/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "SkData.h" #include "SkFontHost.h" #include "SkGlyphCache.h" #include "SkPaint.h" #include "SkPDFCatalog.h" #include "SkPDFDevice.h" #include "SkPDFFont.h" #include "SkPDFFontImpl.h" #include "SkPDFStream.h" #include "SkPDFTypes.h" #include "SkPDFUtils.h" #include "SkRefCnt.h" #include "SkScalar.h" #include "SkStream.h" #include "SkTypefacePriv.h" #include "SkTypes.h" #include "SkUtils.h" #if defined (SK_SFNTLY_SUBSETTER) #include SK_SFNTLY_SUBSETTER #endif // PDF's notion of symbolic vs non-symbolic is related to the character set, not // symbols vs. characters. Rarely is a font the right character set to call it // non-symbolic, so always call it symbolic. (PDF 1.4 spec, section 5.7.1) static const int kPdfSymbolic = 4; namespace { /////////////////////////////////////////////////////////////////////////////// // File-Local Functions /////////////////////////////////////////////////////////////////////////////// bool parsePFBSection(const uint8_t** src, size_t* len, int sectionType, size_t* size) { // PFB sections have a two or six bytes header. 0x80 and a one byte // section type followed by a four byte section length. Type one is // an ASCII section (includes a length), type two is a binary section // (includes a length) and type three is an EOF marker with no length. const uint8_t* buf = *src; if (*len < 2 || buf[0] != 0x80 || buf[1] != sectionType) { return false; } else if (buf[1] == 3) { return true; } else if (*len < 6) { return false; } *size = (size_t)buf[2] | ((size_t)buf[3] << 8) | ((size_t)buf[4] << 16) | ((size_t)buf[5] << 24); size_t consumed = *size + 6; if (consumed > *len) { return false; } *src = *src + consumed; *len = *len - consumed; return true; } bool parsePFB(const uint8_t* src, size_t size, size_t* headerLen, size_t* dataLen, size_t* trailerLen) { const uint8_t* srcPtr = src; size_t remaining = size; return parsePFBSection(&srcPtr, &remaining, 1, headerLen) && parsePFBSection(&srcPtr, &remaining, 2, dataLen) && parsePFBSection(&srcPtr, &remaining, 1, trailerLen) && parsePFBSection(&srcPtr, &remaining, 3, NULL); } /* The sections of a PFA file are implicitly defined. The body starts * after the line containing "eexec," and the trailer starts with 512 * literal 0's followed by "cleartomark" (plus arbitrary white space). * * This function assumes that src is NUL terminated, but the NUL * termination is not included in size. * */ bool parsePFA(const char* src, size_t size, size_t* headerLen, size_t* hexDataLen, size_t* dataLen, size_t* trailerLen) { const char* end = src + size; const char* dataPos = strstr(src, "eexec"); if (!dataPos) { return false; } dataPos += strlen("eexec"); while ((*dataPos == '\n' || *dataPos == '\r' || *dataPos == ' ') && dataPos < end) { dataPos++; } *headerLen = dataPos - src; const char* trailerPos = strstr(dataPos, "cleartomark"); if (!trailerPos) { return false; } int zeroCount = 0; for (trailerPos--; trailerPos > dataPos && zeroCount < 512; trailerPos--) { if (*trailerPos == '\n' || *trailerPos == '\r' || *trailerPos == ' ') { continue; } else if (*trailerPos == '0') { zeroCount++; } else { return false; } } if (zeroCount != 512) { return false; } *hexDataLen = trailerPos - src - *headerLen; *trailerLen = size - *headerLen - *hexDataLen; // Verify that the data section is hex encoded and count the bytes. int nibbles = 0; for (; dataPos < trailerPos; dataPos++) { if (isspace(*dataPos)) { continue; } if (!isxdigit(*dataPos)) { return false; } nibbles++; } *dataLen = (nibbles + 1) / 2; return true; } int8_t hexToBin(uint8_t c) { if (!isxdigit(c)) { return -1; } else if (c <= '9') { return c - '0'; } else if (c <= 'F') { return c - 'A' + 10; } else if (c <= 'f') { return c - 'a' + 10; } return -1; } SkStream* handleType1Stream(SkStream* srcStream, size_t* headerLen, size_t* dataLen, size_t* trailerLen) { // srcStream may be backed by a file or a unseekable fd, so we may not be // able to use skip(), rewind(), or getMemoryBase(). read()ing through // the input only once is doable, but very ugly. Furthermore, it'd be nice // if the data was NUL terminated so that we can use strstr() to search it. // Make as few copies as possible given these constraints. SkDynamicMemoryWStream dynamicStream; SkAutoTUnref staticStream; SkData* data = NULL; const uint8_t* src; size_t srcLen; if ((srcLen = srcStream->getLength()) > 0) { staticStream.reset(new SkMemoryStream(srcLen + 1)); src = (const uint8_t*)staticStream->getMemoryBase(); if (srcStream->getMemoryBase() != NULL) { memcpy((void *)src, srcStream->getMemoryBase(), srcLen); } else { size_t read = 0; while (read < srcLen) { size_t got = srcStream->read((void *)staticStream->getAtPos(), srcLen - read); if (got == 0) { return NULL; } read += got; staticStream->seek(read); } } ((uint8_t *)src)[srcLen] = 0; } else { static const size_t kBufSize = 4096; uint8_t buf[kBufSize]; size_t amount; while ((amount = srcStream->read(buf, kBufSize)) > 0) { dynamicStream.write(buf, amount); } amount = 0; dynamicStream.write(&amount, 1); // NULL terminator. data = dynamicStream.copyToData(); src = data->bytes(); srcLen = data->size() - 1; } // this handles releasing the data we may have gotten from dynamicStream. // if data is null, it is a no-op SkAutoDataUnref aud(data); if (parsePFB(src, srcLen, headerLen, dataLen, trailerLen)) { SkMemoryStream* result = new SkMemoryStream(*headerLen + *dataLen + *trailerLen); memcpy((char*)result->getAtPos(), src + 6, *headerLen); result->seek(*headerLen); memcpy((char*)result->getAtPos(), src + 6 + *headerLen + 6, *dataLen); result->seek(*headerLen + *dataLen); memcpy((char*)result->getAtPos(), src + 6 + *headerLen + 6 + *dataLen, *trailerLen); result->rewind(); return result; } // A PFA has to be converted for PDF. size_t hexDataLen; if (parsePFA((const char*)src, srcLen, headerLen, &hexDataLen, dataLen, trailerLen)) { SkMemoryStream* result = new SkMemoryStream(*headerLen + *dataLen + *trailerLen); memcpy((char*)result->getAtPos(), src, *headerLen); result->seek(*headerLen); const uint8_t* hexData = src + *headerLen; const uint8_t* trailer = hexData + hexDataLen; size_t outputOffset = 0; uint8_t dataByte = 0; // To hush compiler. bool highNibble = true; for (; hexData < trailer; hexData++) { int8_t curNibble = hexToBin(*hexData); if (curNibble < 0) { continue; } if (highNibble) { dataByte = curNibble << 4; highNibble = false; } else { dataByte |= curNibble; highNibble = true; ((char *)result->getAtPos())[outputOffset++] = dataByte; } } if (!highNibble) { ((char *)result->getAtPos())[outputOffset++] = dataByte; } SkASSERT(outputOffset == *dataLen); result->seek(*headerLen + outputOffset); memcpy((char *)result->getAtPos(), src + *headerLen + hexDataLen, *trailerLen); result->rewind(); return result; } return NULL; } // scale from em-units to base-1000, returning as a SkScalar SkScalar scaleFromFontUnits(int16_t val, uint16_t emSize) { SkScalar scaled = SkIntToScalar(val); if (emSize == 1000) { return scaled; } else { return SkScalarMulDiv(scaled, 1000, emSize); } } void setGlyphWidthAndBoundingBox(SkScalar width, SkIRect box, SkWStream* content) { // Specify width and bounding box for the glyph. SkPDFScalar::Append(width, content); content->writeText(" 0 "); content->writeDecAsText(box.fLeft); content->writeText(" "); content->writeDecAsText(box.fTop); content->writeText(" "); content->writeDecAsText(box.fRight); content->writeText(" "); content->writeDecAsText(box.fBottom); content->writeText(" d1\n"); } SkPDFArray* makeFontBBox(SkIRect glyphBBox, uint16_t emSize) { SkPDFArray* bbox = new SkPDFArray; bbox->reserve(4); bbox->appendScalar(scaleFromFontUnits(glyphBBox.fLeft, emSize)); bbox->appendScalar(scaleFromFontUnits(glyphBBox.fBottom, emSize)); bbox->appendScalar(scaleFromFontUnits(glyphBBox.fRight, emSize)); bbox->appendScalar(scaleFromFontUnits(glyphBBox.fTop, emSize)); return bbox; } SkPDFArray* appendWidth(const int16_t& width, uint16_t emSize, SkPDFArray* array) { array->appendScalar(scaleFromFontUnits(width, emSize)); return array; } SkPDFArray* appendVerticalAdvance( const SkAdvancedTypefaceMetrics::VerticalMetric& advance, uint16_t emSize, SkPDFArray* array) { appendWidth(advance.fVerticalAdvance, emSize, array); appendWidth(advance.fOriginXDisp, emSize, array); appendWidth(advance.fOriginYDisp, emSize, array); return array; } template SkPDFArray* composeAdvanceData( SkAdvancedTypefaceMetrics::AdvanceMetric* advanceInfo, uint16_t emSize, SkPDFArray* (*appendAdvance)(const Data& advance, uint16_t emSize, SkPDFArray* array), Data* defaultAdvance) { SkPDFArray* result = new SkPDFArray(); for (; advanceInfo != NULL; advanceInfo = advanceInfo->fNext.get()) { switch (advanceInfo->fType) { case SkAdvancedTypefaceMetrics::WidthRange::kDefault: { SkASSERT(advanceInfo->fAdvance.count() == 1); *defaultAdvance = advanceInfo->fAdvance[0]; break; } case SkAdvancedTypefaceMetrics::WidthRange::kRange: { SkAutoTUnref advanceArray(new SkPDFArray()); for (int j = 0; j < advanceInfo->fAdvance.count(); j++) appendAdvance(advanceInfo->fAdvance[j], emSize, advanceArray.get()); result->appendInt(advanceInfo->fStartId); result->append(advanceArray.get()); break; } case SkAdvancedTypefaceMetrics::WidthRange::kRun: { SkASSERT(advanceInfo->fAdvance.count() == 1); result->appendInt(advanceInfo->fStartId); result->appendInt(advanceInfo->fEndId); appendAdvance(advanceInfo->fAdvance[0], emSize, result); break; } } } return result; } } // namespace static void append_tounicode_header(SkDynamicMemoryWStream* cmap) { // 12 dict begin: 12 is an Adobe-suggested value. Shall not change. // It's there to prevent old version Adobe Readers from malfunctioning. const char* kHeader = "/CIDInit /ProcSet findresource begin\n" "12 dict begin\n" "begincmap\n"; cmap->writeText(kHeader); // The /CIDSystemInfo must be consistent to the one in // SkPDFFont::populateCIDFont(). // We can not pass over the system info object here because the format is // different. This is not a reference object. const char* kSysInfo = "/CIDSystemInfo\n" "<< /Registry (Adobe)\n" "/Ordering (UCS)\n" "/Supplement 0\n" ">> def\n"; cmap->writeText(kSysInfo); // The CMapName must be consistent to /CIDSystemInfo above. // /CMapType 2 means ToUnicode. // We specify codespacerange from 0x0000 to 0xFFFF because we convert our // code table from unsigned short (16-bits). Codespace range just tells the // PDF processor the valid range. It does not matter whether a complete // mapping is provided or not. const char* kTypeInfo = "/CMapName /Adobe-Identity-UCS def\n" "/CMapType 2 def\n" "1 begincodespacerange\n" "<0000> \n" "endcodespacerange\n"; cmap->writeText(kTypeInfo); } static void append_cmap_footer(SkDynamicMemoryWStream* cmap) { const char* kFooter = "endcmap\n" "CMapName currentdict /CMap defineresource pop\n" "end\n" "end"; cmap->writeText(kFooter); } struct BFChar { uint16_t fGlyphId; SkUnichar fUnicode; }; struct BFRange { uint16_t fStart; uint16_t fEnd; SkUnichar fUnicode; }; static void append_bfchar_section(const SkTDArray& bfchar, SkDynamicMemoryWStream* cmap) { // PDF spec defines that every bf* list can have at most 100 entries. for (int i = 0; i < bfchar.count(); i += 100) { int count = bfchar.count() - i; count = SkMin32(count, 100); cmap->writeDecAsText(count); cmap->writeText(" beginbfchar\n"); for (int j = 0; j < count; ++j) { cmap->writeText("<"); cmap->writeHexAsText(bfchar[i + j].fGlyphId, 4); cmap->writeText("> <"); cmap->writeHexAsText(bfchar[i + j].fUnicode, 4); cmap->writeText(">\n"); } cmap->writeText("endbfchar\n"); } } static void append_bfrange_section(const SkTDArray& bfrange, SkDynamicMemoryWStream* cmap) { // PDF spec defines that every bf* list can have at most 100 entries. for (int i = 0; i < bfrange.count(); i += 100) { int count = bfrange.count() - i; count = SkMin32(count, 100); cmap->writeDecAsText(count); cmap->writeText(" beginbfrange\n"); for (int j = 0; j < count; ++j) { cmap->writeText("<"); cmap->writeHexAsText(bfrange[i + j].fStart, 4); cmap->writeText("> <"); cmap->writeHexAsText(bfrange[i + j].fEnd, 4); cmap->writeText("> <"); cmap->writeHexAsText(bfrange[i + j].fUnicode, 4); cmap->writeText(">\n"); } cmap->writeText("endbfrange\n"); } } // Generate and table according to PDF spec 1.4 and Adobe // Technote 5014. // The function is not static so we can test it in unit tests. // // Current implementation guarantees bfchar and bfrange entries do not overlap. // // Current implementation does not attempt aggresive optimizations against // following case because the specification is not clear. // // 4 beginbfchar 1 beginbfchar // <0003> <0013> <0020> <0014> // <0005> <0015> to endbfchar // <0007> <0017> 1 beginbfrange // <0020> <0014> <0003> <0007> <0013> // endbfchar endbfrange // // Adobe Technote 5014 said: "Code mappings (unlike codespace ranges) may // overlap, but succeeding maps superceded preceding maps." // // In case of searching text in PDF, bfrange will have higher precedence so // typing char id 0x0014 in search box will get glyph id 0x0004 first. However, // the spec does not mention how will this kind of conflict being resolved. // // For the worst case (having 65536 continuous unicode and we use every other // one of them), the possible savings by aggressive optimization is 416KB // pre-compressed and does not provide enough motivation for implementation. // FIXME: this should be in a header so that it is separately testable // ( see caller in tests/ToUnicode.cpp ) void append_cmap_sections(const SkTDArray& glyphToUnicode, const SkPDFGlyphSet* subset, SkDynamicMemoryWStream* cmap); void append_cmap_sections(const SkTDArray& glyphToUnicode, const SkPDFGlyphSet* subset, SkDynamicMemoryWStream* cmap) { if (glyphToUnicode.isEmpty()) { return; } SkTDArray bfcharEntries; SkTDArray bfrangeEntries; BFRange currentRangeEntry = {0, 0, 0}; bool rangeEmpty = true; const int count = glyphToUnicode.count(); for (int i = 0; i < count + 1; ++i) { bool inSubset = i < count && (subset == NULL || subset->has(i)); if (!rangeEmpty) { // PDF spec requires bfrange not changing the higher byte, // e.g. <1035> <10FF> <2222> is ok, but // <1035> <1100> <2222> is no good bool inRange = i == currentRangeEntry.fEnd + 1 && i >> 8 == currentRangeEntry.fStart >> 8 && i < count && glyphToUnicode[i] == currentRangeEntry.fUnicode + i - currentRangeEntry.fStart; if (!inSubset || !inRange) { if (currentRangeEntry.fEnd > currentRangeEntry.fStart) { bfrangeEntries.push(currentRangeEntry); } else { BFChar* entry = bfcharEntries.append(); entry->fGlyphId = currentRangeEntry.fStart; entry->fUnicode = currentRangeEntry.fUnicode; } rangeEmpty = true; } } if (inSubset) { currentRangeEntry.fEnd = i; if (rangeEmpty) { currentRangeEntry.fStart = i; currentRangeEntry.fUnicode = glyphToUnicode[i]; rangeEmpty = false; } } } // The spec requires all bfchar entries for a font must come before bfrange // entries. append_bfchar_section(bfcharEntries, cmap); append_bfrange_section(bfrangeEntries, cmap); } static SkPDFStream* generate_tounicode_cmap( const SkTDArray& glyphToUnicode, const SkPDFGlyphSet* subset) { SkDynamicMemoryWStream cmap; append_tounicode_header(&cmap); append_cmap_sections(glyphToUnicode, subset, &cmap); append_cmap_footer(&cmap); SkAutoTUnref cmapStream(new SkMemoryStream()); cmapStream->setData(cmap.copyToData())->unref(); return new SkPDFStream(cmapStream.get()); } #if defined (SK_SFNTLY_SUBSETTER) static void sk_delete_array(const void* ptr, size_t, void*) { // Use C-style cast to cast away const and cast type simultaneously. delete[] (unsigned char*)ptr; } #endif static int get_subset_font_stream(const char* fontName, const SkTypeface* typeface, const SkTDArray& subset, SkPDFStream** fontStream) { int ttcIndex; SkAutoTUnref fontData(typeface->openStream(&ttcIndex)); int fontSize = fontData->getLength(); #if defined (SK_SFNTLY_SUBSETTER) // Read font into buffer. SkPDFStream* subsetFontStream = NULL; SkTDArray originalFont; originalFont.setCount(fontSize); if (fontData->read(originalFont.begin(), fontSize) == (size_t)fontSize) { unsigned char* subsetFont = NULL; // sfntly requires unsigned int* to be passed in, as far as we know, // unsigned int is equivalent to uint32_t on all platforms. SK_COMPILE_ASSERT(sizeof(unsigned int) == sizeof(uint32_t), unsigned_int_not_32_bits); int subsetFontSize = SfntlyWrapper::SubsetFont(fontName, originalFont.begin(), fontSize, subset.begin(), subset.count(), &subsetFont); if (subsetFontSize > 0 && subsetFont != NULL) { SkAutoDataUnref data(SkData::NewWithProc(subsetFont, subsetFontSize, sk_delete_array, NULL)); subsetFontStream = new SkPDFStream(data.get()); fontSize = subsetFontSize; } } if (subsetFontStream) { *fontStream = subsetFontStream; return fontSize; } #else sk_ignore_unused_variable(fontName); sk_ignore_unused_variable(subset); #endif // Fail over: just embed the whole font. *fontStream = new SkPDFStream(fontData.get()); return fontSize; } /////////////////////////////////////////////////////////////////////////////// // class SkPDFGlyphSet /////////////////////////////////////////////////////////////////////////////// SkPDFGlyphSet::SkPDFGlyphSet() : fBitSet(SK_MaxU16 + 1) { } void SkPDFGlyphSet::set(const uint16_t* glyphIDs, int numGlyphs) { for (int i = 0; i < numGlyphs; ++i) { fBitSet.setBit(glyphIDs[i], true); } } bool SkPDFGlyphSet::has(uint16_t glyphID) const { return fBitSet.isBitSet(glyphID); } void SkPDFGlyphSet::merge(const SkPDFGlyphSet& usage) { fBitSet.orBits(usage.fBitSet); } void SkPDFGlyphSet::exportTo(SkTDArray* glyphIDs) const { fBitSet.exportTo(glyphIDs); } /////////////////////////////////////////////////////////////////////////////// // class SkPDFGlyphSetMap /////////////////////////////////////////////////////////////////////////////// SkPDFGlyphSetMap::FontGlyphSetPair::FontGlyphSetPair(SkPDFFont* font, SkPDFGlyphSet* glyphSet) : fFont(font), fGlyphSet(glyphSet) { } SkPDFGlyphSetMap::F2BIter::F2BIter(const SkPDFGlyphSetMap& map) { reset(map); } const SkPDFGlyphSetMap::FontGlyphSetPair* SkPDFGlyphSetMap::F2BIter::next() const { if (fIndex >= fMap->count()) { return NULL; } return &((*fMap)[fIndex++]); } void SkPDFGlyphSetMap::F2BIter::reset(const SkPDFGlyphSetMap& map) { fMap = &(map.fMap); fIndex = 0; } SkPDFGlyphSetMap::SkPDFGlyphSetMap() { } SkPDFGlyphSetMap::~SkPDFGlyphSetMap() { reset(); } void SkPDFGlyphSetMap::merge(const SkPDFGlyphSetMap& usage) { for (int i = 0; i < usage.fMap.count(); ++i) { SkPDFGlyphSet* myUsage = getGlyphSetForFont(usage.fMap[i].fFont); myUsage->merge(*(usage.fMap[i].fGlyphSet)); } } void SkPDFGlyphSetMap::reset() { for (int i = 0; i < fMap.count(); ++i) { delete fMap[i].fGlyphSet; // Should not be NULL. } fMap.reset(); } void SkPDFGlyphSetMap::noteGlyphUsage(SkPDFFont* font, const uint16_t* glyphIDs, int numGlyphs) { SkPDFGlyphSet* subset = getGlyphSetForFont(font); if (subset) { subset->set(glyphIDs, numGlyphs); } } SkPDFGlyphSet* SkPDFGlyphSetMap::getGlyphSetForFont(SkPDFFont* font) { int index = fMap.count(); for (int i = 0; i < index; ++i) { if (fMap[i].fFont == font) { return fMap[i].fGlyphSet; } } fMap.append(); index = fMap.count() - 1; fMap[index].fFont = font; fMap[index].fGlyphSet = new SkPDFGlyphSet(); return fMap[index].fGlyphSet; } /////////////////////////////////////////////////////////////////////////////// // class SkPDFFont /////////////////////////////////////////////////////////////////////////////// /* Font subset design: It would be nice to be able to subset fonts * (particularly type 3 fonts), but it's a lot of work and not a priority. * * Resources are canonicalized and uniqueified by pointer so there has to be * some additional state indicating which subset of the font is used. It * must be maintained at the page granularity and then combined at the document * granularity. a) change SkPDFFont to fill in its state on demand, kind of * like SkPDFGraphicState. b) maintain a per font glyph usage class in each * page/pdf device. c) in the document, retrieve the per font glyph usage * from each page and combine it and ask for a resource with that subset. */ SkPDFFont::~SkPDFFont() { SkAutoMutexAcquire lock(CanonicalFontsMutex()); int index = -1; for (int i = 0 ; i < CanonicalFonts().count() ; i++) { if (CanonicalFonts()[i].fFont == this) { index = i; } } SkDEBUGCODE(int indexFound;) SkASSERT(index == -1 || (Find(fTypeface->uniqueID(), fFirstGlyphID, &indexFound) && index == indexFound)); if (index >= 0) { CanonicalFonts().removeShuffle(index); } fResources.unrefAll(); } void SkPDFFont::getResources(const SkTSet& knownResourceObjects, SkTSet* newResourceObjects) { GetResourcesHelper(&fResources, knownResourceObjects, newResourceObjects); } SkTypeface* SkPDFFont::typeface() { return fTypeface.get(); } SkAdvancedTypefaceMetrics::FontType SkPDFFont::getType() { return fFontType; } bool SkPDFFont::hasGlyph(uint16_t id) { return (id >= fFirstGlyphID && id <= fLastGlyphID) || id == 0; } size_t SkPDFFont::glyphsToPDFFontEncoding(uint16_t* glyphIDs, size_t numGlyphs) { // A font with multibyte glyphs will support all glyph IDs in a single font. if (this->multiByteGlyphs()) { return numGlyphs; } for (size_t i = 0; i < numGlyphs; i++) { if (glyphIDs[i] == 0) { continue; } if (glyphIDs[i] < fFirstGlyphID || glyphIDs[i] > fLastGlyphID) { return i; } glyphIDs[i] -= (fFirstGlyphID - 1); } return numGlyphs; } // static SkPDFFont* SkPDFFont::GetFontResource(SkTypeface* typeface, uint16_t glyphID) { SkAutoMutexAcquire lock(CanonicalFontsMutex()); SkAutoResolveDefaultTypeface autoResolve(typeface); typeface = autoResolve.get(); const uint32_t fontID = typeface->uniqueID(); int relatedFontIndex; if (Find(fontID, glyphID, &relatedFontIndex)) { CanonicalFonts()[relatedFontIndex].fFont->ref(); return CanonicalFonts()[relatedFontIndex].fFont; } SkAutoTUnref fontMetrics; SkPDFDict* relatedFontDescriptor = NULL; if (relatedFontIndex >= 0) { SkPDFFont* relatedFont = CanonicalFonts()[relatedFontIndex].fFont; fontMetrics.reset(relatedFont->fontInfo()); SkSafeRef(fontMetrics.get()); relatedFontDescriptor = relatedFont->getFontDescriptor(); // This only is to catch callers who pass invalid glyph ids. // If glyph id is invalid, then we will create duplicate entries // for True Type fonts. SkAdvancedTypefaceMetrics::FontType fontType = fontMetrics.get() ? fontMetrics.get()->fType : SkAdvancedTypefaceMetrics::kOther_Font; if (fontType == SkAdvancedTypefaceMetrics::kType1CID_Font || fontType == SkAdvancedTypefaceMetrics::kTrueType_Font) { CanonicalFonts()[relatedFontIndex].fFont->ref(); return CanonicalFonts()[relatedFontIndex].fFont; } } else { SkAdvancedTypefaceMetrics::PerGlyphInfo info; info = SkAdvancedTypefaceMetrics::kGlyphNames_PerGlyphInfo; info = SkTBitOr( info, SkAdvancedTypefaceMetrics::kToUnicode_PerGlyphInfo); #if !defined (SK_SFNTLY_SUBSETTER) info = SkTBitOr( info, SkAdvancedTypefaceMetrics::kHAdvance_PerGlyphInfo); #endif fontMetrics.reset( typeface->getAdvancedTypefaceMetrics(info, NULL, 0)); #if defined (SK_SFNTLY_SUBSETTER) if (fontMetrics.get() && fontMetrics->fType != SkAdvancedTypefaceMetrics::kTrueType_Font) { // Font does not support subsetting, get new info with advance. info = SkTBitOr( info, SkAdvancedTypefaceMetrics::kHAdvance_PerGlyphInfo); fontMetrics.reset( typeface->getAdvancedTypefaceMetrics(info, NULL, 0)); } #endif } SkPDFFont* font = Create(fontMetrics.get(), typeface, glyphID, relatedFontDescriptor); FontRec newEntry(font, fontID, font->fFirstGlyphID); CanonicalFonts().push(newEntry); return font; // Return the reference new SkPDFFont() created. } SkPDFFont* SkPDFFont::getFontSubset(const SkPDFGlyphSet*) { return NULL; // Default: no support. } // static SkTDArray& SkPDFFont::CanonicalFonts() { // This initialization is only thread safe with gcc. static SkTDArray gCanonicalFonts; return gCanonicalFonts; } // static SkBaseMutex& SkPDFFont::CanonicalFontsMutex() { // This initialization is only thread safe with gcc, or when // POD-style mutex initialization is used. SK_DECLARE_STATIC_MUTEX(gCanonicalFontsMutex); return gCanonicalFontsMutex; } // static bool SkPDFFont::Find(uint32_t fontID, uint16_t glyphID, int* index) { // TODO(vandebo): Optimize this, do only one search? FontRec search(NULL, fontID, glyphID); *index = CanonicalFonts().find(search); if (*index >= 0) { return true; } search.fGlyphID = 0; *index = CanonicalFonts().find(search); return false; } SkPDFFont::SkPDFFont(SkAdvancedTypefaceMetrics* info, SkTypeface* typeface, SkPDFDict* relatedFontDescriptor) : SkPDFDict("Font"), fTypeface(ref_or_default(typeface)), fFirstGlyphID(1), fLastGlyphID(info ? info->fLastGlyphID : 0), fFontInfo(info), fDescriptor(relatedFontDescriptor) { SkSafeRef(typeface); SkSafeRef(info); if (info == NULL) { fFontType = SkAdvancedTypefaceMetrics::kNotEmbeddable_Font; } else if (info->fMultiMaster) { fFontType = SkAdvancedTypefaceMetrics::kOther_Font; } else { fFontType = info->fType; } } // static SkPDFFont* SkPDFFont::Create(SkAdvancedTypefaceMetrics* info, SkTypeface* typeface, uint16_t glyphID, SkPDFDict* relatedFontDescriptor) { SkAdvancedTypefaceMetrics::FontType type = info ? info->fType : SkAdvancedTypefaceMetrics::kNotEmbeddable_Font; if (info && info->fMultiMaster) { NOT_IMPLEMENTED(true, true); return new SkPDFType3Font(info, typeface, glyphID); } if (type == SkAdvancedTypefaceMetrics::kType1CID_Font || type == SkAdvancedTypefaceMetrics::kTrueType_Font) { SkASSERT(relatedFontDescriptor == NULL); return new SkPDFType0Font(info, typeface); } if (type == SkAdvancedTypefaceMetrics::kType1_Font) { return new SkPDFType1Font(info, typeface, glyphID, relatedFontDescriptor); } SkASSERT(type == SkAdvancedTypefaceMetrics::kCFF_Font || type == SkAdvancedTypefaceMetrics::kOther_Font || type == SkAdvancedTypefaceMetrics::kNotEmbeddable_Font); return new SkPDFType3Font(info, typeface, glyphID); } SkAdvancedTypefaceMetrics* SkPDFFont::fontInfo() { return fFontInfo.get(); } void SkPDFFont::setFontInfo(SkAdvancedTypefaceMetrics* info) { if (info == NULL || info == fFontInfo.get()) { return; } fFontInfo.reset(info); SkSafeRef(info); } uint16_t SkPDFFont::firstGlyphID() const { return fFirstGlyphID; } uint16_t SkPDFFont::lastGlyphID() const { return fLastGlyphID; } void SkPDFFont::setLastGlyphID(uint16_t glyphID) { fLastGlyphID = glyphID; } void SkPDFFont::addResource(SkPDFObject* object) { SkASSERT(object != NULL); fResources.push(object); object->ref(); } SkPDFDict* SkPDFFont::getFontDescriptor() { return fDescriptor.get(); } void SkPDFFont::setFontDescriptor(SkPDFDict* descriptor) { fDescriptor.reset(descriptor); SkSafeRef(descriptor); } bool SkPDFFont::addCommonFontDescriptorEntries(int16_t defaultWidth) { if (fDescriptor.get() == NULL) { return false; } const uint16_t emSize = fFontInfo->fEmSize; fDescriptor->insertName("FontName", fFontInfo->fFontName); fDescriptor->insertInt("Flags", fFontInfo->fStyle | kPdfSymbolic); fDescriptor->insertScalar("Ascent", scaleFromFontUnits(fFontInfo->fAscent, emSize)); fDescriptor->insertScalar("Descent", scaleFromFontUnits(fFontInfo->fDescent, emSize)); fDescriptor->insertScalar("StemV", scaleFromFontUnits(fFontInfo->fStemV, emSize)); fDescriptor->insertScalar("CapHeight", scaleFromFontUnits(fFontInfo->fCapHeight, emSize)); fDescriptor->insertInt("ItalicAngle", fFontInfo->fItalicAngle); fDescriptor->insert("FontBBox", makeFontBBox(fFontInfo->fBBox, fFontInfo->fEmSize))->unref(); if (defaultWidth > 0) { fDescriptor->insertScalar("MissingWidth", scaleFromFontUnits(defaultWidth, emSize)); } return true; } void SkPDFFont::adjustGlyphRangeForSingleByteEncoding(int16_t glyphID) { // Single byte glyph encoding supports a max of 255 glyphs. fFirstGlyphID = glyphID - (glyphID - 1) % 255; if (fLastGlyphID > fFirstGlyphID + 255 - 1) { fLastGlyphID = fFirstGlyphID + 255 - 1; } } bool SkPDFFont::FontRec::operator==(const SkPDFFont::FontRec& b) const { if (fFontID != b.fFontID) { return false; } if (fFont != NULL && b.fFont != NULL) { return fFont->fFirstGlyphID == b.fFont->fFirstGlyphID && fFont->fLastGlyphID == b.fFont->fLastGlyphID; } if (fGlyphID == 0 || b.fGlyphID == 0) { return true; } if (fFont != NULL) { return fFont->fFirstGlyphID <= b.fGlyphID && b.fGlyphID <= fFont->fLastGlyphID; } else if (b.fFont != NULL) { return b.fFont->fFirstGlyphID <= fGlyphID && fGlyphID <= b.fFont->fLastGlyphID; } return fGlyphID == b.fGlyphID; } SkPDFFont::FontRec::FontRec(SkPDFFont* font, uint32_t fontID, uint16_t glyphID) : fFont(font), fFontID(fontID), fGlyphID(glyphID) { } void SkPDFFont::populateToUnicodeTable(const SkPDFGlyphSet* subset) { if (fFontInfo == NULL || fFontInfo->fGlyphToUnicode.begin() == NULL) { return; } SkAutoTUnref pdfCmap( generate_tounicode_cmap(fFontInfo->fGlyphToUnicode, subset)); addResource(pdfCmap.get()); insert("ToUnicode", new SkPDFObjRef(pdfCmap.get()))->unref(); } /////////////////////////////////////////////////////////////////////////////// // class SkPDFType0Font /////////////////////////////////////////////////////////////////////////////// SkPDFType0Font::SkPDFType0Font(SkAdvancedTypefaceMetrics* info, SkTypeface* typeface) : SkPDFFont(info, typeface, NULL) { SkDEBUGCODE(fPopulated = false); } SkPDFType0Font::~SkPDFType0Font() {} SkPDFFont* SkPDFType0Font::getFontSubset(const SkPDFGlyphSet* subset) { SkPDFType0Font* newSubset = new SkPDFType0Font(fontInfo(), typeface()); newSubset->populate(subset); return newSubset; } #ifdef SK_DEBUG void SkPDFType0Font::emitObject(SkWStream* stream, SkPDFCatalog* catalog, bool indirect) { SkASSERT(fPopulated); return INHERITED::emitObject(stream, catalog, indirect); } #endif bool SkPDFType0Font::populate(const SkPDFGlyphSet* subset) { insertName("Subtype", "Type0"); insertName("BaseFont", fontInfo()->fFontName); insertName("Encoding", "Identity-H"); SkAutoTUnref newCIDFont( new SkPDFCIDFont(fontInfo(), typeface(), subset)); addResource(newCIDFont.get()); SkAutoTUnref descendantFonts(new SkPDFArray()); descendantFonts->append(new SkPDFObjRef(newCIDFont.get()))->unref(); insert("DescendantFonts", descendantFonts.get()); populateToUnicodeTable(subset); SkDEBUGCODE(fPopulated = true); return true; } /////////////////////////////////////////////////////////////////////////////// // class SkPDFCIDFont /////////////////////////////////////////////////////////////////////////////// SkPDFCIDFont::SkPDFCIDFont(SkAdvancedTypefaceMetrics* info, SkTypeface* typeface, const SkPDFGlyphSet* subset) : SkPDFFont(info, typeface, NULL) { populate(subset); } SkPDFCIDFont::~SkPDFCIDFont() {} bool SkPDFCIDFont::addFontDescriptor(int16_t defaultWidth, const SkTDArray* subset) { SkAutoTUnref descriptor(new SkPDFDict("FontDescriptor")); setFontDescriptor(descriptor.get()); addResource(descriptor.get()); switch (getType()) { case SkAdvancedTypefaceMetrics::kTrueType_Font: { SkASSERT(subset); // Font subsetting SkPDFStream* rawStream = NULL; int fontSize = get_subset_font_stream(fontInfo()->fFontName.c_str(), typeface(), *subset, &rawStream); SkASSERT(fontSize); SkASSERT(rawStream); SkAutoTUnref fontStream(rawStream); addResource(fontStream.get()); fontStream->insertInt("Length1", fontSize); descriptor->insert("FontFile2", new SkPDFObjRef(fontStream.get()))->unref(); break; } case SkAdvancedTypefaceMetrics::kCFF_Font: case SkAdvancedTypefaceMetrics::kType1CID_Font: { int ttcIndex; SkAutoTUnref fontData(typeface()->openStream(&ttcIndex)); SkAutoTUnref fontStream( new SkPDFStream(fontData.get())); addResource(fontStream.get()); if (getType() == SkAdvancedTypefaceMetrics::kCFF_Font) { fontStream->insertName("Subtype", "Type1C"); } else { fontStream->insertName("Subtype", "CIDFontType0c"); } descriptor->insert("FontFile3", new SkPDFObjRef(fontStream.get()))->unref(); break; } default: SkASSERT(false); } insert("FontDescriptor", new SkPDFObjRef(descriptor.get()))->unref(); return addCommonFontDescriptorEntries(defaultWidth); } bool SkPDFCIDFont::populate(const SkPDFGlyphSet* subset) { // Generate new font metrics with advance info for true type fonts. if (fontInfo()->fType == SkAdvancedTypefaceMetrics::kTrueType_Font) { // Generate glyph id array. SkTDArray glyphIDs; glyphIDs.push(0); // Always include glyph 0. if (subset) { subset->exportTo(&glyphIDs); } SkAdvancedTypefaceMetrics::PerGlyphInfo info; info = SkAdvancedTypefaceMetrics::kGlyphNames_PerGlyphInfo; info = SkTBitOr( info, SkAdvancedTypefaceMetrics::kHAdvance_PerGlyphInfo); uint32_t* glyphs = (glyphIDs.count() == 1) ? NULL : glyphIDs.begin(); uint32_t glyphsCount = glyphs ? glyphIDs.count() : 0; SkAutoTUnref fontMetrics( typeface()->getAdvancedTypefaceMetrics(info, glyphs, glyphsCount)); setFontInfo(fontMetrics.get()); addFontDescriptor(0, &glyphIDs); } else { // Other CID fonts addFontDescriptor(0, NULL); } insertName("BaseFont", fontInfo()->fFontName); if (getType() == SkAdvancedTypefaceMetrics::kType1CID_Font) { insertName("Subtype", "CIDFontType0"); } else if (getType() == SkAdvancedTypefaceMetrics::kTrueType_Font) { insertName("Subtype", "CIDFontType2"); insertName("CIDToGIDMap", "Identity"); } else { SkASSERT(false); } SkAutoTUnref sysInfo(new SkPDFDict); sysInfo->insert("Registry", new SkPDFString("Adobe"))->unref(); sysInfo->insert("Ordering", new SkPDFString("Identity"))->unref(); sysInfo->insertInt("Supplement", 0); insert("CIDSystemInfo", sysInfo.get()); if (fontInfo()->fGlyphWidths.get()) { int16_t defaultWidth = 0; SkAutoTUnref widths( composeAdvanceData(fontInfo()->fGlyphWidths.get(), fontInfo()->fEmSize, &appendWidth, &defaultWidth)); if (widths->size()) insert("W", widths.get()); if (defaultWidth != 0) { insertScalar("DW", scaleFromFontUnits(defaultWidth, fontInfo()->fEmSize)); } } if (fontInfo()->fVerticalMetrics.get()) { struct SkAdvancedTypefaceMetrics::VerticalMetric defaultAdvance; defaultAdvance.fVerticalAdvance = 0; defaultAdvance.fOriginXDisp = 0; defaultAdvance.fOriginYDisp = 0; SkAutoTUnref advances( composeAdvanceData(fontInfo()->fVerticalMetrics.get(), fontInfo()->fEmSize, &appendVerticalAdvance, &defaultAdvance)); if (advances->size()) insert("W2", advances.get()); if (defaultAdvance.fVerticalAdvance || defaultAdvance.fOriginXDisp || defaultAdvance.fOriginYDisp) { insert("DW2", appendVerticalAdvance(defaultAdvance, fontInfo()->fEmSize, new SkPDFArray))->unref(); } } return true; } /////////////////////////////////////////////////////////////////////////////// // class SkPDFType1Font /////////////////////////////////////////////////////////////////////////////// SkPDFType1Font::SkPDFType1Font(SkAdvancedTypefaceMetrics* info, SkTypeface* typeface, uint16_t glyphID, SkPDFDict* relatedFontDescriptor) : SkPDFFont(info, typeface, relatedFontDescriptor) { populate(glyphID); } SkPDFType1Font::~SkPDFType1Font() {} bool SkPDFType1Font::addFontDescriptor(int16_t defaultWidth) { if (getFontDescriptor() != NULL) { SkPDFDict* descriptor = getFontDescriptor(); addResource(descriptor); insert("FontDescriptor", new SkPDFObjRef(descriptor))->unref(); return true; } SkAutoTUnref descriptor(new SkPDFDict("FontDescriptor")); setFontDescriptor(descriptor.get()); int ttcIndex; size_t header SK_INIT_TO_AVOID_WARNING; size_t data SK_INIT_TO_AVOID_WARNING; size_t trailer SK_INIT_TO_AVOID_WARNING; SkAutoTUnref rawFontData(typeface()->openStream(&ttcIndex)); SkStream* fontData = handleType1Stream(rawFontData.get(), &header, &data, &trailer); if (fontData == NULL) { return false; } SkAutoTUnref fontStream(new SkPDFStream(fontData)); addResource(fontStream.get()); fontStream->insertInt("Length1", header); fontStream->insertInt("Length2", data); fontStream->insertInt("Length3", trailer); descriptor->insert("FontFile", new SkPDFObjRef(fontStream.get()))->unref(); addResource(descriptor.get()); insert("FontDescriptor", new SkPDFObjRef(descriptor.get()))->unref(); return addCommonFontDescriptorEntries(defaultWidth); } bool SkPDFType1Font::populate(int16_t glyphID) { SkASSERT(!fontInfo()->fVerticalMetrics.get()); SkASSERT(fontInfo()->fGlyphWidths.get()); adjustGlyphRangeForSingleByteEncoding(glyphID); int16_t defaultWidth = 0; const SkAdvancedTypefaceMetrics::WidthRange* widthRangeEntry = NULL; const SkAdvancedTypefaceMetrics::WidthRange* widthEntry; for (widthEntry = fontInfo()->fGlyphWidths.get(); widthEntry != NULL; widthEntry = widthEntry->fNext.get()) { switch (widthEntry->fType) { case SkAdvancedTypefaceMetrics::WidthRange::kDefault: defaultWidth = widthEntry->fAdvance[0]; break; case SkAdvancedTypefaceMetrics::WidthRange::kRun: SkASSERT(false); break; case SkAdvancedTypefaceMetrics::WidthRange::kRange: SkASSERT(widthRangeEntry == NULL); widthRangeEntry = widthEntry; break; } } if (!addFontDescriptor(defaultWidth)) { return false; } insertName("Subtype", "Type1"); insertName("BaseFont", fontInfo()->fFontName); addWidthInfoFromRange(defaultWidth, widthRangeEntry); SkAutoTUnref encoding(new SkPDFDict("Encoding")); insert("Encoding", encoding.get()); SkAutoTUnref encDiffs(new SkPDFArray); encoding->insert("Differences", encDiffs.get()); encDiffs->reserve(lastGlyphID() - firstGlyphID() + 2); encDiffs->appendInt(1); for (int gID = firstGlyphID(); gID <= lastGlyphID(); gID++) { encDiffs->appendName(fontInfo()->fGlyphNames->get()[gID].c_str()); } return true; } void SkPDFType1Font::addWidthInfoFromRange( int16_t defaultWidth, const SkAdvancedTypefaceMetrics::WidthRange* widthRangeEntry) { SkAutoTUnref widthArray(new SkPDFArray()); int firstChar = 0; if (widthRangeEntry) { const uint16_t emSize = fontInfo()->fEmSize; int startIndex = firstGlyphID() - widthRangeEntry->fStartId; int endIndex = startIndex + lastGlyphID() - firstGlyphID() + 1; if (startIndex < 0) startIndex = 0; if (endIndex > widthRangeEntry->fAdvance.count()) endIndex = widthRangeEntry->fAdvance.count(); if (widthRangeEntry->fStartId == 0) { appendWidth(widthRangeEntry->fAdvance[0], emSize, widthArray.get()); } else { firstChar = startIndex + widthRangeEntry->fStartId; } for (int i = startIndex; i < endIndex; i++) { appendWidth(widthRangeEntry->fAdvance[i], emSize, widthArray.get()); } } else { appendWidth(defaultWidth, 1000, widthArray.get()); } insertInt("FirstChar", firstChar); insertInt("LastChar", firstChar + widthArray->size() - 1); insert("Widths", widthArray.get()); } /////////////////////////////////////////////////////////////////////////////// // class SkPDFType3Font /////////////////////////////////////////////////////////////////////////////// SkPDFType3Font::SkPDFType3Font(SkAdvancedTypefaceMetrics* info, SkTypeface* typeface, uint16_t glyphID) : SkPDFFont(info, typeface, NULL) { populate(glyphID); } SkPDFType3Font::~SkPDFType3Font() {} bool SkPDFType3Font::populate(int16_t glyphID) { SkPaint paint; paint.setTypeface(typeface()); paint.setTextSize(1000); SkAutoGlyphCache autoCache(paint, NULL, NULL); SkGlyphCache* cache = autoCache.getCache(); // If fLastGlyphID isn't set (because there is not fFontInfo), look it up. if (lastGlyphID() == 0) { setLastGlyphID(cache->getGlyphCount() - 1); } adjustGlyphRangeForSingleByteEncoding(glyphID); insertName("Subtype", "Type3"); // Flip about the x-axis and scale by 1/1000. SkMatrix fontMatrix; fontMatrix.setScale(SkScalarInvert(1000), -SkScalarInvert(1000)); insert("FontMatrix", SkPDFUtils::MatrixToArray(fontMatrix))->unref(); SkAutoTUnref charProcs(new SkPDFDict); insert("CharProcs", charProcs.get()); SkAutoTUnref encoding(new SkPDFDict("Encoding")); insert("Encoding", encoding.get()); SkAutoTUnref encDiffs(new SkPDFArray); encoding->insert("Differences", encDiffs.get()); encDiffs->reserve(lastGlyphID() - firstGlyphID() + 2); encDiffs->appendInt(1); SkAutoTUnref widthArray(new SkPDFArray()); SkIRect bbox = SkIRect::MakeEmpty(); for (int gID = firstGlyphID(); gID <= lastGlyphID(); gID++) { SkString characterName; characterName.printf("gid%d", gID); encDiffs->appendName(characterName.c_str()); const SkGlyph& glyph = cache->getGlyphIDMetrics(gID); widthArray->appendScalar(SkFixedToScalar(glyph.fAdvanceX)); SkIRect glyphBBox = SkIRect::MakeXYWH(glyph.fLeft, glyph.fTop, glyph.fWidth, glyph.fHeight); bbox.join(glyphBBox); SkDynamicMemoryWStream content; setGlyphWidthAndBoundingBox(SkFixedToScalar(glyph.fAdvanceX), glyphBBox, &content); const SkPath* path = cache->findPath(glyph); if (path) { SkPDFUtils::EmitPath(*path, paint.getStyle(), &content); SkPDFUtils::PaintPath(paint.getStyle(), path->getFillType(), &content); } SkAutoTUnref glyphStream(new SkMemoryStream()); glyphStream->setData(content.copyToData())->unref(); SkAutoTUnref glyphDescription( new SkPDFStream(glyphStream.get())); addResource(glyphDescription.get()); charProcs->insert(characterName.c_str(), new SkPDFObjRef(glyphDescription.get()))->unref(); } insert("FontBBox", makeFontBBox(bbox, 1000))->unref(); insertInt("FirstChar", firstGlyphID()); insertInt("LastChar", lastGlyphID()); insert("Widths", widthArray.get()); insertName("CIDToGIDMap", "Identity"); populateToUnicodeTable(NULL); return true; }