/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkFloatBits.h" #include "SkPathOpsTypes.h" static bool arguments_denormalized(float a, float b, int epsilon) { float denomalizedCheck = FLT_EPSILON * epsilon / 2; return fabsf(a) <= denomalizedCheck && fabsf(b) <= denomalizedCheck; } // from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ // FIXME: move to SkFloatBits.h static bool equal_ulps(float a, float b, int epsilon) { if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { return false; } if (arguments_denormalized(a, b, epsilon)) { return true; } int aBits = SkFloatAs2sCompliment(a); int bBits = SkFloatAs2sCompliment(b); // Find the difference in ULPs. return aBits < bBits + epsilon && bBits < aBits + epsilon; } static bool d_equal_ulps(float a, float b, int epsilon) { if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { return false; } int aBits = SkFloatAs2sCompliment(a); int bBits = SkFloatAs2sCompliment(b); // Find the difference in ULPs. return aBits < bBits + epsilon && bBits < aBits + epsilon; } static bool not_equal_ulps(float a, float b, int epsilon) { if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { return false; } if (arguments_denormalized(a, b, epsilon)) { return false; } int aBits = SkFloatAs2sCompliment(a); int bBits = SkFloatAs2sCompliment(b); // Find the difference in ULPs. return aBits >= bBits + epsilon || bBits >= aBits + epsilon; } static bool d_not_equal_ulps(float a, float b, int epsilon) { if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { return false; } int aBits = SkFloatAs2sCompliment(a); int bBits = SkFloatAs2sCompliment(b); // Find the difference in ULPs. return aBits >= bBits + epsilon || bBits >= aBits + epsilon; } static bool less_ulps(float a, float b, int epsilon) { if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { return false; } if (arguments_denormalized(a, b, epsilon)) { return a <= b - FLT_EPSILON * epsilon; } int aBits = SkFloatAs2sCompliment(a); int bBits = SkFloatAs2sCompliment(b); // Find the difference in ULPs. return aBits <= bBits - epsilon; } static bool less_or_equal_ulps(float a, float b, int epsilon) { if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { return false; } if (arguments_denormalized(a, b, epsilon)) { return a < b + FLT_EPSILON * epsilon; } int aBits = SkFloatAs2sCompliment(a); int bBits = SkFloatAs2sCompliment(b); // Find the difference in ULPs. return aBits < bBits + epsilon; } // equality using the same error term as between bool AlmostBequalUlps(float a, float b) { const int UlpsEpsilon = 2; return equal_ulps(a, b, UlpsEpsilon); } bool AlmostDequalUlps(float a, float b) { const int UlpsEpsilon = 16; return d_equal_ulps(a, b, UlpsEpsilon); } bool AlmostEqualUlps(float a, float b) { const int UlpsEpsilon = 16; return equal_ulps(a, b, UlpsEpsilon); } bool NotAlmostEqualUlps(float a, float b) { const int UlpsEpsilon = 16; return not_equal_ulps(a, b, UlpsEpsilon); } bool NotAlmostDequalUlps(float a, float b) { const int UlpsEpsilon = 16; return d_not_equal_ulps(a, b, UlpsEpsilon); } bool RoughlyEqualUlps(float a, float b) { const int UlpsEpsilon = 256; return equal_ulps(a, b, UlpsEpsilon); } bool AlmostBetweenUlps(float a, float b, float c) { const int UlpsEpsilon = 2; return a <= c ? less_or_equal_ulps(a, b, UlpsEpsilon) && less_or_equal_ulps(b, c, UlpsEpsilon) : less_or_equal_ulps(b, a, UlpsEpsilon) && less_or_equal_ulps(c, b, UlpsEpsilon); } bool AlmostLessUlps(float a, float b) { const int UlpsEpsilon = 16; return less_ulps(a, b, UlpsEpsilon); } bool AlmostLessOrEqualUlps(float a, float b) { const int UlpsEpsilon = 16; return less_or_equal_ulps(a, b, UlpsEpsilon); } int UlpsDistance(float a, float b) { if (!SkScalarIsFinite(a) || !SkScalarIsFinite(b)) { return SK_MaxS32; } SkFloatIntUnion floatIntA, floatIntB; floatIntA.fFloat = a; floatIntB.fFloat = b; // Different signs means they do not match. if ((floatIntA.fSignBitInt < 0) != (floatIntB.fSignBitInt < 0)) { // Check for equality to make sure +0 == -0 return a == b ? 0 : SK_MaxS32; } // Find the difference in ULPs. return abs(floatIntA.fSignBitInt - floatIntB.fSignBitInt); } // cube root approximation using bit hack for 64-bit float // adapted from Kahan's cbrt static double cbrt_5d(double d) { const unsigned int B1 = 715094163; double t = 0.0; unsigned int* pt = (unsigned int*) &t; unsigned int* px = (unsigned int*) &d; pt[1] = px[1] / 3 + B1; return t; } // iterative cube root approximation using Halley's method (double) static double cbrta_halleyd(const double a, const double R) { const double a3 = a * a * a; const double b = a * (a3 + R + R) / (a3 + a3 + R); return b; } // cube root approximation using 3 iterations of Halley's method (double) static double halley_cbrt3d(double d) { double a = cbrt_5d(d); a = cbrta_halleyd(a, d); a = cbrta_halleyd(a, d); return cbrta_halleyd(a, d); } double SkDCubeRoot(double x) { if (approximately_zero_cubed(x)) { return 0; } double result = halley_cbrt3d(fabs(x)); if (x < 0) { result = -result; } return result; }