeeded += sizeof(int32_t) * 4; } else { flags = 0; } if (this->commonDrawBitmap(bm, kDrawBitmapRectToRect_DrawOp, flags, opBytesNeeded, paint)) { if (hasSrc) { fWriter.writeRect(*src); } fWriter.writeRect(dst); } } void SkGPipeCanvas::drawBitmapMatrix(const SkBitmap& bm, const SkMatrix& matrix, const SkPaint* paint) { NOTIFY_SETUP(this); size_t opBytesNeeded = matrix.writeToMemory(NULL); if (this->commonDrawBitmap(bm, kDrawBitmapMatrix_DrawOp, 0, opBytesNeeded, paint)) { fWriter.writeMatrix(matrix); } } void SkGPipeCanvas::drawBitmapNine(const SkBitmap& bm, const SkIRect& center, const SkRect& dst, const SkPaint* paint) { NOTIFY_SETUP(this); size_t opBytesNeeded = sizeof(int32_t) * 4 + sizeof(SkRect); if (this->commonDrawBitmap(bm, kDrawBitmapNine_DrawOp, 0, opBytesNeeded, paint)) { fWriter.write32(center.fLeft); fWriter.write32(center.fTop); fWriter.write32(center.fRight); fWriter.write32(center.fBottom); fWriter.writeRect(dst); } } void SkGPipeCanvas::drawSprite(const SkBitmap& bm, int left, int top, const SkPaint* paint) { NOTIFY_SETUP(this); size_t opBytesNeeded = sizeof(int32_t) * 2; if (this->commonDrawBitmap(bm, kDrawSprite_DrawOp, 0, opBytesNeeded, paint)) { fWriter.write32(left); fWriter.write32(top); } } void SkGPipeCanvas::drawText(const void* text, size_t byteLength, SkScalar x, SkScalar y, const SkPaint& paint) { if (byteLength) { NOTIFY_SETUP(this); this->writePaint(paint); if (this->needOpBytes(4 + SkAlign4(byteLength) + 2 * sizeof(SkScalar))) { this->writeOp(kDrawText_DrawOp); fWriter.write32(byteLength); fWriter.writePad(text, byteLength); fWriter.writeScalar(x); fWriter.writeScalar(y); } } } void SkGPipeCanvas::drawPosText(const void* text, size_t byteLength, const SkPoint pos[], const SkPaint& paint) { if (byteLength) { NOTIFY_SETUP(this); this->writePaint(paint); int count = paint.textToGlyphs(text, byteLength, NULL); if (this->needOpBytes(4 + SkAlign4(byteLength) + 4 + count * sizeof(SkPoint))) { this->writeOp(kDrawPosText_DrawOp); fWriter.write32(byteLength); fWriter.writePad(text, byteLength); fWriter.write32(count); fWriter.write(pos, count * sizeof(SkPoint)); } } } void SkGPipeCanvas::drawPosTextH(const void* text, size_t byteLength, const SkScalar xpos[], SkScalar constY, const SkPaint& paint) { if (byteLength) { NOTIFY_SETUP(this); this->writePaint(paint); int count = paint.textToGlyphs(text, byteLength, NULL); if (this->needOpBytes(4 + SkAlign4(byteLength) + 4 + count * sizeof(SkScalar) + 4)) { this->writeOp(kDrawPosTextH_DrawOp); fWriter.write32(byteLength); fWriter.writePad(text, byteLength); fWriter.write32(count); fWriter.write(xpos, count * sizeof(SkScalar)); fWriter.writeScalar(constY); } } } void SkGPipeCanvas::drawTextOnPath(const void* text, size_t byteLength, const SkPath& path, const SkMatrix* matrix, const SkPaint& paint) { if (byteLength) { NOTIFY_SETUP(this); unsigned flags = 0; size_t size = 4 + SkAlign4(byteLength) + path.writeToMemory(NULL); if (matrix) { flags |= kDrawTextOnPath_HasMatrix_DrawOpFlag; size += matrix->writeToMemory(NULL); } this->writePaint(paint); if (this->needOpBytes(size)) { this->writeOp(kDrawTextOnPath_DrawOp, flags, 0); fWriter.write32(byteLength); fWriter.writePad(text, byteLength); fWriter.writePath(path); if (matrix) { fWriter.writeMatrix(*matrix); } } } } void SkGPipeCanvas::drawPicture(SkPicture& picture) { // we want to playback the picture into individual draw calls this->INHERITED::drawPicture(picture); } void SkGPipeCanvas::drawVertices(VertexMode mode, int vertexCount, const SkPoint vertices[], const SkPoint texs[], const SkColor colors[], SkXfermode*, const uint16_t indices[], int indexCount, const SkPaint& paint) { if (0 == vertexCount) { return; } NOTIFY_SETUP(this); size_t size = 4 + vertexCount * sizeof(SkPoint); this->writePaint(paint); unsigned flags = 0; if (texs) { flags |= kDrawVertices_HasTexs_DrawOpFlag; size += vertexCount * sizeof(SkPoint); } if (colors) { flags |= kDrawVertices_HasColors_DrawOpFlag; size += vertexCount * sizeof(SkColor); } if (indices && indexCount > 0) { flags |= kDrawVertices_HasIndices_DrawOpFlag; size += 4 + SkAlign4(indexCount * sizeof(uint16_t)); } if (this->needOpBytes(size)) { this->writeOp(kDrawVertices_DrawOp, flags, 0); fWriter.write32(mode); fWriter.write32(vertexCount); fWriter.write(vertices, vertexCount * sizeof(SkPoint)); if (texs) { fWriter.write(texs, vertexCount * sizeof(SkPoint)); } if (colors) { fWriter.write(colors, vertexCount * sizeof(SkColor)); } // TODO: flatten xfermode if (indices && indexCount > 0) { fWriter.write32(indexCount); fWriter.writePad(indices, indexCount * sizeof(uint16_t)); } } } void SkGPipeCanvas::drawData(const void* ptr, size_t size) { if (size && ptr) { NOTIFY_SETUP(this); unsigned data = 0; if (size < (1 << DRAWOPS_DATA_BITS)) { data = (unsigned)size; } if (this->needOpBytes(4 + SkAlign4(size))) { this->writeOp(kDrawData_DrawOp, 0, data); if (0 == data) { fWriter.write32(size); } fWriter.writePad(ptr, size); } } } void SkGPipeCanvas::flushRecording(bool detachCurrentBlock) { doNotify(); if (detachCurrentBlock) { // force a new block to be requested for the next recorded command fBlockSize = 0; } } size_t SkGPipeCanvas::freeMemoryIfPossible(size_t bytesToFree) { return (NULL == fBitmapHeap) ? 0 : fBitmapHeap->freeMemoryIfPossible(bytesToFree); } /////////////////////////////////////////////////////////////////////////////// template uint32_t castToU32(T value) { union { T fSrc; uint32_t fDst; } data; data.fSrc = value; return data.fDst; } void SkGPipeCanvas::writePaint(const SkPaint& paint) { if (fDone) { return; } SkPaint& base = fPaint; uint32_t storage[32]; uint32_t* ptr = storage; if (base.getFlags() != paint.getFlags()) { *ptr++ = PaintOp_packOpData(kFlags_PaintOp, paint.getFlags()); base.setFlags(paint.getFlags()); } if (base.getColor() != paint.getColor()) { *ptr++ = PaintOp_packOp(kColor_PaintOp); *ptr++ = paint.getColor(); base.setColor(paint.getColor()); } if (base.getStyle() != paint.getStyle()) { *ptr++ = PaintOp_packOpData(kStyle_PaintOp, paint.getStyle()); base.setStyle(paint.getStyle()); } if (base.getStrokeJoin() != paint.getStrokeJoin()) { *ptr++ = PaintOp_packOpData(kJoin_PaintOp, paint.getStrokeJoin()); base.setStrokeJoin(paint.getStrokeJoin()); } if (base.getStrokeCap() != paint.getStrokeCap()) { *ptr++ = PaintOp_packOpData(kCap_PaintOp, paint.getStrokeCap()); base.setStrokeCap(paint.getStrokeCap()); } if (base.getStrokeWidth() != paint.getStrokeWidth()) { *ptr++ = PaintOp_packOp(kWidth_PaintOp); *ptr++ = castToU32(paint.getStrokeWidth()); base.setStrokeWidth(paint.getStrokeWidth()); } if (base.getStrokeMiter() != paint.getStrokeMiter()) { *ptr++ = PaintOp_packOp(kMiter_PaintOp); *ptr++ = castToU32(paint.getStrokeMiter()); base.setStrokeMiter(paint.getStrokeMiter()); } if (base.getTextEncoding() != paint.getTextEncoding()) { *ptr++ = PaintOp_packOpData(kEncoding_PaintOp, paint.getTextEncoding()); base.setTextEncoding(paint.getTextEncoding()); } if (base.getHinting() != paint.getHinting()) { *ptr++ = PaintOp_packOpData(kHinting_PaintOp, paint.getHinting()); base.setHinting(paint.getHinting()); } if (base.getTextAlign() != paint.getTextAlign()) { *ptr++ = PaintOp_packOpData(kAlign_PaintOp, paint.getTextAlign()); base.setTextAlign(paint.getTextAlign()); } if (base.getTextSize() != paint.getTextSize()) { *ptr++ = PaintOp_packOp(kTextSize_PaintOp); *ptr++ = castToU32(paint.getTextSize()); base.setTextSize(paint.getTextSize()); } if (base.getTextScaleX() != paint.getTextScaleX()) { *ptr++ = PaintOp_packOp(kTextScaleX_PaintOp); *ptr++ = castToU32(paint.getTextScaleX()); base.setTextScaleX(paint.getTextScaleX()); } if (base.getTextSkewX() != paint.getTextSkewX()) { *ptr++ = PaintOp_packOp(kTextSkewX_PaintOp); *ptr++ = castToU32(paint.getTextSkewX()); base.setTextSkewX(paint.getTextSkewX()); } if (!SkTypeface::Equal(base.getTypeface(), paint.getTypeface())) { if (isCrossProcess(fFlags)) { uint32_t id = this->getTypefaceID(paint.getTypeface()); *ptr++ = PaintOp_packOpData(kTypeface_PaintOp, id); } else if (this->needOpBytes(sizeof(void*))) { // Add to the set for ref counting. fTypefaceSet.add(paint.getTypeface()); // It is safe to write the typeface to the stream before the rest // of the paint unless we ever send a kReset_PaintOp, which we // currently never do. this->writeOp(kSetTypeface_DrawOp); fWriter.writePtr(paint.getTypeface()); } base.setTypeface(paint.getTypeface()); } // This is a new paint, so all old flats can be safely purged, if necessary. fFlattenableHeap.markAllFlatsSafeToDelete(); for (int i = 0; i < kCount_PaintFlats; i++) { int index = this->flattenToIndex(get_paintflat(paint, i), (PaintFlats)i); bool replaced = index < 0; if (replaced) { index = ~index; } // Store the index of any flat that needs to be kept. 0 means no flat. if (index > 0) { fFlattenableHeap.markFlatForKeeping(index); } SkASSERT(index >= 0 && index <= fFlatDictionary.count()); if (index != fCurrFlatIndex[i] || replaced) { *ptr++ = PaintOp_packOpFlagData(kFlatIndex_PaintOp, i, index); fCurrFlatIndex[i] = index; } } size_t size = (char*)ptr - (char*)storage; if (size && this->needOpBytes(size)) { this->writeOp(kPaintOp_DrawOp, 0, size); fWriter.write(storage, size); for (size_t i = 0; i < size/4; i++) { // SkDebugf("[%d] %08X\n", i, storage[i]); } } } /////////////////////////////////////////////////////////////////////////////// #include "SkGPipe.h" SkGPipeController::~SkGPipeController() { SkSafeUnref(fCanvas); } void SkGPipeController::setCanvas(SkGPipeCanvas* canvas) { SkRefCnt_SafeAssign(fCanvas, canvas); } /////////////////////////////////////////////////////////////////////////////// SkGPipeWriter::SkGPipeWriter() : fWriter(0) { fCanvas = NULL; } SkGPipeWriter::~SkGPipeWriter() { this->endRecording(); } SkCanvas* SkGPipeWriter::startRecording(SkGPipeController* controller, uint32_t flags, uint32_t width, uint32_t height) { if (NULL == fCanvas) { fWriter.reset(NULL, 0); fCanvas = SkNEW_ARGS(SkGPipeCanvas, (controller, &fWriter, flags, width, height)); } controller->setCanvas(fCanvas); return fCanvas; } void SkGPipeWriter::endRecording() { if (fCanvas) { fCanvas->finish(); fCanvas->unref(); fCanvas = NULL; } } void SkGPipeWriter::flushRecording(bool detachCurrentBlock) { if (fCanvas) { fCanvas->flushRecording(detachCurrentBlock); } } size_t SkGPipeWriter::freeMemoryIfPossible(size_t bytesToFree) { if (fCanvas) { return fCanvas->freeMemoryIfPossible(bytesToFree); } return 0; } size_t SkGPipeWriter::storageAllocatedForRecording() const { return NULL == fCanvas ? 0 : fCanvas->storageAllocatedForRecording(); } /////////////////////////////////////////////////////////////////////////////// BitmapShuttle::BitmapShuttle(SkGPipeCanvas* canvas) { SkASSERT(canvas != NULL); fCanvas = canvas; fCanvas->ref(); } BitmapShuttle::~BitmapShuttle() { fCanvas->unref(); } bool BitmapShuttle::insert(const SkBitmap& bitmap, int32_t slot) { return fCanvas->shuttleBitmap(bitmap, slot); }