/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPDFShader.h" #include "SkCanvas.h" #include "SkData.h" #include "SkPDFCatalog.h" #include "SkPDFDevice.h" #include "SkPDFTypes.h" #include "SkPDFUtils.h" #include "SkScalar.h" #include "SkStream.h" #include "SkTemplates.h" #include "SkThread.h" #include "SkTypes.h" static bool transformBBox(const SkMatrix& matrix, SkRect* bbox) { SkMatrix inverse; if (!matrix.invert(&inverse)) { return false; } inverse.mapRect(bbox); return true; } static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) { SkVector vec = pts[1] - pts[0]; SkScalar mag = vec.length(); SkScalar inv = mag ? SkScalarInvert(mag) : 0; vec.scale(inv); matrix->setSinCos(vec.fY, vec.fX); matrix->preTranslate(pts[0].fX, pts[0].fY); matrix->preScale(mag, mag); } /* Assumes t + startOffset is on the stack and does a linear interpolation on t between startOffset and endOffset from prevColor to curColor (for each color component), leaving the result in component order on the stack. @param range endOffset - startOffset @param curColor[components] The current color components. @param prevColor[components] The previous color components. @param result The result ps function. */ static void interpolateColorCode(SkScalar range, SkScalar* curColor, SkScalar* prevColor, int components, SkString* result) { // Figure out how to scale each color component. SkAutoSTMalloc<4, SkScalar> multiplierAlloc(components); SkScalar *multiplier = multiplierAlloc.get(); for (int i = 0; i < components; i++) { multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range); } // Calculate when we no longer need to keep a copy of the input parameter t. // If the last component to use t is i, then dupInput[0..i - 1] = true // and dupInput[i .. components] = false. SkAutoSTMalloc<4, bool> dupInputAlloc(components); bool *dupInput = dupInputAlloc.get(); dupInput[components - 1] = false; for (int i = components - 2; i >= 0; i--) { dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0; } if (!dupInput[0] && multiplier[0] == 0) { result->append("pop "); } for (int i = 0; i < components; i++) { // If the next components needs t and this component will consume a // copy, make another copy. if (dupInput[i] && multiplier[i] != 0) { result->append("dup "); } if (multiplier[i] == 0) { result->appendScalar(prevColor[i]); result->append(" "); } else { if (multiplier[i] != 1) { result->appendScalar(multiplier[i]); result->append(" mul "); } if (prevColor[i] != 0) { result->appendScalar(prevColor[i]); result->append(" add "); } } if (dupInput[i]) { result->append("exch\n"); } } } /* Generate Type 4 function code to map t=[0,1) to the passed gradient, clamping at the edges of the range. The generated code will be of the form: if (t < 0) { return colorData[0][r,g,b]; } else { if (t < info.fColorOffsets[1]) { return linearinterpolation(colorData[0][r,g,b], colorData[1][r,g,b]); } else { if (t < info.fColorOffsets[2]) { return linearinterpolation(colorData[1][r,g,b], colorData[2][r,g,b]); } else { ... } else { return colorData[info.fColorCount - 1][r,g,b]; } ... } } */ static void gradientFunctionCode(const SkShader::GradientInfo& info, SkString* result) { /* We want to linearly interpolate from the previous color to the next. Scale the colors from 0..255 to 0..1 and determine the multipliers for interpolation. C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}. */ static const int kColorComponents = 3; typedef SkScalar ColorTuple[kColorComponents]; SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount); ColorTuple *colorData = colorDataAlloc.get(); const SkScalar scale = SkScalarInvert(SkIntToScalar(255)); for (int i = 0; i < info.fColorCount; i++) { colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale); colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale); colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale); } // Clamp the initial color. result->append("dup 0 le {pop "); result->appendScalar(colorData[0][0]); result->append(" "); result->appendScalar(colorData[0][1]); result->append(" "); result->appendScalar(colorData[0][2]); result->append(" }\n"); // The gradient colors. for (int i = 1 ; i < info.fColorCount; i++) { result->append("{dup "); result->appendScalar(info.fColorOffsets[i]); result->append(" le {"); if (info.fColorOffsets[i - 1] != 0) { result->appendScalar(info.fColorOffsets[i - 1]); result->append(" sub\n"); } interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1], colorData[i], colorData[i - 1], kColorComponents, result); result->append("}\n"); } // Clamp the final color. result->append("{pop "); result->appendScalar(colorData[info.fColorCount - 1][0]); result->append(" "); result->appendScalar(colorData[info.fColorCount - 1][1]); result->append(" "); result->appendScalar(colorData[info.fColorCount - 1][2]); for (int i = 0 ; i < info.fColorCount; i++) { result->append("} ifelse\n"); } } /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */ static void tileModeCode(SkShader::TileMode mode, SkString* result) { if (mode == SkShader::kRepeat_TileMode) { result->append("dup truncate sub\n"); // Get the fractional part. result->append("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1) return; } if (mode == SkShader::kMirror_TileMode) { // Map t mod 2 into [0, 1, 1, 0]. // Code Stack result->append("abs " // Map negative to positive. "dup " // t.s t.s "truncate " // t.s t "dup " // t.s t t "cvi " // t.s t T "2 mod " // t.s t (i mod 2) "1 eq " // t.s t true|false "3 1 roll " // true|false t.s t "sub " // true|false 0.s "exch " // 0.s true|false "{1 exch sub} if\n"); // 1 - 0.s|0.s } } static SkString linearCode(const SkShader::GradientInfo& info) { SkString function("{pop\n"); // Just ditch the y value. tileModeCode(info.fTileMode, &function); gradientFunctionCode(info, &function); function.append("}"); return function; } static SkString radialCode(const SkShader::GradientInfo& info) { SkString function("{"); // Find the distance from the origin. function.append("dup " // x y y "mul " // x y^2 "exch " // y^2 x "dup " // y^2 x x "mul " // y^2 x^2 "add " // y^2+x^2 "sqrt\n"); // sqrt(y^2+x^2) tileModeCode(info.fTileMode, &function); gradientFunctionCode(info, &function); function.append("}"); return function; } /* The math here is all based on the description in Two_Point_Radial_Gradient, with one simplification, the coordinate space has been scaled so that Dr = 1. This means we don't need to scale the entire equation by 1/Dr^2. */ static SkString twoPointRadialCode(const SkShader::GradientInfo& info) { SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX; SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY; SkScalar sr = info.fRadius[0]; SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1; bool posRoot = info.fRadius[1] > info.fRadius[0]; // We start with a stack of (x y), copy it and then consume one copy in // order to calculate b and the other to calculate c. SkString function("{"); function.append("2 copy "); // Calculate -b and b^2. function.appendScalar(dy); function.append(" mul exch "); function.appendScalar(dx); function.append(" mul add "); function.appendScalar(sr); function.append(" sub 2 mul neg dup dup mul\n"); // Calculate c function.append("4 2 roll dup mul exch dup mul add "); function.appendScalar(SkScalarMul(sr, sr)); function.append(" sub\n"); // Calculate the determinate function.appendScalar(SkScalarMul(SkIntToScalar(4), a)); function.append(" mul sub abs sqrt\n"); // And then the final value of t. if (posRoot) { function.append("sub "); } else { function.append("add "); } function.appendScalar(SkScalarMul(SkIntToScalar(2), a)); function.append(" div\n"); tileModeCode(info.fTileMode, &function); gradientFunctionCode(info, &function); function.append("}"); return function; } /* Conical gradient shader, based on the Canvas spec for radial gradients See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient */ static SkString twoPointConicalCode(const SkShader::GradientInfo& info) { SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX; SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY; SkScalar r0 = info.fRadius[0]; SkScalar dr = info.fRadius[1] - info.fRadius[0]; SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SkScalarMul(dr, dr); // First compute t, if the pixel falls outside the cone, then we'll end // with 'false' on the stack, otherwise we'll push 'true' with t below it // We start with a stack of (x y), copy it and then consume one copy in // order to calculate b and the other to calculate c. SkString function("{"); function.append("2 copy "); // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr). function.appendScalar(dy); function.append(" mul exch "); function.appendScalar(dx); function.append(" mul add "); function.appendScalar(SkScalarMul(r0, dr)); function.append(" add -2 mul dup dup mul\n"); // c = x^2 + y^2 + radius0^2 function.append("4 2 roll dup mul exch dup mul add "); function.appendScalar(SkScalarMul(r0, r0)); function.append(" sub dup 4 1 roll\n"); // Contents of the stack at this point: c, b, b^2, c // if a = 0, then we collapse to a simpler linear case if (a == 0) { // t = -c/b function.append("pop pop div neg dup "); // compute radius(t) function.appendScalar(dr); function.append(" mul "); function.appendScalar(r0); function.append(" add\n"); // if r(t) < 0, then it's outside the cone function.append("0 lt {pop false} {true} ifelse\n"); } else { // quadratic case: the Canvas spec wants the largest // root t for which radius(t) > 0 // compute the discriminant (b^2 - 4ac) function.appendScalar(SkScalarMul(SkIntToScalar(4), a)); function.append(" mul sub dup\n"); // if d >= 0, proceed function.append("0 ge {\n"); // an intermediate value we'll use to compute the roots: // q = -0.5 * (b +/- sqrt(d)) function.append("sqrt exch dup 0 lt {exch -1 mul} if"); function.append(" add -0.5 mul dup\n"); // first root = q / a function.appendScalar(a); function.append(" div\n"); // second root = c / q function.append("3 1 roll div\n"); // put the larger root on top of the stack function.append("2 copy gt {exch} if\n"); // compute radius(t) for larger root function.append("dup "); function.appendScalar(dr); function.append(" mul "); function.appendScalar(r0); function.append(" add\n"); // if r(t) > 0, we have our t, pop off the smaller root and we're done function.append(" 0 gt {exch pop true}\n"); // otherwise, throw out the larger one and try the smaller root function.append("{pop dup\n"); function.appendScalar(dr); function.append(" mul "); function.appendScalar(r0); function.append(" add\n"); // if r(t) < 0, push false, otherwise the smaller root is our t function.append("0 le {pop false} {true} ifelse\n"); function.append("} ifelse\n"); // d < 0, clear the stack and push false function.append("} {pop pop pop false} ifelse\n"); } // if the pixel is in the cone, proceed to compute a color function.append("{"); tileModeCode(info.fTileMode, &function); gradientFunctionCode(info, &function); // otherwise, just write black function.append("} {0 0 0} ifelse }"); return function; } static SkString sweepCode(const SkShader::GradientInfo& info) { SkString function("{exch atan 360 div\n"); tileModeCode(info.fTileMode, &function); gradientFunctionCode(info, &function); function.append("}"); return function; } class SkPDFShader::State { public: SkShader::GradientType fType; SkShader::GradientInfo fInfo; SkAutoFree fColorData; SkMatrix fCanvasTransform; SkMatrix fShaderTransform; SkIRect fBBox; SkBitmap fImage; uint32_t fPixelGeneration; SkShader::TileMode fImageTileModes[2]; explicit State(const SkShader& shader, const SkMatrix& canvasTransform, const SkIRect& bbox); bool operator==(const State& b) const; }; class SkPDFFunctionShader : public SkPDFDict, public SkPDFShader { public: explicit SkPDFFunctionShader(SkPDFShader::State* state); virtual ~SkPDFFunctionShader() { if (isValid()) { RemoveShader(this); } fResources.unrefAll(); } virtual bool isValid() { return fResources.count() > 0; } void getResources(SkTDArray* resourceList) { GetResourcesHelper(&fResources, resourceList); } private: static SkPDFObject* RangeObject(); SkTDArray fResources; SkAutoTDelete fState; SkPDFStream* makePSFunction(const SkString& psCode, SkPDFArray* domain); }; class SkPDFImageShader : public SkPDFStream, public SkPDFShader { public: explicit SkPDFImageShader(SkPDFShader::State* state); virtual ~SkPDFImageShader() { RemoveShader(this); fResources.unrefAll(); } virtual bool isValid() { return size() > 0; } void getResources(SkTDArray* resourceList) { GetResourcesHelper(&fResources, resourceList); } private: SkTDArray fResources; SkAutoTDelete fState; }; SkPDFShader::SkPDFShader() {} // static void SkPDFShader::RemoveShader(SkPDFObject* shader) { SkAutoMutexAcquire lock(CanonicalShadersMutex()); ShaderCanonicalEntry entry(shader, NULL); int index = CanonicalShaders().find(entry); SkASSERT(index >= 0); CanonicalShaders().removeShuffle(index); } // static SkPDFObject* SkPDFShader::GetPDFShader(const SkShader& shader, const SkMatrix& matrix, const SkIRect& surfaceBBox) { SkPDFObject* result; SkAutoMutexAcquire lock(CanonicalShadersMutex()); SkAutoTDelete shaderState(new State(shader, matrix, surfaceBBox)); if (shaderState.get()->fType == SkShader::kNone_GradientType && shaderState.get()->fImage.isNull()) { // TODO(vandebo) This drops SKComposeShader on the floor. We could // handle compose shader by pulling things up to a layer, drawing with // the first shader, applying the xfer mode and drawing again with the // second shader, then applying the layer to the original drawing. return NULL; } ShaderCanonicalEntry entry(NULL, shaderState.get()); int index = CanonicalShaders().find(entry); if (index >= 0) { result = CanonicalShaders()[index].fPDFShader; result->ref(); return result; } bool valid = false; // The PDFShader takes ownership of the shaderSate. if (shaderState.get()->fType == SkShader::kNone_GradientType) { SkPDFImageShader* imageShader = new SkPDFImageShader(shaderState.detach()); valid = imageShader->isValid(); result = imageShader; } else { SkPDFFunctionShader* functionShader = new SkPDFFunctionShader(shaderState.detach()); valid = functionShader->isValid(); result = functionShader; } if (!valid) { delete result; return NULL; } entry.fPDFShader = result; CanonicalShaders().push(entry); return result; // return the reference that came from new. } // static SkTDArray& SkPDFShader::CanonicalShaders() { // This initialization is only thread safe with gcc. static SkTDArray gCanonicalShaders; return gCanonicalShaders; } // static SkBaseMutex& SkPDFShader::CanonicalShadersMutex() { // This initialization is only thread safe with gcc or when // POD-style mutex initialization is used. SK_DECLARE_STATIC_MUTEX(gCanonicalShadersMutex); return gCanonicalShadersMutex; } // static SkPDFObject* SkPDFFunctionShader::RangeObject() { // This initialization is only thread safe with gcc. static SkPDFArray* range = NULL; // This method is only used with CanonicalShadersMutex, so it's safe to // populate domain. if (range == NULL) { range = new SkPDFArray; range->reserve(6); range->appendInt(0); range->appendInt(1); range->appendInt(0); range->appendInt(1); range->appendInt(0); range->appendInt(1); } return range; } SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state) : SkPDFDict("Pattern"), fState(state) { SkString (*codeFunction)(const SkShader::GradientInfo& info) = NULL; SkPoint transformPoints[2]; // Depending on the type of the gradient, we want to transform the // coordinate space in different ways. const SkShader::GradientInfo* info = &fState.get()->fInfo; transformPoints[0] = info->fPoint[0]; transformPoints[1] = info->fPoint[1]; switch (fState.get()->fType) { case SkShader::kLinear_GradientType: codeFunction = &linearCode; break; case SkShader::kRadial_GradientType: transformPoints[1] = transformPoints[0]; transformPoints[1].fX += info->fRadius[0]; codeFunction = &radialCode; break; case SkShader::kRadial2_GradientType: { // Bail out if the radii are the same. Empty fResources signals // an error and isValid will return false. if (info->fRadius[0] == info->fRadius[1]) { return; } transformPoints[1] = transformPoints[0]; SkScalar dr = info->fRadius[1] - info->fRadius[0]; transformPoints[1].fX += dr; codeFunction = &twoPointRadialCode; break; } case SkShader::kConical_GradientType: { transformPoints[1] = transformPoints[0]; transformPoints[1].fX += SK_Scalar1; codeFunction = &twoPointConicalCode; break; } case SkShader::kSweep_GradientType: transformPoints[1] = transformPoints[0]; transformPoints[1].fX += SK_Scalar1; codeFunction = &sweepCode; break; case SkShader::kColor_GradientType: case SkShader::kNone_GradientType: default: return; } // Move any scaling (assuming a unit gradient) or translation // (and rotation for linear gradient), of the final gradient from // info->fPoints to the matrix (updating bbox appropriately). Now // the gradient can be drawn on on the unit segment. SkMatrix mapperMatrix; unitToPointsMatrix(transformPoints, &mapperMatrix); SkMatrix finalMatrix = fState.get()->fCanvasTransform; finalMatrix.preConcat(mapperMatrix); finalMatrix.preConcat(fState.get()->fShaderTransform); SkRect bbox; bbox.set(fState.get()->fBBox); if (!transformBBox(finalMatrix, &bbox)) { return; } SkRefPtr domain = new SkPDFArray; domain->unref(); // SkRefPtr and new both took a reference. domain->reserve(4); domain->appendScalar(bbox.fLeft); domain->appendScalar(bbox.fRight); domain->appendScalar(bbox.fTop); domain->appendScalar(bbox.fBottom); SkString functionCode; // The two point radial gradient further references fState.get()->fInfo // in translating from x, y coordinates to the t parameter. So, we have // to transform the points and radii according to the calculated matrix. if (fState.get()->fType == SkShader::kRadial2_GradientType) { SkShader::GradientInfo twoPointRadialInfo = *info; SkMatrix inverseMapperMatrix; if (!mapperMatrix.invert(&inverseMapperMatrix)) { return; } inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2); twoPointRadialInfo.fRadius[0] = inverseMapperMatrix.mapRadius(info->fRadius[0]); twoPointRadialInfo.fRadius[1] = inverseMapperMatrix.mapRadius(info->fRadius[1]); functionCode = codeFunction(twoPointRadialInfo); } else { functionCode = codeFunction(*info); } SkRefPtr function = makePSFunction(functionCode, domain.get()); // Pass one reference to fResources, SkRefPtr and new both took a reference. fResources.push(function.get()); SkRefPtr pdfShader = new SkPDFDict; pdfShader->unref(); // SkRefPtr and new both took a reference. pdfShader->insertInt("ShadingType", 1); pdfShader->insertName("ColorSpace", "DeviceRGB"); pdfShader->insert("Domain", domain.get()); pdfShader->insert("Function", new SkPDFObjRef(function.get()))->unref(); insertInt("PatternType", 2); insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref(); insert("Shading", pdfShader.get()); } SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) : fState(state) { fState.get()->fImage.lockPixels(); SkMatrix finalMatrix = fState.get()->fCanvasTransform; finalMatrix.preConcat(fState.get()->fShaderTransform); SkRect surfaceBBox; surfaceBBox.set(fState.get()->fBBox); if (!transformBBox(finalMatrix, &surfaceBBox)) { return; } SkMatrix unflip; unflip.setTranslate(0, SkScalarRoundToScalar(surfaceBBox.height())); unflip.preScale(SK_Scalar1, -SK_Scalar1); SkISize size = SkISize::Make(SkScalarRound(surfaceBBox.width()), SkScalarRound(surfaceBBox.height())); SkPDFDevice pattern(size, size, unflip); SkCanvas canvas(&pattern); canvas.translate(-surfaceBBox.fLeft, -surfaceBBox.fTop); finalMatrix.preTranslate(surfaceBBox.fLeft, surfaceBBox.fTop); const SkBitmap* image = &fState.get()->fImage; SkScalar width = SkIntToScalar(image->width()); SkScalar height = SkIntToScalar(image->height()); SkShader::TileMode tileModes[2]; tileModes[0] = fState.get()->fImageTileModes[0]; tileModes[1] = fState.get()->fImageTileModes[1]; canvas.drawBitmap(*image, 0, 0); SkRect patternBBox = SkRect::MakeXYWH(-surfaceBBox.fLeft, -surfaceBBox.fTop, width, height); // Tiling is implied. First we handle mirroring. if (tileModes[0] == SkShader::kMirror_TileMode) { SkMatrix xMirror; xMirror.setScale(-1, 1); xMirror.postTranslate(2 * width, 0); canvas.drawBitmapMatrix(*image, xMirror); patternBBox.fRight += width; } if (tileModes[1] == SkShader::kMirror_TileMode) { SkMatrix yMirror; yMirror.setScale(SK_Scalar1, -SK_Scalar1); yMirror.postTranslate(0, 2 * height); canvas.drawBitmapMatrix(*image, yMirror); patternBBox.fBottom += height; } if (tileModes[0] == SkShader::kMirror_TileMode && tileModes[1] == SkShader::kMirror_TileMode) { SkMatrix mirror; mirror.setScale(-1, -1); mirror.postTranslate(2 * width, 2 * height); canvas.drawBitmapMatrix(*image, mirror); } // Then handle Clamping, which requires expanding the pattern canvas to // cover the entire surfaceBBox. // If both x and y are in clamp mode, we start by filling in the corners. // (Which are just a rectangles of the corner colors.) if (tileModes[0] == SkShader::kClamp_TileMode && tileModes[1] == SkShader::kClamp_TileMode) { SkPaint paint; SkRect rect; rect = SkRect::MakeLTRB(surfaceBBox.fLeft, surfaceBBox.fTop, 0, 0); if (!rect.isEmpty()) { paint.setColor(image->getColor(0, 0)); canvas.drawRect(rect, paint); } rect = SkRect::MakeLTRB(width, surfaceBBox.fTop, surfaceBBox.fRight, 0); if (!rect.isEmpty()) { paint.setColor(image->getColor(image->width() - 1, 0)); canvas.drawRect(rect, paint); } rect = SkRect::MakeLTRB(width, height, surfaceBBox.fRight, surfaceBBox.fBottom); if (!rect.isEmpty()) { paint.setColor(image->getColor(image->width() - 1, image->height() - 1)); canvas.drawRect(rect, paint); } rect = SkRect::MakeLTRB(surfaceBBox.fLeft, height, 0, surfaceBBox.fBottom); if (!rect.isEmpty()) { paint.setColor(image->getColor(0, image->height() - 1)); canvas.drawRect(rect, paint); } } // Then expand the left, right, top, then bottom. if (tileModes[0] == SkShader::kClamp_TileMode) { SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height()); if (surfaceBBox.fLeft < 0) { SkBitmap left; SkAssertResult(image->extractSubset(&left, subset)); SkMatrix leftMatrix; leftMatrix.setScale(-surfaceBBox.fLeft, 1); leftMatrix.postTranslate(surfaceBBox.fLeft, 0); canvas.drawBitmapMatrix(left, leftMatrix); if (tileModes[1] == SkShader::kMirror_TileMode) { leftMatrix.postScale(SK_Scalar1, -SK_Scalar1); leftMatrix.postTranslate(0, 2 * height); canvas.drawBitmapMatrix(left, leftMatrix); } patternBBox.fLeft = 0; } if (surfaceBBox.fRight > width) { SkBitmap right; subset.offset(image->width() - 1, 0); SkAssertResult(image->extractSubset(&right, subset)); SkMatrix rightMatrix; rightMatrix.setScale(surfaceBBox.fRight - width, 1); rightMatrix.postTranslate(width, 0); canvas.drawBitmapMatrix(right, rightMatrix); if (tileModes[1] == SkShader::kMirror_TileMode) { rightMatrix.postScale(SK_Scalar1, -SK_Scalar1); rightMatrix.postTranslate(0, 2 * height); canvas.drawBitmapMatrix(right, rightMatrix); } patternBBox.fRight = surfaceBBox.width(); } } if (tileModes[1] == SkShader::kClamp_TileMode) { SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1); if (surfaceBBox.fTop < 0) { SkBitmap top; SkAssertResult(image->extractSubset(&top, subset)); SkMatrix topMatrix; topMatrix.setScale(SK_Scalar1, -surfaceBBox.fTop); topMatrix.postTranslate(0, surfaceBBox.fTop); canvas.drawBitmapMatrix(top, topMatrix); if (tileModes[0] == SkShader::kMirror_TileMode) { topMatrix.postScale(-1, 1); topMatrix.postTranslate(2 * width, 0); canvas.drawBitmapMatrix(top, topMatrix); } patternBBox.fTop = 0; } if (surfaceBBox.fBottom > height) { SkBitmap bottom; subset.offset(0, image->height() - 1); SkAssertResult(image->extractSubset(&bottom, subset)); SkMatrix bottomMatrix; bottomMatrix.setScale(SK_Scalar1, surfaceBBox.fBottom - height); bottomMatrix.postTranslate(0, height); canvas.drawBitmapMatrix(bottom, bottomMatrix); if (tileModes[0] == SkShader::kMirror_TileMode) { bottomMatrix.postScale(-1, 1); bottomMatrix.postTranslate(2 * width, 0); canvas.drawBitmapMatrix(bottom, bottomMatrix); } patternBBox.fBottom = surfaceBBox.height(); } } SkRefPtr patternBBoxArray = new SkPDFArray; patternBBoxArray->unref(); // SkRefPtr and new both took a reference. patternBBoxArray->reserve(4); patternBBoxArray->appendScalar(patternBBox.fLeft); patternBBoxArray->appendScalar(patternBBox.fTop); patternBBoxArray->appendScalar(patternBBox.fRight); patternBBoxArray->appendScalar(patternBBox.fBottom); // Put the canvas into the pattern stream (fContent). SkRefPtr content = pattern.content(); content->unref(); // SkRefPtr and content() both took a reference. pattern.getResources(&fResources, false); setData(content.get()); insertName("Type", "Pattern"); insertInt("PatternType", 1); insertInt("PaintType", 1); insertInt("TilingType", 1); insert("BBox", patternBBoxArray.get()); insertScalar("XStep", patternBBox.width()); insertScalar("YStep", patternBBox.height()); insert("Resources", pattern.getResourceDict()); insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref(); fState.get()->fImage.unlockPixels(); } SkPDFStream* SkPDFFunctionShader::makePSFunction(const SkString& psCode, SkPDFArray* domain) { SkAutoDataUnref funcData(SkData::NewWithCopy(psCode.c_str(), psCode.size())); SkPDFStream* result = new SkPDFStream(funcData.get()); result->insertInt("FunctionType", 4); result->insert("Domain", domain); result->insert("Range", RangeObject()); return result; } SkPDFShader::ShaderCanonicalEntry::ShaderCanonicalEntry(SkPDFObject* pdfShader, const State* state) : fPDFShader(pdfShader), fState(state) { } bool SkPDFShader::ShaderCanonicalEntry::operator==( const ShaderCanonicalEntry& b) const { return fPDFShader == b.fPDFShader || (fState != NULL && b.fState != NULL && *fState == *b.fState); } bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const { if (fType != b.fType || fCanvasTransform != b.fCanvasTransform || fShaderTransform != b.fShaderTransform || fBBox != b.fBBox) { return false; } if (fType == SkShader::kNone_GradientType) { if (fPixelGeneration != b.fPixelGeneration || fPixelGeneration == 0 || fImageTileModes[0] != b.fImageTileModes[0] || fImageTileModes[1] != b.fImageTileModes[1]) { return false; } } else { if (fInfo.fColorCount != b.fInfo.fColorCount || memcmp(fInfo.fColors, b.fInfo.fColors, sizeof(SkColor) * fInfo.fColorCount) != 0 || memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets, sizeof(SkScalar) * fInfo.fColorCount) != 0 || fInfo.fPoint[0] != b.fInfo.fPoint[0] || fInfo.fTileMode != b.fInfo.fTileMode) { return false; } switch (fType) { case SkShader::kLinear_GradientType: if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) { return false; } break; case SkShader::kRadial_GradientType: if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) { return false; } break; case SkShader::kRadial2_GradientType: case SkShader::kConical_GradientType: if (fInfo.fPoint[1] != b.fInfo.fPoint[1] || fInfo.fRadius[0] != b.fInfo.fRadius[0] || fInfo.fRadius[1] != b.fInfo.fRadius[1]) { return false; } break; case SkShader::kSweep_GradientType: case SkShader::kNone_GradientType: case SkShader::kColor_GradientType: break; } } return true; } SkPDFShader::State::State(const SkShader& shader, const SkMatrix& canvasTransform, const SkIRect& bbox) : fCanvasTransform(canvasTransform), fBBox(bbox), fPixelGeneration(0) { fInfo.fColorCount = 0; fInfo.fColors = NULL; fInfo.fColorOffsets = NULL; shader.getLocalMatrix(&fShaderTransform); fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode; fType = shader.asAGradient(&fInfo); if (fType == SkShader::kNone_GradientType) { SkShader::BitmapType bitmapType; SkMatrix matrix; bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes); if (bitmapType != SkShader::kDefault_BitmapType) { fImage.reset(); return; } SkASSERT(matrix.isIdentity()); fPixelGeneration = fImage.getGenerationID(); } else { fColorData.set(sk_malloc_throw( fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar)))); fInfo.fColors = reinterpret_cast(fColorData.get()); fInfo.fColorOffsets = reinterpret_cast(fInfo.fColors + fInfo.fColorCount); shader.asAGradient(&fInfo); } }