/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkIntersections.h" #include "SkLineParameters.h" #include "SkPathOpsCubic.h" #include "SkPathOpsQuad.h" #include "SkPathOpsTriangle.h" // from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html // (currently only used by testing) double SkDQuad::nearestT(const SkDPoint& pt) const { SkDVector pos = fPts[0] - pt; // search points P of bezier curve with PM.(dP / dt) = 0 // a calculus leads to a 3d degree equation : SkDVector A = fPts[1] - fPts[0]; SkDVector B = fPts[2] - fPts[1]; B -= A; double a = B.dot(B); double b = 3 * A.dot(B); double c = 2 * A.dot(A) + pos.dot(B); double d = pos.dot(A); double ts[3]; int roots = SkDCubic::RootsValidT(a, b, c, d, ts); double d0 = pt.distanceSquared(fPts[0]); double d2 = pt.distanceSquared(fPts[2]); double distMin = SkTMin(d0, d2); int bestIndex = -1; for (int index = 0; index < roots; ++index) { SkDPoint onQuad = ptAtT(ts[index]); double dist = pt.distanceSquared(onQuad); if (distMin > dist) { distMin = dist; bestIndex = index; } } if (bestIndex >= 0) { return ts[bestIndex]; } return d0 < d2 ? 0 : 1; } bool SkDQuad::pointInHull(const SkDPoint& pt) const { return ((const SkDTriangle&) fPts).contains(pt); } SkDPoint SkDQuad::top(double startT, double endT) const { SkDQuad sub = subDivide(startT, endT); SkDPoint topPt = sub[0]; if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) { topPt = sub[2]; } if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) { double extremeT; if (FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, &extremeT)) { extremeT = startT + (endT - startT) * extremeT; SkDPoint test = ptAtT(extremeT); if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) { topPt = test; } } } return topPt; } int SkDQuad::AddValidTs(double s[], int realRoots, double* t) { int foundRoots = 0; for (int index = 0; index < realRoots; ++index) { double tValue = s[index]; if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { if (approximately_less_than_zero(tValue)) { tValue = 0; } else if (approximately_greater_than_one(tValue)) { tValue = 1; } for (int idx2 = 0; idx2 < foundRoots; ++idx2) { if (approximately_equal(t[idx2], tValue)) { goto nextRoot; } } t[foundRoots++] = tValue; } nextRoot: {} } return foundRoots; } // note: caller expects multiple results to be sorted smaller first // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting // analysis of the quadratic equation, suggesting why the following looks at // the sign of B -- and further suggesting that the greatest loss of precision // is in b squared less two a c int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) { double s[2]; int realRoots = RootsReal(A, B, C, s); int foundRoots = AddValidTs(s, realRoots, t); return foundRoots; } /* Numeric Solutions (5.6) suggests to solve the quadratic by computing Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) and using the roots t1 = Q / A t2 = C / Q */ // this does not discard real roots <= 0 or >= 1 int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) { const double p = B / (2 * A); const double q = C / A; if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { if (approximately_zero(B)) { s[0] = 0; return C == 0; } s[0] = -C / B; return 1; } /* normal form: x^2 + px + q = 0 */ const double p2 = p * p; if (!AlmostDequalUlps(p2, q) && p2 < q) { return 0; } double sqrt_D = 0; if (p2 > q) { sqrt_D = sqrt(p2 - q); } s[0] = sqrt_D - p; s[1] = -sqrt_D - p; return 1 + !AlmostDequalUlps(s[0], s[1]); } bool SkDQuad::isLinear(int startIndex, int endIndex) const { SkLineParameters lineParameters; lineParameters.quadEndPoints(*this, startIndex, endIndex); // FIXME: maybe it's possible to avoid this and compare non-normalized lineParameters.normalize(); double distance = lineParameters.controlPtDistance(*this); return approximately_zero(distance); } SkDCubic SkDQuad::toCubic() const { SkDCubic cubic; cubic[0] = fPts[0]; cubic[2] = fPts[1]; cubic[3] = fPts[2]; cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3; cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3; cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3; cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3; return cubic; } SkDVector SkDQuad::dxdyAtT(double t) const { double a = t - 1; double b = 1 - 2 * t; double c = t; SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; return result; } // OPTIMIZE: assert if caller passes in t == 0 / t == 1 ? SkDPoint SkDQuad::ptAtT(double t) const { if (0 == t) { return fPts[0]; } if (1 == t) { return fPts[2]; } double one_t = 1 - t; double a = one_t * one_t; double b = 2 * one_t * t; double c = t * t; SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; return result; } /* Given a quadratic q, t1, and t2, find a small quadratic segment. The new quadratic is defined by A, B, and C, where A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1 C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1 To find B, compute the point halfway between t1 and t2: q(at (t1 + t2)/2) == D Next, compute where D must be if we know the value of B: _12 = A/2 + B/2 12_ = B/2 + C/2 123 = A/4 + B/2 + C/4 = D Group the known values on one side: B = D*2 - A/2 - C/2 */ static double interp_quad_coords(const double* src, double t) { double ab = SkDInterp(src[0], src[2], t); double bc = SkDInterp(src[2], src[4], t); double abc = SkDInterp(ab, bc, t); return abc; } bool SkDQuad::monotonicInY() const { return between(fPts[0].fY, fPts[1].fY, fPts[2].fY); } SkDQuad SkDQuad::subDivide(double t1, double t2) const { SkDQuad dst; double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1); double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1); double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2); double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2); /* bx = */ dst[1].fX = 2*dx - (ax + cx)/2; /* by = */ dst[1].fY = 2*dy - (ay + cy)/2; return dst; } void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { if (fPts[endIndex].fX == fPts[1].fX) { dstPt->fX = fPts[endIndex].fX; } if (fPts[endIndex].fY == fPts[1].fY) { dstPt->fY = fPts[endIndex].fY; } } SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { SkASSERT(t1 != t2); SkDPoint b; #if 0 // this approach assumes that the control point computed directly is accurate enough double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); b.fX = 2 * dx - (a.fX + c.fX) / 2; b.fY = 2 * dy - (a.fY + c.fY) / 2; #else SkDQuad sub = subDivide(t1, t2); SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; SkIntersections i; i.intersectRay(b0, b1); if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) { b = i.pt(0); } else { SkASSERT(i.used() <= 2); b = SkDPoint::Mid(b0[1], b1[1]); } #endif if (t1 == 0 || t2 == 0) { align(0, &b); } if (t1 == 1 || t2 == 1) { align(2, &b); } if (AlmostBequalUlps(b.fX, a.fX)) { b.fX = a.fX; } else if (AlmostBequalUlps(b.fX, c.fX)) { b.fX = c.fX; } if (AlmostBequalUlps(b.fY, a.fY)) { b.fY = a.fY; } else if (AlmostBequalUlps(b.fY, c.fY)) { b.fY = c.fY; } return b; } /* classic one t subdivision */ static void interp_quad_coords(const double* src, double* dst, double t) { double ab = SkDInterp(src[0], src[2], t); double bc = SkDInterp(src[2], src[4], t); dst[0] = src[0]; dst[2] = ab; dst[4] = SkDInterp(ab, bc, t); dst[6] = bc; dst[8] = src[4]; } SkDQuadPair SkDQuad::chopAt(double t) const { SkDQuadPair dst; interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t); interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t); return dst; } static int valid_unit_divide(double numer, double denom, double* ratio) { if (numer < 0) { numer = -numer; denom = -denom; } if (denom == 0 || numer == 0 || numer >= denom) { return 0; } double r = numer / denom; if (r == 0) { // catch underflow if numer <<<< denom return 0; } *ratio = r; return 1; } /** Quad'(t) = At + B, where A = 2(a - 2b + c) B = 2(b - a) Solve for t, only if it fits between 0 < t < 1 */ int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) { /* At + B == 0 t = -B / A */ return valid_unit_divide(a - b, a - b - b + c, tValue); } /* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t) * * a = A - 2*B + C * b = 2*B - 2*C * c = C */ void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) { *a = quad[0]; // a = A *b = 2 * quad[2]; // b = 2*B *c = quad[4]; // c = C *b -= *c; // b = 2*B - C *a -= *b; // a = A - 2*B + C *b -= *c; // b = 2*B - 2*C }