/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPDFShader.h" #include "SkData.h" #include "SkPDFCanon.h" #include "SkPDFDevice.h" #include "SkPDFDocument.h" #include "SkPDFFormXObject.h" #include "SkPDFGraphicState.h" #include "SkPDFResourceDict.h" #include "SkPDFUtils.h" #include "SkScalar.h" #include "SkStream.h" #include "SkTemplates.h" static bool inverse_transform_bbox(const SkMatrix& matrix, SkRect* bbox) { SkMatrix inverse; if (!matrix.invert(&inverse)) { return false; } inverse.mapRect(bbox); return true; } static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) { SkVector vec = pts[1] - pts[0]; SkScalar mag = vec.length(); SkScalar inv = mag ? SkScalarInvert(mag) : 0; vec.scale(inv); matrix->setSinCos(vec.fY, vec.fX); matrix->preScale(mag, mag); matrix->postTranslate(pts[0].fX, pts[0].fY); } static const int kColorComponents = 3; typedef uint8_t ColorTuple[kColorComponents]; /* Assumes t + startOffset is on the stack and does a linear interpolation on t between startOffset and endOffset from prevColor to curColor (for each color component), leaving the result in component order on the stack. It assumes there are always 3 components per color. @param range endOffset - startOffset @param curColor[components] The current color components. @param prevColor[components] The previous color components. @param result The result ps function. */ static void interpolateColorCode(SkScalar range, const ColorTuple& curColor, const ColorTuple& prevColor, SkDynamicMemoryWStream* result) { SkASSERT(range != SkIntToScalar(0)); // Figure out how to scale each color component. SkScalar multiplier[kColorComponents]; for (int i = 0; i < kColorComponents; i++) { static const SkScalar kColorScale = SkScalarInvert(255); multiplier[i] = kColorScale * (curColor[i] - prevColor[i]) / range; } // Calculate when we no longer need to keep a copy of the input parameter t. // If the last component to use t is i, then dupInput[0..i - 1] = true // and dupInput[i .. components] = false. bool dupInput[kColorComponents]; dupInput[kColorComponents - 1] = false; for (int i = kColorComponents - 2; i >= 0; i--) { dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0; } if (!dupInput[0] && multiplier[0] == 0) { result->writeText("pop "); } for (int i = 0; i < kColorComponents; i++) { // If the next components needs t and this component will consume a // copy, make another copy. if (dupInput[i] && multiplier[i] != 0) { result->writeText("dup "); } if (multiplier[i] == 0) { SkPDFUtils::AppendColorComponent(prevColor[i], result); result->writeText(" "); } else { if (multiplier[i] != 1) { SkPDFUtils::AppendScalar(multiplier[i], result); result->writeText(" mul "); } if (prevColor[i] != 0) { SkPDFUtils::AppendColorComponent(prevColor[i], result); result->writeText(" add "); } } if (dupInput[i]) { result->writeText("exch\n"); } } } /* Generate Type 4 function code to map t=[0,1) to the passed gradient, clamping at the edges of the range. The generated code will be of the form: if (t < 0) { return colorData[0][r,g,b]; } else { if (t < info.fColorOffsets[1]) { return linearinterpolation(colorData[0][r,g,b], colorData[1][r,g,b]); } else { if (t < info.fColorOffsets[2]) { return linearinterpolation(colorData[1][r,g,b], colorData[2][r,g,b]); } else { ... } else { return colorData[info.fColorCount - 1][r,g,b]; } ... } } */ static void gradientFunctionCode(const SkShader::GradientInfo& info, SkDynamicMemoryWStream* result) { /* We want to linearly interpolate from the previous color to the next. Scale the colors from 0..255 to 0..1 and determine the multipliers for interpolation. C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}. */ SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount); ColorTuple *colorData = colorDataAlloc.get(); for (int i = 0; i < info.fColorCount; i++) { colorData[i][0] = SkColorGetR(info.fColors[i]); colorData[i][1] = SkColorGetG(info.fColors[i]); colorData[i][2] = SkColorGetB(info.fColors[i]); } // Clamp the initial color. result->writeText("dup 0 le {pop "); SkPDFUtils::AppendColorComponent(colorData[0][0], result); result->writeText(" "); SkPDFUtils::AppendColorComponent(colorData[0][1], result); result->writeText(" "); SkPDFUtils::AppendColorComponent(colorData[0][2], result); result->writeText(" }\n"); // The gradient colors. int gradients = 0; for (int i = 1 ; i < info.fColorCount; i++) { if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) { continue; } gradients++; result->writeText("{dup "); SkPDFUtils::AppendScalar(info.fColorOffsets[i], result); result->writeText(" le {"); if (info.fColorOffsets[i - 1] != 0) { SkPDFUtils::AppendScalar(info.fColorOffsets[i - 1], result); result->writeText(" sub\n"); } interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1], colorData[i], colorData[i - 1], result); result->writeText("}\n"); } // Clamp the final color. result->writeText("{pop "); SkPDFUtils::AppendColorComponent(colorData[info.fColorCount - 1][0], result); result->writeText(" "); SkPDFUtils::AppendColorComponent(colorData[info.fColorCount - 1][1], result); result->writeText(" "); SkPDFUtils::AppendColorComponent(colorData[info.fColorCount - 1][2], result); for (int i = 0 ; i < gradients + 1; i++) { result->writeText("} ifelse\n"); } } static sk_sp createInterpolationFunction(const ColorTuple& color1, const ColorTuple& color2) { auto retval = sk_make_sp(); auto c0 = sk_make_sp(); c0->appendColorComponent(color1[0]); c0->appendColorComponent(color1[1]); c0->appendColorComponent(color1[2]); retval->insertObject("C0", std::move(c0)); auto c1 = sk_make_sp(); c1->appendColorComponent(color2[0]); c1->appendColorComponent(color2[1]); c1->appendColorComponent(color2[2]); retval->insertObject("C1", std::move(c1)); auto domain = sk_make_sp(); domain->appendScalar(0); domain->appendScalar(1.0f); retval->insertObject("Domain", std::move(domain)); retval->insertInt("FunctionType", 2); retval->insertScalar("N", 1.0f); return retval; } static sk_sp gradientStitchCode(const SkShader::GradientInfo& info) { auto retval = sk_make_sp(); // normalize color stops int colorCount = info.fColorCount; SkTDArray colors(info.fColors, colorCount); SkTDArray colorOffsets(info.fColorOffsets, colorCount); int i = 1; while (i < colorCount - 1) { // ensure stops are in order if (colorOffsets[i - 1] > colorOffsets[i]) { colorOffsets[i] = colorOffsets[i - 1]; } // remove points that are between 2 coincident points if ((colorOffsets[i - 1] == colorOffsets[i]) && (colorOffsets[i] == colorOffsets[i + 1])) { colorCount -= 1; colors.remove(i); colorOffsets.remove(i); } else { i++; } } // find coincident points and slightly move them over for (i = 1; i < colorCount - 1; i++) { if (colorOffsets[i - 1] == colorOffsets[i]) { colorOffsets[i] += 0.00001f; } } // check if last 2 stops coincide if (colorOffsets[i - 1] == colorOffsets[i]) { colorOffsets[i - 1] -= 0.00001f; } SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(colorCount); ColorTuple *colorData = colorDataAlloc.get(); for (int i = 0; i < colorCount; i++) { colorData[i][0] = SkColorGetR(colors[i]); colorData[i][1] = SkColorGetG(colors[i]); colorData[i][2] = SkColorGetB(colors[i]); } // no need for a stitch function if there are only 2 stops. if (colorCount == 2) return createInterpolationFunction(colorData[0], colorData[1]); auto encode = sk_make_sp(); auto bounds = sk_make_sp(); auto functions = sk_make_sp(); auto domain = sk_make_sp(); domain->appendScalar(0); domain->appendScalar(1.0f); retval->insertObject("Domain", std::move(domain)); retval->insertInt("FunctionType", 3); for (int i = 1; i < colorCount; i++) { if (i > 1) { bounds->appendScalar(colorOffsets[i-1]); } encode->appendScalar(0); encode->appendScalar(1.0f); functions->appendObject(createInterpolationFunction(colorData[i-1], colorData[i])); } retval->insertObject("Encode", std::move(encode)); retval->insertObject("Bounds", std::move(bounds)); retval->insertObject("Functions", std::move(functions)); return retval; } /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */ static void tileModeCode(SkShader::TileMode mode, SkDynamicMemoryWStream* result) { if (mode == SkShader::kRepeat_TileMode) { result->writeText("dup truncate sub\n"); // Get the fractional part. result->writeText("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1) return; } if (mode == SkShader::kMirror_TileMode) { // Map t mod 2 into [0, 1, 1, 0]. // Code Stack result->writeText("abs " // Map negative to positive. "dup " // t.s t.s "truncate " // t.s t "dup " // t.s t t "cvi " // t.s t T "2 mod " // t.s t (i mod 2) "1 eq " // t.s t true|false "3 1 roll " // true|false t.s t "sub " // true|false 0.s "exch " // 0.s true|false "{1 exch sub} if\n"); // 1 - 0.s|0.s } } /** * Returns PS function code that applies inverse perspective * to a x, y point. * The function assumes that the stack has at least two elements, * and that the top 2 elements are numeric values. * After executing this code on a PS stack, the last 2 elements are updated * while the rest of the stack is preserved intact. * inversePerspectiveMatrix is the inverse perspective matrix. */ static void apply_perspective_to_coordinates( const SkMatrix& inversePerspectiveMatrix, SkDynamicMemoryWStream* code) { if (!inversePerspectiveMatrix.hasPerspective()) { return; } // Perspective matrix should be: // 1 0 0 // 0 1 0 // p0 p1 p2 const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0]; const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1]; const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2]; // y = y / (p2 + p0 x + p1 y) // x = x / (p2 + p0 x + p1 y) // Input on stack: x y code->writeText(" dup "); // x y y SkPDFUtils::AppendScalar(p1, code); // x y y p1 code->writeText(" mul " // x y y*p1 " 2 index "); // x y y*p1 x SkPDFUtils::AppendScalar(p0, code); // x y y p1 x p0 code->writeText(" mul "); // x y y*p1 x*p0 SkPDFUtils::AppendScalar(p2, code); // x y y p1 x*p0 p2 code->writeText(" add " // x y y*p1 x*p0+p2 "add " // x y y*p1+x*p0+p2 "3 1 roll " // y*p1+x*p0+p2 x y "2 index " // z x y y*p1+x*p0+p2 "div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2) "3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x "exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2 "div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2) "exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2) } static void linearCode(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) { function->writeText("{"); apply_perspective_to_coordinates(perspectiveRemover, function); function->writeText("pop\n"); // Just ditch the y value. tileModeCode(info.fTileMode, function); gradientFunctionCode(info, function); function->writeText("}"); } static void radialCode(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) { function->writeText("{"); apply_perspective_to_coordinates(perspectiveRemover, function); // Find the distance from the origin. function->writeText("dup " // x y y "mul " // x y^2 "exch " // y^2 x "dup " // y^2 x x "mul " // y^2 x^2 "add " // y^2+x^2 "sqrt\n"); // sqrt(y^2+x^2) tileModeCode(info.fTileMode, function); gradientFunctionCode(info, function); function->writeText("}"); } /* Conical gradient shader, based on the Canvas spec for radial gradients See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient */ static void twoPointConicalCode(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) { SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX; SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY; SkScalar r0 = info.fRadius[0]; SkScalar dr = info.fRadius[1] - info.fRadius[0]; SkScalar a = dx * dx + dy * dy - dr * dr; // First compute t, if the pixel falls outside the cone, then we'll end // with 'false' on the stack, otherwise we'll push 'true' with t below it // We start with a stack of (x y), copy it and then consume one copy in // order to calculate b and the other to calculate c. function->writeText("{"); apply_perspective_to_coordinates(perspectiveRemover, function); function->writeText("2 copy "); // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr). SkPDFUtils::AppendScalar(dy, function); function->writeText(" mul exch "); SkPDFUtils::AppendScalar(dx, function); function->writeText(" mul add "); SkPDFUtils::AppendScalar(r0 * dr, function); function->writeText(" add -2 mul dup dup mul\n"); // c = x^2 + y^2 + radius0^2 function->writeText("4 2 roll dup mul exch dup mul add "); SkPDFUtils::AppendScalar(r0 * r0, function); function->writeText(" sub dup 4 1 roll\n"); // Contents of the stack at this point: c, b, b^2, c // if a = 0, then we collapse to a simpler linear case if (a == 0) { // t = -c/b function->writeText("pop pop div neg dup "); // compute radius(t) SkPDFUtils::AppendScalar(dr, function); function->writeText(" mul "); SkPDFUtils::AppendScalar(r0, function); function->writeText(" add\n"); // if r(t) < 0, then it's outside the cone function->writeText("0 lt {pop false} {true} ifelse\n"); } else { // quadratic case: the Canvas spec wants the largest // root t for which radius(t) > 0 // compute the discriminant (b^2 - 4ac) SkPDFUtils::AppendScalar(a * 4, function); function->writeText(" mul sub dup\n"); // if d >= 0, proceed function->writeText("0 ge {\n"); // an intermediate value we'll use to compute the roots: // q = -0.5 * (b +/- sqrt(d)) function->writeText("sqrt exch dup 0 lt {exch -1 mul} if"); function->writeText(" add -0.5 mul dup\n"); // first root = q / a SkPDFUtils::AppendScalar(a, function); function->writeText(" div\n"); // second root = c / q function->writeText("3 1 roll div\n"); // put the larger root on top of the stack function->writeText("2 copy gt {exch} if\n"); // compute radius(t) for larger root function->writeText("dup "); SkPDFUtils::AppendScalar(dr, function); function->writeText(" mul "); SkPDFUtils::AppendScalar(r0, function); function->writeText(" add\n"); // if r(t) > 0, we have our t, pop off the smaller root and we're done function->writeText(" 0 gt {exch pop true}\n"); // otherwise, throw out the larger one and try the smaller root function->writeText("{pop dup\n"); SkPDFUtils::AppendScalar(dr, function); function->writeText(" mul "); SkPDFUtils::AppendScalar(r0, function); function->writeText(" add\n"); // if r(t) < 0, push false, otherwise the smaller root is our t function->writeText("0 le {pop false} {true} ifelse\n"); function->writeText("} ifelse\n"); // d < 0, clear the stack and push false function->writeText("} {pop pop pop false} ifelse\n"); } // if the pixel is in the cone, proceed to compute a color function->writeText("{"); tileModeCode(info.fTileMode, function); gradientFunctionCode(info, function); // otherwise, just write black function->writeText("} {0 0 0} ifelse }"); } static void sweepCode(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) { function->writeText("{exch atan 360 div\n"); tileModeCode(info.fTileMode, function); gradientFunctionCode(info, function); function->writeText("}"); } static void drawBitmapMatrix(SkCanvas* canvas, const SkBitmap& bm, const SkMatrix& matrix) { SkAutoCanvasRestore acr(canvas, true); canvas->concat(matrix); canvas->drawBitmap(bm, 0, 0); } //////////////////////////////////////////////////////////////////////////////// static sk_sp make_alpha_function_shader(SkPDFDocument* doc, SkScalar dpi, const SkPDFShader::State& state); static sk_sp make_function_shader(SkPDFCanon* canon, const SkPDFShader::State& state); static sk_sp make_image_shader(SkPDFDocument* doc, SkScalar dpi, const SkPDFShader::State& state, SkBitmap image); static sk_sp get_pdf_shader_by_state( SkPDFDocument* doc, SkScalar dpi, SkPDFShader::State state, SkBitmap image) { SkPDFCanon* canon = doc->canon(); if (state.fType == SkShader::kNone_GradientType && image.isNull()) { // TODO(vandebo) This drops SKComposeShader on the floor. We could // handle compose shader by pulling things up to a layer, drawing with // the first shader, applying the xfer mode and drawing again with the // second shader, then applying the layer to the original drawing. return nullptr; } else if (state.fType == SkShader::kNone_GradientType) { sk_sp shader = canon->findImageShader(state); if (!shader) { shader = make_image_shader(doc, dpi, state, std::move(image)); canon->addImageShader(shader, std::move(state)); } return shader; } else if (state.GradientHasAlpha()) { sk_sp shader = canon->findAlphaShader(state); if (!shader) { shader = make_alpha_function_shader(doc, dpi, state); canon->addAlphaShader(shader, std::move(state)); } return shader; } else { sk_sp shader = canon->findFunctionShader(state); if (!shader) { shader = make_function_shader(canon, state); canon->addFunctionShader(shader, std::move(state)); } return shader; } } sk_sp SkPDFShader::GetPDFShader(SkPDFDocument* doc, SkScalar dpi, SkShader* shader, const SkMatrix& matrix, const SkIRect& surfaceBBox, SkScalar rasterScale) { if (surfaceBBox.isEmpty()) { return nullptr; } SkBitmap image; State state(shader, matrix, surfaceBBox, rasterScale, &image); return get_pdf_shader_by_state( doc, dpi, std::move(state), std::move(image)); } static sk_sp get_gradient_resource_dict( SkPDFObject* functionShader, SkPDFObject* gState) { SkTDArray patterns; if (functionShader) { patterns.push(functionShader); } SkTDArray graphicStates; if (gState) { graphicStates.push(gState); } return SkPDFResourceDict::Make(&graphicStates, &patterns, nullptr, nullptr); } static void populate_tiling_pattern_dict(SkPDFDict* pattern, SkRect& bbox, sk_sp resources, const SkMatrix& matrix) { const int kTiling_PatternType = 1; const int kColoredTilingPattern_PaintType = 1; const int kConstantSpacing_TilingType = 1; pattern->insertName("Type", "Pattern"); pattern->insertInt("PatternType", kTiling_PatternType); pattern->insertInt("PaintType", kColoredTilingPattern_PaintType); pattern->insertInt("TilingType", kConstantSpacing_TilingType); pattern->insertObject("BBox", SkPDFUtils::RectToArray(bbox)); pattern->insertScalar("XStep", bbox.width()); pattern->insertScalar("YStep", bbox.height()); pattern->insertObject("Resources", std::move(resources)); if (!matrix.isIdentity()) { pattern->insertObject("Matrix", SkPDFUtils::MatrixToArray(matrix)); } } /** * Creates a content stream which fills the pattern P0 across bounds. * @param gsIndex A graphics state resource index to apply, or <0 if no * graphics state to apply. */ static std::unique_ptr create_pattern_fill_content( int gsIndex, SkRect& bounds) { SkDynamicMemoryWStream content; if (gsIndex >= 0) { SkPDFUtils::ApplyGraphicState(gsIndex, &content); } SkPDFUtils::ApplyPattern(0, &content); SkPDFUtils::AppendRectangle(bounds, &content); SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType, &content); return std::unique_ptr(content.detachAsStream()); } /** * Creates a ExtGState with the SMask set to the luminosityShader in * luminosity mode. The shader pattern extends to the bbox. */ static sk_sp create_smask_graphic_state( SkPDFDocument* doc, SkScalar dpi, const SkPDFShader::State& state) { SkRect bbox; bbox.set(state.fBBox); sk_sp luminosityShader( get_pdf_shader_by_state(doc, dpi, state.MakeAlphaToLuminosityState(), SkBitmap())); std::unique_ptr alphaStream(create_pattern_fill_content(-1, bbox)); sk_sp resources = get_gradient_resource_dict(luminosityShader.get(), nullptr); sk_sp alphaMask = SkPDFMakeFormXObject(std::move(alphaStream), SkPDFUtils::RectToArray(bbox), std::move(resources), SkMatrix::I(), "DeviceRGB"); return SkPDFGraphicState::GetSMaskGraphicState( std::move(alphaMask), false, SkPDFGraphicState::kLuminosity_SMaskMode, doc->canon()); } static sk_sp make_alpha_function_shader(SkPDFDocument* doc, SkScalar dpi, const SkPDFShader::State& state) { SkRect bbox; bbox.set(state.fBBox); SkPDFShader::State opaqueState(state.MakeOpaqueState()); sk_sp colorShader( get_pdf_shader_by_state(doc, dpi, std::move(opaqueState), SkBitmap())); if (!colorShader) { return nullptr; } // Create resource dict with alpha graphics state as G0 and // pattern shader as P0, then write content stream. sk_sp alphaGs = create_smask_graphic_state(doc, dpi, state); sk_sp resourceDict = get_gradient_resource_dict(colorShader.get(), alphaGs.get()); std::unique_ptr colorStream( create_pattern_fill_content(0, bbox)); auto alphaFunctionShader = sk_make_sp(std::move(colorStream)); populate_tiling_pattern_dict(alphaFunctionShader->dict(), bbox, std::move(resourceDict), SkMatrix::I()); return alphaFunctionShader; } // Finds affine and persp such that in = affine * persp. // but it returns the inverse of perspective matrix. static bool split_perspective(const SkMatrix in, SkMatrix* affine, SkMatrix* perspectiveInverse) { const SkScalar p2 = in[SkMatrix::kMPersp2]; if (SkScalarNearlyZero(p2)) { return false; } const SkScalar zero = SkIntToScalar(0); const SkScalar one = SkIntToScalar(1); const SkScalar sx = in[SkMatrix::kMScaleX]; const SkScalar kx = in[SkMatrix::kMSkewX]; const SkScalar tx = in[SkMatrix::kMTransX]; const SkScalar ky = in[SkMatrix::kMSkewY]; const SkScalar sy = in[SkMatrix::kMScaleY]; const SkScalar ty = in[SkMatrix::kMTransY]; const SkScalar p0 = in[SkMatrix::kMPersp0]; const SkScalar p1 = in[SkMatrix::kMPersp1]; // Perspective matrix would be: // 1 0 0 // 0 1 0 // p0 p1 p2 // But we need the inverse of persp. perspectiveInverse->setAll(one, zero, zero, zero, one, zero, -p0/p2, -p1/p2, 1/p2); affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2, ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2, zero, zero, one); return true; } static sk_sp make_range_object() { auto range = sk_make_sp(); range->reserve(6); range->appendInt(0); range->appendInt(1); range->appendInt(0); range->appendInt(1); range->appendInt(0); range->appendInt(1); return range; } static sk_sp make_ps_function( std::unique_ptr psCode, sk_sp domain, sk_sp range) { auto result = sk_make_sp(std::move(psCode)); result->dict()->insertInt("FunctionType", 4); result->dict()->insertObject("Domain", std::move(domain)); result->dict()->insertObject("Range", std::move(range)); return result; } // catch cases where the inner just touches the outer circle // and make the inner circle just inside the outer one to match raster static void FixUpRadius(const SkPoint& p1, SkScalar& r1, const SkPoint& p2, SkScalar& r2) { // detect touching circles SkScalar distance = SkPoint::Distance(p1, p2); SkScalar subtractRadii = fabs(r1 - r2); if (fabs(distance - subtractRadii) < 0.002f) { if (r1 > r2) { r1 += 0.002f; } else { r2 += 0.002f; } } } static sk_sp make_function_shader(SkPDFCanon* canon, const SkPDFShader::State& state) { void (*codeFunction)(const SkShader::GradientInfo& info, const SkMatrix& perspectiveRemover, SkDynamicMemoryWStream* function) = nullptr; SkPoint transformPoints[2]; const SkShader::GradientInfo* info = &state.fInfo; SkMatrix finalMatrix = state.fCanvasTransform; finalMatrix.preConcat(state.fShaderTransform); bool doStitchFunctions = (state.fType == SkShader::kLinear_GradientType || state.fType == SkShader::kRadial_GradientType || state.fType == SkShader::kConical_GradientType) && info->fTileMode == SkShader::kClamp_TileMode && !finalMatrix.hasPerspective(); auto domain = sk_make_sp(); int32_t shadingType = 1; auto pdfShader = sk_make_sp(); // The two point radial gradient further references // state.fInfo // in translating from x, y coordinates to the t parameter. So, we have // to transform the points and radii according to the calculated matrix. if (doStitchFunctions) { pdfShader->insertObject("Function", gradientStitchCode(*info)); shadingType = (state.fType == SkShader::kLinear_GradientType) ? 2 : 3; auto extend = sk_make_sp(); extend->reserve(2); extend->appendBool(true); extend->appendBool(true); pdfShader->insertObject("Extend", std::move(extend)); auto coords = sk_make_sp(); if (state.fType == SkShader::kConical_GradientType) { coords->reserve(6); SkScalar r1 = info->fRadius[0]; SkScalar r2 = info->fRadius[1]; SkPoint pt1 = info->fPoint[0]; SkPoint pt2 = info->fPoint[1]; FixUpRadius(pt1, r1, pt2, r2); coords->appendScalar(pt1.fX); coords->appendScalar(pt1.fY); coords->appendScalar(r1); coords->appendScalar(pt2.fX); coords->appendScalar(pt2.fY); coords->appendScalar(r2); } else if (state.fType == SkShader::kRadial_GradientType) { coords->reserve(6); const SkPoint& pt1 = info->fPoint[0]; coords->appendScalar(pt1.fX); coords->appendScalar(pt1.fY); coords->appendScalar(0); coords->appendScalar(pt1.fX); coords->appendScalar(pt1.fY); coords->appendScalar(info->fRadius[0]); } else { coords->reserve(4); const SkPoint& pt1 = info->fPoint[0]; const SkPoint& pt2 = info->fPoint[1]; coords->appendScalar(pt1.fX); coords->appendScalar(pt1.fY); coords->appendScalar(pt2.fX); coords->appendScalar(pt2.fY); } pdfShader->insertObject("Coords", std::move(coords)); } else { // Depending on the type of the gradient, we want to transform the // coordinate space in different ways. transformPoints[0] = info->fPoint[0]; transformPoints[1] = info->fPoint[1]; switch (state.fType) { case SkShader::kLinear_GradientType: codeFunction = &linearCode; break; case SkShader::kRadial_GradientType: transformPoints[1] = transformPoints[0]; transformPoints[1].fX += info->fRadius[0]; codeFunction = &radialCode; break; case SkShader::kConical_GradientType: { transformPoints[1] = transformPoints[0]; transformPoints[1].fX += SK_Scalar1; codeFunction = &twoPointConicalCode; break; } case SkShader::kSweep_GradientType: transformPoints[1] = transformPoints[0]; transformPoints[1].fX += SK_Scalar1; codeFunction = &sweepCode; break; case SkShader::kColor_GradientType: case SkShader::kNone_GradientType: default: return nullptr; } // Move any scaling (assuming a unit gradient) or translation // (and rotation for linear gradient), of the final gradient from // info->fPoints to the matrix (updating bbox appropriately). Now // the gradient can be drawn on on the unit segment. SkMatrix mapperMatrix; unitToPointsMatrix(transformPoints, &mapperMatrix); finalMatrix.preConcat(mapperMatrix); // Preserves as much as posible in the final matrix, and only removes // the perspective. The inverse of the perspective is stored in // perspectiveInverseOnly matrix and has 3 useful numbers // (p0, p1, p2), while everything else is either 0 or 1. // In this way the shader will handle it eficiently, with minimal code. SkMatrix perspectiveInverseOnly = SkMatrix::I(); if (finalMatrix.hasPerspective()) { if (!split_perspective(finalMatrix, &finalMatrix, &perspectiveInverseOnly)) { return nullptr; } } SkRect bbox; bbox.set(state.fBBox); if (!inverse_transform_bbox(finalMatrix, &bbox)) { return nullptr; } domain->reserve(4); domain->appendScalar(bbox.fLeft); domain->appendScalar(bbox.fRight); domain->appendScalar(bbox.fTop); domain->appendScalar(bbox.fBottom); SkDynamicMemoryWStream functionCode; if (state.fType == SkShader::kConical_GradientType) { SkShader::GradientInfo twoPointRadialInfo = *info; SkMatrix inverseMapperMatrix; if (!mapperMatrix.invert(&inverseMapperMatrix)) { return nullptr; } inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2); twoPointRadialInfo.fRadius[0] = inverseMapperMatrix.mapRadius(info->fRadius[0]); twoPointRadialInfo.fRadius[1] = inverseMapperMatrix.mapRadius(info->fRadius[1]); codeFunction(twoPointRadialInfo, perspectiveInverseOnly, &functionCode); } else { codeFunction(*info, perspectiveInverseOnly, &functionCode); } pdfShader->insertObject("Domain", domain); std::unique_ptr functionStream(functionCode.detachAsStream()); sk_sp rangeObject = SkPDFUtils::GetCachedT(&canon->fRangeObject, &make_range_object); sk_sp function = make_ps_function(std::move(functionStream), std::move(domain), std::move(rangeObject)); pdfShader->insertObjRef("Function", std::move(function)); } pdfShader->insertInt("ShadingType", shadingType); pdfShader->insertName("ColorSpace", "DeviceRGB"); auto pdfFunctionShader = sk_make_sp("Pattern"); pdfFunctionShader->insertInt("PatternType", 2); pdfFunctionShader->insertObject("Matrix", SkPDFUtils::MatrixToArray(finalMatrix)); pdfFunctionShader->insertObject("Shading", std::move(pdfShader)); return pdfFunctionShader; } static sk_sp make_image_shader(SkPDFDocument* doc, SkScalar dpi, const SkPDFShader::State& state, SkBitmap image) { SkASSERT(state.fBitmapKey == (SkBitmapKey{image.getSubset(), image.getGenerationID()})); // The image shader pattern cell will be drawn into a separate device // in pattern cell space (no scaling on the bitmap, though there may be // translations so that all content is in the device, coordinates > 0). // Map clip bounds to shader space to ensure the device is large enough // to handle fake clamping. SkMatrix finalMatrix = state.fCanvasTransform; finalMatrix.preConcat(state.fShaderTransform); SkRect deviceBounds; deviceBounds.set(state.fBBox); if (!inverse_transform_bbox(finalMatrix, &deviceBounds)) { return nullptr; } SkRect bitmapBounds; image.getBounds(&bitmapBounds); // For tiling modes, the bounds should be extended to include the bitmap, // otherwise the bitmap gets clipped out and the shader is empty and awful. // For clamp modes, we're only interested in the clip region, whether // or not the main bitmap is in it. SkShader::TileMode tileModes[2]; tileModes[0] = state.fImageTileModes[0]; tileModes[1] = state.fImageTileModes[1]; if (tileModes[0] != SkShader::kClamp_TileMode || tileModes[1] != SkShader::kClamp_TileMode) { deviceBounds.join(bitmapBounds); } SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()), SkScalarRoundToInt(deviceBounds.height())); sk_sp patternDevice( SkPDFDevice::CreateUnflipped(size, dpi, doc)); SkCanvas canvas(patternDevice.get()); SkRect patternBBox; image.getBounds(&patternBBox); // Translate the canvas so that the bitmap origin is at (0, 0). canvas.translate(-deviceBounds.left(), -deviceBounds.top()); patternBBox.offset(-deviceBounds.left(), -deviceBounds.top()); // Undo the translation in the final matrix finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top()); // If the bitmap is out of bounds (i.e. clamp mode where we only see the // stretched sides), canvas will clip this out and the extraneous data // won't be saved to the PDF. canvas.drawBitmap(image, 0, 0); SkScalar width = SkIntToScalar(image.width()); SkScalar height = SkIntToScalar(image.height()); // Tiling is implied. First we handle mirroring. if (tileModes[0] == SkShader::kMirror_TileMode) { SkMatrix xMirror; xMirror.setScale(-1, 1); xMirror.postTranslate(2 * width, 0); drawBitmapMatrix(&canvas, image, xMirror); patternBBox.fRight += width; } if (tileModes[1] == SkShader::kMirror_TileMode) { SkMatrix yMirror; yMirror.setScale(SK_Scalar1, -SK_Scalar1); yMirror.postTranslate(0, 2 * height); drawBitmapMatrix(&canvas, image, yMirror); patternBBox.fBottom += height; } if (tileModes[0] == SkShader::kMirror_TileMode && tileModes[1] == SkShader::kMirror_TileMode) { SkMatrix mirror; mirror.setScale(-1, -1); mirror.postTranslate(2 * width, 2 * height); drawBitmapMatrix(&canvas, image, mirror); } // Then handle Clamping, which requires expanding the pattern canvas to // cover the entire surfaceBBox. // If both x and y are in clamp mode, we start by filling in the corners. // (Which are just a rectangles of the corner colors.) if (tileModes[0] == SkShader::kClamp_TileMode && tileModes[1] == SkShader::kClamp_TileMode) { SkPaint paint; SkRect rect; rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0); if (!rect.isEmpty()) { paint.setColor(image.getColor(0, 0)); canvas.drawRect(rect, paint); } rect = SkRect::MakeLTRB(width, deviceBounds.top(), deviceBounds.right(), 0); if (!rect.isEmpty()) { paint.setColor(image.getColor(image.width() - 1, 0)); canvas.drawRect(rect, paint); } rect = SkRect::MakeLTRB(width, height, deviceBounds.right(), deviceBounds.bottom()); if (!rect.isEmpty()) { paint.setColor(image.getColor(image.width() - 1, image.height() - 1)); canvas.drawRect(rect, paint); } rect = SkRect::MakeLTRB(deviceBounds.left(), height, 0, deviceBounds.bottom()); if (!rect.isEmpty()) { paint.setColor(image.getColor(0, image.height() - 1)); canvas.drawRect(rect, paint); } } // Then expand the left, right, top, then bottom. if (tileModes[0] == SkShader::kClamp_TileMode) { SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image.height()); if (deviceBounds.left() < 0) { SkBitmap left; SkAssertResult(image.extractSubset(&left, subset)); SkMatrix leftMatrix; leftMatrix.setScale(-deviceBounds.left(), 1); leftMatrix.postTranslate(deviceBounds.left(), 0); drawBitmapMatrix(&canvas, left, leftMatrix); if (tileModes[1] == SkShader::kMirror_TileMode) { leftMatrix.postScale(SK_Scalar1, -SK_Scalar1); leftMatrix.postTranslate(0, 2 * height); drawBitmapMatrix(&canvas, left, leftMatrix); } patternBBox.fLeft = 0; } if (deviceBounds.right() > width) { SkBitmap right; subset.offset(image.width() - 1, 0); SkAssertResult(image.extractSubset(&right, subset)); SkMatrix rightMatrix; rightMatrix.setScale(deviceBounds.right() - width, 1); rightMatrix.postTranslate(width, 0); drawBitmapMatrix(&canvas, right, rightMatrix); if (tileModes[1] == SkShader::kMirror_TileMode) { rightMatrix.postScale(SK_Scalar1, -SK_Scalar1); rightMatrix.postTranslate(0, 2 * height); drawBitmapMatrix(&canvas, right, rightMatrix); } patternBBox.fRight = deviceBounds.width(); } } if (tileModes[1] == SkShader::kClamp_TileMode) { SkIRect subset = SkIRect::MakeXYWH(0, 0, image.width(), 1); if (deviceBounds.top() < 0) { SkBitmap top; SkAssertResult(image.extractSubset(&top, subset)); SkMatrix topMatrix; topMatrix.setScale(SK_Scalar1, -deviceBounds.top()); topMatrix.postTranslate(0, deviceBounds.top()); drawBitmapMatrix(&canvas, top, topMatrix); if (tileModes[0] == SkShader::kMirror_TileMode) { topMatrix.postScale(-1, 1); topMatrix.postTranslate(2 * width, 0); drawBitmapMatrix(&canvas, top, topMatrix); } patternBBox.fTop = 0; } if (deviceBounds.bottom() > height) { SkBitmap bottom; subset.offset(0, image.height() - 1); SkAssertResult(image.extractSubset(&bottom, subset)); SkMatrix bottomMatrix; bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height); bottomMatrix.postTranslate(0, height); drawBitmapMatrix(&canvas, bottom, bottomMatrix); if (tileModes[0] == SkShader::kMirror_TileMode) { bottomMatrix.postScale(-1, 1); bottomMatrix.postTranslate(2 * width, 0); drawBitmapMatrix(&canvas, bottom, bottomMatrix); } patternBBox.fBottom = deviceBounds.height(); } } auto imageShader = sk_make_sp(patternDevice->content()); populate_tiling_pattern_dict(imageShader->dict(), patternBBox, patternDevice->makeResourceDict(), finalMatrix); return imageShader; } bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const { if (fType != b.fType || fCanvasTransform != b.fCanvasTransform || fShaderTransform != b.fShaderTransform || fBBox != b.fBBox) { return false; } if (fType == SkShader::kNone_GradientType) { if (fBitmapKey != b.fBitmapKey || fBitmapKey.fID == 0 || fImageTileModes[0] != b.fImageTileModes[0] || fImageTileModes[1] != b.fImageTileModes[1]) { return false; } } else { if (fInfo.fColorCount != b.fInfo.fColorCount || memcmp(fInfo.fColors, b.fInfo.fColors, sizeof(SkColor) * fInfo.fColorCount) != 0 || memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets, sizeof(SkScalar) * fInfo.fColorCount) != 0 || fInfo.fPoint[0] != b.fInfo.fPoint[0] || fInfo.fTileMode != b.fInfo.fTileMode) { return false; } switch (fType) { case SkShader::kLinear_GradientType: if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) { return false; } break; case SkShader::kRadial_GradientType: if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) { return false; } break; case SkShader::kConical_GradientType: if (fInfo.fPoint[1] != b.fInfo.fPoint[1] || fInfo.fRadius[0] != b.fInfo.fRadius[0] || fInfo.fRadius[1] != b.fInfo.fRadius[1]) { return false; } break; case SkShader::kSweep_GradientType: case SkShader::kNone_GradientType: case SkShader::kColor_GradientType: break; } } return true; } SkPDFShader::State::State(SkShader* shader, const SkMatrix& canvasTransform, const SkIRect& bbox, SkScalar rasterScale, SkBitmap* imageDst) : fType(SkShader::kNone_GradientType) , fInfo{0, nullptr, nullptr, {{0.0f, 0.0f}, {0.0f, 0.0f}}, {0.0f, 0.0f}, SkShader::kClamp_TileMode, 0} , fCanvasTransform(canvasTransform) , fShaderTransform{SkMatrix::I()} , fBBox(bbox) , fBitmapKey{{0, 0, 0, 0}, 0} , fImageTileModes{SkShader::kClamp_TileMode, SkShader::kClamp_TileMode} { SkASSERT(imageDst); fInfo.fColorCount = 0; fInfo.fColors = nullptr; fInfo.fColorOffsets = nullptr; fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode; fType = shader->asAGradient(&fInfo); if (fType != SkShader::kNone_GradientType) { fBitmapKey = SkBitmapKey{{0, 0, 0, 0}, 0}; fShaderTransform = shader->getLocalMatrix(); this->allocateGradientInfoStorage(); shader->asAGradient(&fInfo); return; } if (SkImage* skimg = shader->isAImage(&fShaderTransform, fImageTileModes)) { // TODO(halcanary): delay converting to bitmap. if (skimg->asLegacyBitmap(imageDst, SkImage::kRO_LegacyBitmapMode)) { fBitmapKey = SkBitmapKey{imageDst->getSubset(), imageDst->getGenerationID()}; return; } } fShaderTransform = shader->getLocalMatrix(); // Generic fallback for unsupported shaders: // * allocate a bbox-sized bitmap // * shade the whole area // * use the result as a bitmap shader // bbox is in device space. While that's exactly what we // want for sizing our bitmap, we need to map it into // shader space for adjustments (to match // MakeImageShader's behavior). SkRect shaderRect = SkRect::Make(bbox); if (!inverse_transform_bbox(canvasTransform, &shaderRect)) { imageDst->reset(); return; } // Clamp the bitmap size to about 1M pixels static const SkScalar kMaxBitmapArea = 1024 * 1024; SkScalar bitmapArea = rasterScale * bbox.width() * rasterScale * bbox.height(); if (bitmapArea > kMaxBitmapArea) { rasterScale *= SkScalarSqrt(kMaxBitmapArea / bitmapArea); } SkISize size = {SkScalarRoundToInt(rasterScale * bbox.width()), SkScalarRoundToInt(rasterScale * bbox.height())}; SkSize scale = {SkIntToScalar(size.width()) / shaderRect.width(), SkIntToScalar(size.height()) / shaderRect.height()}; imageDst->allocN32Pixels(size.width(), size.height()); imageDst->eraseColor(SK_ColorTRANSPARENT); SkPaint p; p.setShader(sk_ref_sp(shader)); SkCanvas canvas(*imageDst); canvas.scale(scale.width(), scale.height()); canvas.translate(-shaderRect.x(), -shaderRect.y()); canvas.drawPaint(p); fShaderTransform.setTranslate(shaderRect.x(), shaderRect.y()); fShaderTransform.preScale(1 / scale.width(), 1 / scale.height()); fBitmapKey = SkBitmapKey{imageDst->getSubset(), imageDst->getGenerationID()}; } SkPDFShader::State::State(const SkPDFShader::State& other) : fType(other.fType), fCanvasTransform(other.fCanvasTransform), fShaderTransform(other.fShaderTransform), fBBox(other.fBBox) { // Only gradients supported for now, since that is all that is used. // If needed, image state copy constructor can be added here later. SkASSERT(fType != SkShader::kNone_GradientType); if (fType != SkShader::kNone_GradientType) { fInfo = other.fInfo; this->allocateGradientInfoStorage(); for (int i = 0; i < fInfo.fColorCount; i++) { fInfo.fColors[i] = other.fInfo.fColors[i]; fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i]; } } } /** * Create a copy of this gradient state with alpha assigned to RGB luminousity. * Only valid for gradient states. */ SkPDFShader::State SkPDFShader::State::MakeAlphaToLuminosityState() const { SkASSERT(fBitmapKey == (SkBitmapKey{{0, 0, 0, 0}, 0})); SkASSERT(fType != SkShader::kNone_GradientType); SkPDFShader::State newState(*this); for (int i = 0; i < fInfo.fColorCount; i++) { SkAlpha alpha = SkColorGetA(fInfo.fColors[i]); newState.fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha); } return newState; } /** * Create a copy of this gradient state with alpha set to fully opaque * Only valid for gradient states. */ SkPDFShader::State SkPDFShader::State::MakeOpaqueState() const { SkASSERT(fBitmapKey == (SkBitmapKey{{0, 0, 0, 0}, 0})); SkASSERT(fType != SkShader::kNone_GradientType); SkPDFShader::State newState(*this); for (int i = 0; i < fInfo.fColorCount; i++) { newState.fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i], SK_AlphaOPAQUE); } return newState; } /** * Returns true if state is a gradient and the gradient has alpha. */ bool SkPDFShader::State::GradientHasAlpha() const { if (fType == SkShader::kNone_GradientType) { return false; } for (int i = 0; i < fInfo.fColorCount; i++) { SkAlpha alpha = SkColorGetA(fInfo.fColors[i]); if (alpha != SK_AlphaOPAQUE) { return true; } } return false; } void SkPDFShader::State::allocateGradientInfoStorage() { fColors.reset(new SkColor[fInfo.fColorCount]); fStops.reset(new SkScalar[fInfo.fColorCount]); fInfo.fColors = fColors.get(); fInfo.fColorOffsets = fStops.get(); }