/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkReduceOrder.h" int SkReduceOrder::reduce(const SkDLine& line) { fLine[0] = line[0]; int different = line[0] != line[1]; fLine[1] = line[different]; return 1 + different; } static double interp_quad_coords(double a, double b, double c, double t) { double ab = SkDInterp(a, b, t); double bc = SkDInterp(b, c, t); return SkDInterp(ab, bc, t); } static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) { reduction[0] = reduction[1] = quad[0]; return 1; } static int reductionLineCount(const SkDQuad& reduction) { return 1 + !reduction[0].approximatelyEqual(reduction[1]); } static int vertical_line(const SkDQuad& quad, SkReduceOrder::Style reduceStyle, SkDQuad& reduction) { double tValue; reduction[0] = quad[0]; reduction[1] = quad[2]; if (reduceStyle == SkReduceOrder::kFill_Style) { return reductionLineCount(reduction); } int smaller = reduction[1].fY > reduction[0].fY; int larger = smaller ^ 1; if (SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValue)) { double yExtrema = interp_quad_coords(quad[0].fY, quad[1].fY, quad[2].fY, tValue); if (reduction[smaller].fY > yExtrema) { reduction[smaller].fY = yExtrema; } else if (reduction[larger].fY < yExtrema) { reduction[larger].fY = yExtrema; } } return reductionLineCount(reduction); } static int horizontal_line(const SkDQuad& quad, SkReduceOrder::Style reduceStyle, SkDQuad& reduction) { double tValue; reduction[0] = quad[0]; reduction[1] = quad[2]; if (reduceStyle == SkReduceOrder::kFill_Style) { return reductionLineCount(reduction); } int smaller = reduction[1].fX > reduction[0].fX; int larger = smaller ^ 1; if (SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, &tValue)) { double xExtrema = interp_quad_coords(quad[0].fX, quad[1].fX, quad[2].fX, tValue); if (reduction[smaller].fX > xExtrema) { reduction[smaller].fX = xExtrema; } else if (reduction[larger].fX < xExtrema) { reduction[larger].fX = xExtrema; } } return reductionLineCount(reduction); } static int check_linear(const SkDQuad& quad, SkReduceOrder::Style reduceStyle, int minX, int maxX, int minY, int maxY, SkDQuad& reduction) { int startIndex = 0; int endIndex = 2; while (quad[startIndex].approximatelyEqual(quad[endIndex])) { --endIndex; if (endIndex == 0) { SkDebugf("%s shouldn't get here if all four points are about equal", __FUNCTION__); SkASSERT(0); } } if (!quad.isLinear(startIndex, endIndex)) { return 0; } // four are colinear: return line formed by outside reduction[0] = quad[0]; reduction[1] = quad[2]; if (reduceStyle == SkReduceOrder::kFill_Style) { return reductionLineCount(reduction); } int sameSide; bool useX = quad[maxX].fX - quad[minX].fX >= quad[maxY].fY - quad[minY].fY; if (useX) { sameSide = SkDSign(quad[0].fX - quad[1].fX) + SkDSign(quad[2].fX - quad[1].fX); } else { sameSide = SkDSign(quad[0].fY - quad[1].fY) + SkDSign(quad[2].fY - quad[1].fY); } if ((sameSide & 3) != 2) { return reductionLineCount(reduction); } double tValue; int root; if (useX) { root = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, &tValue); } else { root = SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValue); } if (root) { SkDPoint extrema; extrema.fX = interp_quad_coords(quad[0].fX, quad[1].fX, quad[2].fX, tValue); extrema.fY = interp_quad_coords(quad[0].fY, quad[1].fY, quad[2].fY, tValue); // sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller int replace; if (useX) { if ((extrema.fX < quad[0].fX) ^ (extrema.fX < quad[2].fX)) { return reductionLineCount(reduction); } replace = ((extrema.fX < quad[0].fX) | (extrema.fX < quad[2].fX)) ^ (quad[0].fX < quad[2].fX); } else { if ((extrema.fY < quad[0].fY) ^ (extrema.fY < quad[2].fY)) { return reductionLineCount(reduction); } replace = ((extrema.fY < quad[0].fY) | (extrema.fY < quad[2].fY)) ^ (quad[0].fY < quad[2].fY); } reduction[replace] = extrema; } return reductionLineCount(reduction); } // reduce to a quadratic or smaller // look for identical points // look for all four points in a line // note that three points in a line doesn't simplify a cubic // look for approximation with single quadratic // save approximation with multiple quadratics for later int SkReduceOrder::reduce(const SkDQuad& quad, Style reduceStyle) { int index, minX, maxX, minY, maxY; int minXSet, minYSet; minX = maxX = minY = maxY = 0; minXSet = minYSet = 0; for (index = 1; index < 3; ++index) { if (quad[minX].fX > quad[index].fX) { minX = index; } if (quad[minY].fY > quad[index].fY) { minY = index; } if (quad[maxX].fX < quad[index].fX) { maxX = index; } if (quad[maxY].fY < quad[index].fY) { maxY = index; } } for (index = 0; index < 3; ++index) { if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) { minXSet |= 1 << index; } if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) { minYSet |= 1 << index; } } if (minXSet == 0x7) { // test for vertical line if (minYSet == 0x7) { // return 1 if all four are coincident return coincident_line(quad, fQuad); } return vertical_line(quad, reduceStyle, fQuad); } if (minYSet == 0xF) { // test for horizontal line return horizontal_line(quad, reduceStyle, fQuad); } int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, fQuad); if (result) { return result; } fQuad = quad; return 3; } //////////////////////////////////////////////////////////////////////////////////// static double interp_cubic_coords(const double* src, double t) { double ab = SkDInterp(src[0], src[2], t); double bc = SkDInterp(src[2], src[4], t); double cd = SkDInterp(src[4], src[6], t); double abc = SkDInterp(ab, bc, t); double bcd = SkDInterp(bc, cd, t); return SkDInterp(abc, bcd, t); } static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) { reduction[0] = reduction[1] = cubic[0]; return 1; } static int reductionLineCount(const SkDCubic& reduction) { return 1 + !reduction[0].approximatelyEqual(reduction[1]); } static int vertical_line(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle, SkDCubic& reduction) { double tValues[2]; reduction[0] = cubic[0]; reduction[1] = cubic[3]; if (reduceStyle == SkReduceOrder::kFill_Style) { return reductionLineCount(reduction); } int smaller = reduction[1].fY > reduction[0].fY; int larger = smaller ^ 1; int roots = SkDCubic::FindExtrema(cubic[0].fY, cubic[1].fY, cubic[2].fY, cubic[3].fY, tValues); for (int index = 0; index < roots; ++index) { double yExtrema = interp_cubic_coords(&cubic[0].fY, tValues[index]); if (reduction[smaller].fY > yExtrema) { reduction[smaller].fY = yExtrema; continue; } if (reduction[larger].fY < yExtrema) { reduction[larger].fY = yExtrema; } } return reductionLineCount(reduction); } static int horizontal_line(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle, SkDCubic& reduction) { double tValues[2]; reduction[0] = cubic[0]; reduction[1] = cubic[3]; if (reduceStyle == SkReduceOrder::kFill_Style) { return reductionLineCount(reduction); } int smaller = reduction[1].fX > reduction[0].fX; int larger = smaller ^ 1; int roots = SkDCubic::FindExtrema(cubic[0].fX, cubic[1].fX, cubic[2].fX, cubic[3].fX, tValues); for (int index = 0; index < roots; ++index) { double xExtrema = interp_cubic_coords(&cubic[0].fX, tValues[index]); if (reduction[smaller].fX > xExtrema) { reduction[smaller].fX = xExtrema; continue; } if (reduction[larger].fX < xExtrema) { reduction[larger].fX = xExtrema; } } return reductionLineCount(reduction); } // check to see if it is a quadratic or a line static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) { double dx10 = cubic[1].fX - cubic[0].fX; double dx23 = cubic[2].fX - cubic[3].fX; double midX = cubic[0].fX + dx10 * 3 / 2; double sideAx = midX - cubic[3].fX; double sideBx = dx23 * 3 / 2; if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx) : !AlmostEqualUlps(sideAx, sideBx)) { return 0; } double dy10 = cubic[1].fY - cubic[0].fY; double dy23 = cubic[2].fY - cubic[3].fY; double midY = cubic[0].fY + dy10 * 3 / 2; double sideAy = midY - cubic[3].fY; double sideBy = dy23 * 3 / 2; if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy) : !AlmostEqualUlps(sideAy, sideBy)) { return 0; } reduction[0] = cubic[0]; reduction[1].fX = midX; reduction[1].fY = midY; reduction[2] = cubic[3]; return 3; } static int check_linear(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle, int minX, int maxX, int minY, int maxY, SkDCubic& reduction) { int startIndex = 0; int endIndex = 3; while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { --endIndex; if (endIndex == 0) { SkDebugf("%s shouldn't get here if all four points are about equal\n", __FUNCTION__); SkASSERT(0); } } if (!cubic.isLinear(startIndex, endIndex)) { return 0; } // four are colinear: return line formed by outside reduction[0] = cubic[0]; reduction[1] = cubic[3]; if (reduceStyle == SkReduceOrder::kFill_Style) { return reductionLineCount(reduction); } int sameSide1; int sameSide2; bool useX = cubic[maxX].fX - cubic[minX].fX >= cubic[maxY].fY - cubic[minY].fY; if (useX) { sameSide1 = SkDSign(cubic[0].fX - cubic[1].fX) + SkDSign(cubic[3].fX - cubic[1].fX); sameSide2 = SkDSign(cubic[0].fX - cubic[2].fX) + SkDSign(cubic[3].fX - cubic[2].fX); } else { sameSide1 = SkDSign(cubic[0].fY - cubic[1].fY) + SkDSign(cubic[3].fY - cubic[1].fY); sameSide2 = SkDSign(cubic[0].fY - cubic[2].fY) + SkDSign(cubic[3].fY - cubic[2].fY); } if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) { return reductionLineCount(reduction); } double tValues[2]; int roots; if (useX) { roots = SkDCubic::FindExtrema(cubic[0].fX, cubic[1].fX, cubic[2].fX, cubic[3].fX, tValues); } else { roots = SkDCubic::FindExtrema(cubic[0].fY, cubic[1].fY, cubic[2].fY, cubic[3].fY, tValues); } for (int index = 0; index < roots; ++index) { SkDPoint extrema; extrema.fX = interp_cubic_coords(&cubic[0].fX, tValues[index]); extrema.fY = interp_cubic_coords(&cubic[0].fY, tValues[index]); // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller int replace; if (useX) { if ((extrema.fX < cubic[0].fX) ^ (extrema.fX < cubic[3].fX)) { continue; } replace = ((extrema.fX < cubic[0].fX) | (extrema.fX < cubic[3].fX)) ^ (cubic[0].fX < cubic[3].fX); } else { if ((extrema.fY < cubic[0].fY) ^ (extrema.fY < cubic[3].fY)) { continue; } replace = ((extrema.fY < cubic[0].fY) | (extrema.fY < cubic[3].fY)) ^ (cubic[0].fY < cubic[3].fY); } reduction[replace] = extrema; } return reductionLineCount(reduction); } /* food for thought: http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the corresponding quadratic Bezier are (given in convex combinations of points): q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 Of course, this curve does not interpolate the end-points, but it would be interesting to see the behaviour of such a curve in an applet. -- Kalle Rutanen http://kaba.hilvi.org */ // reduce to a quadratic or smaller // look for identical points // look for all four points in a line // note that three points in a line doesn't simplify a cubic // look for approximation with single quadratic // save approximation with multiple quadratics for later int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics, Style reduceStyle) { int index, minX, maxX, minY, maxY; int minXSet, minYSet; minX = maxX = minY = maxY = 0; minXSet = minYSet = 0; for (index = 1; index < 4; ++index) { if (cubic[minX].fX > cubic[index].fX) { minX = index; } if (cubic[minY].fY > cubic[index].fY) { minY = index; } if (cubic[maxX].fX < cubic[index].fX) { maxX = index; } if (cubic[maxY].fY < cubic[index].fY) { maxY = index; } } for (index = 0; index < 4; ++index) { double cx = cubic[index].fX; double cy = cubic[index].fY; double denom = SkTMax(fabs(cx), SkTMax(fabs(cy), SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY)))); if (denom == 0) { minXSet |= 1 << index; minYSet |= 1 << index; continue; } double inv = 1 / denom; if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) { minXSet |= 1 << index; } if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) { minYSet |= 1 << index; } } if (minXSet == 0xF) { // test for vertical line if (minYSet == 0xF) { // return 1 if all four are coincident return coincident_line(cubic, fCubic); } return vertical_line(cubic, reduceStyle, fCubic); } if (minYSet == 0xF) { // test for horizontal line return horizontal_line(cubic, reduceStyle, fCubic); } int result = check_linear(cubic, reduceStyle, minX, maxX, minY, maxY, fCubic); if (result) { return result; } if (allowQuadratics == SkReduceOrder::kAllow_Quadratics && (result = check_quadratic(cubic, fCubic))) { return result; } fCubic = cubic; return 4; } SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkTDArray* reducePts) { SkDQuad quad; quad.set(a); SkReduceOrder reducer; int order = reducer.reduce(quad, kFill_Style); if (order == 2) { // quad became line for (int index = 0; index < order; ++index) { SkPoint* pt = reducePts->append(); pt->fX = SkDoubleToScalar(reducer.fLine[index].fX); pt->fY = SkDoubleToScalar(reducer.fLine[index].fY); } } return (SkPath::Verb) (order - 1); } SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkTDArray* reducePts) { SkDCubic cubic; cubic.set(a); SkReduceOrder reducer; int order = reducer.reduce(cubic, kAllow_Quadratics, kFill_Style); if (order == 2 || order == 3) { // cubic became line or quad for (int index = 0; index < order; ++index) { SkPoint* pt = reducePts->append(); pt->fX = SkDoubleToScalar(reducer.fQuad[index].fX); pt->fY = SkDoubleToScalar(reducer.fQuad[index].fY); } } return (SkPath::Verb) (order - 1); }