/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkData.h" #include "SkGeometry.h" #include "SkPaint.h" #include "SkPath.h" #include "SkPDFResourceDict.h" #include "SkPDFUtils.h" #include "SkStream.h" #include "SkString.h" #include "SkPDFTypes.h" #include sk_sp SkPDFUtils::RectToArray(const SkRect& rect) { auto result = sk_make_sp(); result->reserve(4); result->appendScalar(rect.fLeft); result->appendScalar(rect.fTop); result->appendScalar(rect.fRight); result->appendScalar(rect.fBottom); return result; } sk_sp SkPDFUtils::MatrixToArray(const SkMatrix& matrix) { SkScalar values[6]; if (!matrix.asAffine(values)) { SkMatrix::SetAffineIdentity(values); } auto result = sk_make_sp(); result->reserve(6); for (size_t i = 0; i < SK_ARRAY_COUNT(values); i++) { result->appendScalar(values[i]); } return result; } // static void SkPDFUtils::AppendTransform(const SkMatrix& matrix, SkWStream* content) { SkScalar values[6]; if (!matrix.asAffine(values)) { SkMatrix::SetAffineIdentity(values); } for (size_t i = 0; i < SK_ARRAY_COUNT(values); i++) { SkPDFUtils::AppendScalar(values[i], content); content->writeText(" "); } content->writeText("cm\n"); } // static void SkPDFUtils::MoveTo(SkScalar x, SkScalar y, SkWStream* content) { SkPDFUtils::AppendScalar(x, content); content->writeText(" "); SkPDFUtils::AppendScalar(y, content); content->writeText(" m\n"); } // static void SkPDFUtils::AppendLine(SkScalar x, SkScalar y, SkWStream* content) { SkPDFUtils::AppendScalar(x, content); content->writeText(" "); SkPDFUtils::AppendScalar(y, content); content->writeText(" l\n"); } // static void SkPDFUtils::AppendCubic(SkScalar ctl1X, SkScalar ctl1Y, SkScalar ctl2X, SkScalar ctl2Y, SkScalar dstX, SkScalar dstY, SkWStream* content) { SkString cmd("y\n"); SkPDFUtils::AppendScalar(ctl1X, content); content->writeText(" "); SkPDFUtils::AppendScalar(ctl1Y, content); content->writeText(" "); if (ctl2X != dstX || ctl2Y != dstY) { cmd.set("c\n"); SkPDFUtils::AppendScalar(ctl2X, content); content->writeText(" "); SkPDFUtils::AppendScalar(ctl2Y, content); content->writeText(" "); } SkPDFUtils::AppendScalar(dstX, content); content->writeText(" "); SkPDFUtils::AppendScalar(dstY, content); content->writeText(" "); content->writeText(cmd.c_str()); } static void append_quad(const SkPoint quad[], SkWStream* content) { SkPoint cubic[4]; SkConvertQuadToCubic(quad, cubic); SkPDFUtils::AppendCubic(cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, content); } // static void SkPDFUtils::AppendRectangle(const SkRect& rect, SkWStream* content) { // Skia has 0,0 at top left, pdf at bottom left. Do the right thing. SkScalar bottom = SkMinScalar(rect.fBottom, rect.fTop); SkPDFUtils::AppendScalar(rect.fLeft, content); content->writeText(" "); SkPDFUtils::AppendScalar(bottom, content); content->writeText(" "); SkPDFUtils::AppendScalar(rect.width(), content); content->writeText(" "); SkPDFUtils::AppendScalar(rect.height(), content); content->writeText(" re\n"); } // static void SkPDFUtils::EmitPath(const SkPath& path, SkPaint::Style paintStyle, bool doConsumeDegerates, SkWStream* content) { // Filling a path with no area results in a drawing in PDF renderers but // Chrome expects to be able to draw some such entities with no visible // result, so we detect those cases and discard the drawing for them. // Specifically: moveTo(X), lineTo(Y) and moveTo(X), lineTo(X), lineTo(Y). enum SkipFillState { kEmpty_SkipFillState, kSingleLine_SkipFillState, kNonSingleLine_SkipFillState, }; SkipFillState fillState = kEmpty_SkipFillState; //if (paintStyle != SkPaint::kFill_Style) { // fillState = kNonSingleLine_SkipFillState; //} SkPoint lastMovePt = SkPoint::Make(0,0); SkDynamicMemoryWStream currentSegment; SkPoint args[4]; SkPath::Iter iter(path, false); for (SkPath::Verb verb = iter.next(args, doConsumeDegerates); verb != SkPath::kDone_Verb; verb = iter.next(args, doConsumeDegerates)) { // args gets all the points, even the implicit first point. switch (verb) { case SkPath::kMove_Verb: MoveTo(args[0].fX, args[0].fY, ¤tSegment); lastMovePt = args[0]; fillState = kEmpty_SkipFillState; break; case SkPath::kLine_Verb: AppendLine(args[1].fX, args[1].fY, ¤tSegment); if ((fillState == kEmpty_SkipFillState) && (args[0] != lastMovePt)) { fillState = kSingleLine_SkipFillState; break; } fillState = kNonSingleLine_SkipFillState; break; case SkPath::kQuad_Verb: append_quad(args, ¤tSegment); fillState = kNonSingleLine_SkipFillState; break; case SkPath::kConic_Verb: { const SkScalar tol = SK_Scalar1 / 4; SkAutoConicToQuads converter; const SkPoint* quads = converter.computeQuads(args, iter.conicWeight(), tol); for (int i = 0; i < converter.countQuads(); ++i) { append_quad(&quads[i * 2], ¤tSegment); } fillState = kNonSingleLine_SkipFillState; } break; case SkPath::kCubic_Verb: AppendCubic(args[1].fX, args[1].fY, args[2].fX, args[2].fY, args[3].fX, args[3].fY, ¤tSegment); fillState = kNonSingleLine_SkipFillState; break; case SkPath::kClose_Verb: ClosePath(¤tSegment); currentSegment.writeToStream(content); currentSegment.reset(); break; default: SkASSERT(false); break; } } if (currentSegment.bytesWritten() > 0) { currentSegment.writeToStream(content); } } // static void SkPDFUtils::ClosePath(SkWStream* content) { content->writeText("h\n"); } // static void SkPDFUtils::PaintPath(SkPaint::Style style, SkPath::FillType fill, SkWStream* content) { if (style == SkPaint::kFill_Style) { content->writeText("f"); } else if (style == SkPaint::kStrokeAndFill_Style) { content->writeText("B"); } else if (style == SkPaint::kStroke_Style) { content->writeText("S"); } if (style != SkPaint::kStroke_Style) { NOT_IMPLEMENTED(fill == SkPath::kInverseEvenOdd_FillType, false); NOT_IMPLEMENTED(fill == SkPath::kInverseWinding_FillType, false); if (fill == SkPath::kEvenOdd_FillType) { content->writeText("*"); } } content->writeText("\n"); } // static void SkPDFUtils::StrokePath(SkWStream* content) { SkPDFUtils::PaintPath( SkPaint::kStroke_Style, SkPath::kWinding_FillType, content); } // static void SkPDFUtils::DrawFormXObject(int objectIndex, SkWStream* content) { content->writeText("/"); content->writeText(SkPDFResourceDict::getResourceName( SkPDFResourceDict::kXObject_ResourceType, objectIndex).c_str()); content->writeText(" Do\n"); } // static void SkPDFUtils::ApplyGraphicState(int objectIndex, SkWStream* content) { content->writeText("/"); content->writeText(SkPDFResourceDict::getResourceName( SkPDFResourceDict::kExtGState_ResourceType, objectIndex).c_str()); content->writeText(" gs\n"); } // static void SkPDFUtils::ApplyPattern(int objectIndex, SkWStream* content) { // Select Pattern color space (CS, cs) and set pattern object as current // color (SCN, scn) SkString resourceName = SkPDFResourceDict::getResourceName( SkPDFResourceDict::kPattern_ResourceType, objectIndex); content->writeText("/Pattern CS/Pattern cs/"); content->writeText(resourceName.c_str()); content->writeText(" SCN/"); content->writeText(resourceName.c_str()); content->writeText(" scn\n"); } void SkPDFUtils::AppendScalar(SkScalar value, SkWStream* stream) { char result[kMaximumFloatDecimalLength]; size_t len = SkPDFUtils::FloatToDecimal(SkScalarToFloat(value), result); SkASSERT(len < kMaximumFloatDecimalLength); stream->write(result, len); } /** Write a string into result, includeing a terminating '\0' (for unit testing). Return strlen(result) (for SkWStream::write) The resulting string will be in the form /[-]?([0-9]*.)?[0-9]+/ and sscanf(result, "%f", &x) will return the original value iff the value is finite. This function accepts all possible input values. Motivation: "PDF does not support [numbers] in exponential format (such as 6.02e23)." Otherwise, this function would rely on a sprintf-type function from the standard library. */ size_t SkPDFUtils::FloatToDecimal(float value, char result[kMaximumFloatDecimalLength]) { /* The longest result is -FLT_MIN. We serialize it as "-.0000000000000000000000000000000000000117549435" which has 48 characters plus a terminating '\0'. */ /* section C.1 of the PDF1.4 spec (http://goo.gl/0SCswJ) says that most PDF rasterizers will use fixed-point scalars that lack the dynamic range of floats. Even if this is the case, I want to serialize these (uncommon) very small and very large scalar values with enough precision to allow a floating-point rasterizer to read them in with perfect accuracy. Experimentally, rasterizers such as pdfium do seem to benefit from this. Rasterizers that rely on fixed-point scalars should gracefully ignore these values that they can not parse. */ char* output = &result[0]; const char* const end = &result[kMaximumFloatDecimalLength - 1]; // subtract one to leave space for '\0'. /* This function is written to accept any possible input value, including non-finite values such as INF and NAN. In that case, we ignore value-correctness and and output a syntacticly-valid number. */ if (value == SK_FloatInfinity) { value = FLT_MAX; // nearest finite float. } if (value == SK_FloatNegativeInfinity) { value = -FLT_MAX; // nearest finite float. } if (!std::isfinite(value) || value == 0.0f) { // NAN is unsupported in PDF. Always output a valid number. // Also catch zero here, as a special case. *output++ = '0'; *output = '\0'; return output - result; } // Inspired by: // http://www.exploringbinary.com/quick-and-dirty-floating-point-to-decimal-conversion/ if (value < 0.0) { *output++ = '-'; value = -value; } SkASSERT(value >= 0.0f); // Must use double math to keep precision right. double intPart; double fracPart = std::modf(static_cast(value), &intPart); SkASSERT(intPart + fracPart == static_cast(value)); size_t significantDigits = 0; const size_t maxSignificantDigits = 9; // Any fewer significant digits loses precision. The unit test // checks round-trip correctness. SkASSERT(intPart >= 0.0 && fracPart >= 0.0); // negative handled already. SkASSERT(intPart > 0.0 || fracPart > 0.0); // zero already caught. if (intPart > 0.0) { // put the intPart digits onto a stack for later reversal. char reversed[1 + FLT_MAX_10_EXP]; // 39 == 1 + FLT_MAX_10_EXP // the largest integer part is FLT_MAX; it has 39 decimal digits. size_t reversedIndex = 0; do { SkASSERT(reversedIndex < sizeof(reversed)); int digit = static_cast(std::fmod(intPart, 10.0)); SkASSERT(digit >= 0 && digit <= 9); reversed[reversedIndex++] = '0' + digit; intPart = std::floor(intPart / 10.0); } while (intPart > 0.0); significantDigits = reversedIndex; SkASSERT(reversedIndex <= sizeof(reversed)); SkASSERT(output + reversedIndex <= end); while (reversedIndex-- > 0) { // pop from stack, append to result *output++ = reversed[reversedIndex]; } } if (fracPart > 0 && significantDigits < maxSignificantDigits) { *output++ = '.'; SkASSERT(output <= end); do { fracPart = std::modf(fracPart * 10.0, &intPart); int digit = static_cast(intPart); SkASSERT(digit >= 0 && digit <= 9); *output++ = '0' + digit; SkASSERT(output <= end); if (digit > 0 || significantDigits > 0) { // start counting significantDigits after first non-zero digit. ++significantDigits; } } while (fracPart > 0.0 && significantDigits < maxSignificantDigits && output < end); // When fracPart == 0, additional digits will be zero. // When significantDigits == maxSignificantDigits, we can stop. // when output == end, we have filed the string. // Note: denormalized numbers will not have the same number of // significantDigits, but do not need them to round-trip. } SkASSERT(output <= end); *output = '\0'; return output - result; } SkString SkPDFUtils::FormatString(const char* cin, size_t len) { SkDEBUGCODE(static const size_t kMaxLen = 65535;) SkASSERT(len <= kMaxLen); // 7-bit clean is a heuristic to decide what string format to use; // a 7-bit clean string should require little escaping. bool sevenBitClean = true; size_t characterCount = 2 + len; for (size_t i = 0; i < len; i++) { if (cin[i] > '~' || cin[i] < ' ') { sevenBitClean = false; break; } if (cin[i] == '\\' || cin[i] == '(' || cin[i] == ')') { ++characterCount; } } SkString result; if (sevenBitClean) { result.resize(characterCount); char* str = result.writable_str(); *str++ = '('; for (size_t i = 0; i < len; i++) { if (cin[i] == '\\' || cin[i] == '(' || cin[i] == ')') { *str++ = '\\'; } *str++ = cin[i]; } *str++ = ')'; } else { result.resize(2 * len + 2); char* str = result.writable_str(); *str++ = '<'; for (size_t i = 0; i < len; i++) { uint8_t c = static_cast(cin[i]); static const char gHex[] = "0123456789ABCDEF"; *str++ = gHex[(c >> 4) & 0xF]; *str++ = gHex[(c ) & 0xF]; } *str++ = '>'; } return result; }