/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAddIntersections.h" #include "SkOpCoincidence.h" #include "SkOpEdgeBuilder.h" #include "SkPathOpsCommon.h" #include "SkPathWriter.h" static SkOpSegment* findChaseOp(SkTDArray& chase, SkOpSpanBase** startPtr, SkOpSpanBase** endPtr) { while (chase.count()) { SkOpSpanBase* span; chase.pop(&span); // OPTIMIZE: prev makes this compatible with old code -- but is it necessary? *startPtr = span->ptT()->prev()->span(); SkOpSegment* segment = (*startPtr)->segment(); bool done = true; *endPtr = nullptr; if (SkOpAngle* last = segment->activeAngle(*startPtr, startPtr, endPtr, &done)) { *startPtr = last->start(); *endPtr = last->end(); #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif return last->segment(); } if (done) { continue; } int winding; bool sortable; const SkOpAngle* angle = AngleWinding(*startPtr, *endPtr, &winding, &sortable); if (!angle) { return nullptr; } if (winding == SK_MinS32) { continue; } int sumMiWinding, sumSuWinding; if (sortable) { segment = angle->segment(); sumMiWinding = segment->updateWindingReverse(angle); sumSuWinding = segment->updateOppWindingReverse(angle); if (segment->operand()) { SkTSwap(sumMiWinding, sumSuWinding); } } SkOpSegment* first = nullptr; const SkOpAngle* firstAngle = angle; while ((angle = angle->next()) != firstAngle) { segment = angle->segment(); SkOpSpanBase* start = angle->start(); SkOpSpanBase* end = angle->end(); int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; if (sortable) { segment->setUpWindings(start, end, &sumMiWinding, &sumSuWinding, &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding); } if (!segment->done(angle)) { if (!first && (sortable || start->starter(end)->windSum() != SK_MinS32)) { first = segment; *startPtr = start; *endPtr = end; } // OPTIMIZATION: should this also add to the chase? if (sortable) { (void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding, oppSumWinding, angle); } } } if (first) { #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif return first; } } return nullptr; } static bool bridgeOp(SkOpContourHead* contourList, const SkPathOp op, const int xorMask, const int xorOpMask, SkPathWriter* simple) { bool unsortable = false; do { SkOpSpan* span = FindSortableTop(contourList); if (!span) { break; } SkOpSegment* current = span->segment(); SkOpSpanBase* start = span->next(); SkOpSpanBase* end = span; SkTDArray chase; do { if (current->activeOp(start, end, xorMask, xorOpMask, op)) { do { if (!unsortable && current->done()) { break; } SkASSERT(unsortable || !current->done()); SkOpSpanBase* nextStart = start; SkOpSpanBase* nextEnd = end; SkOpSegment* next = current->findNextOp(&chase, &nextStart, &nextEnd, &unsortable, op, xorMask, xorOpMask); if (!next) { if (!unsortable && simple->hasMove() && current->verb() != SkPath::kLine_Verb && !simple->isClosed()) { if (!current->addCurveTo(start, end, simple)) { return false; } if (!simple->isClosed()) { SkPathOpsDebug::ShowActiveSpans(contourList); } } break; } #if DEBUG_FLOW SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, current->debugID(), start->pt().fX, start->pt().fY, end->pt().fX, end->pt().fY); #endif if (!current->addCurveTo(start, end, simple)) { return false; } current = next; start = nextStart; end = nextEnd; } while (!simple->isClosed() && (!unsortable || !start->starter(end)->done())); if (current->activeWinding(start, end) && !simple->isClosed()) { SkOpSpan* spanStart = start->starter(end); if (!spanStart->done()) { if (!current->addCurveTo(start, end, simple)) { return false; } current->markDone(spanStart); } } simple->close(); } else { SkOpSpanBase* last = current->markAndChaseDone(start, end); if (last && !last->chased()) { last->setChased(true); SkASSERT(!SkPathOpsDebug::ChaseContains(chase, last)); *chase.append() = last; #if DEBUG_WINDING SkDebugf("%s chase.append id=%d", __FUNCTION__, last->segment()->debugID()); if (!last->final()) { SkDebugf(" windSum=%d", last->upCast()->windSum()); } SkDebugf("\n"); #endif } } current = findChaseOp(chase, &start, &end); SkPathOpsDebug::ShowActiveSpans(contourList); if (!current) { break; } } while (true); } while (true); return simple->someAssemblyRequired(); } // pretty picture: // https://docs.google.com/a/google.com/drawings/d/1sPV8rPfpEFXymBp3iSbDRWAycp1b-7vD9JP2V-kn9Ss/edit?usp=sharing static const SkPathOp gOpInverse[kReverseDifference_SkPathOp + 1][2][2] = { // inside minuend outside minuend // inside subtrahend outside subtrahend inside subtrahend outside subtrahend {{ kDifference_SkPathOp, kIntersect_SkPathOp }, { kUnion_SkPathOp, kReverseDifference_SkPathOp }}, {{ kIntersect_SkPathOp, kDifference_SkPathOp }, { kReverseDifference_SkPathOp, kUnion_SkPathOp }}, {{ kUnion_SkPathOp, kReverseDifference_SkPathOp }, { kDifference_SkPathOp, kIntersect_SkPathOp }}, {{ kXOR_SkPathOp, kXOR_SkPathOp }, { kXOR_SkPathOp, kXOR_SkPathOp }}, {{ kReverseDifference_SkPathOp, kUnion_SkPathOp }, { kIntersect_SkPathOp, kDifference_SkPathOp }}, }; static const bool gOutInverse[kReverseDifference_SkPathOp + 1][2][2] = { {{ false, false }, { true, false }}, // diff {{ false, false }, { false, true }}, // sect {{ false, true }, { true, true }}, // union {{ false, true }, { true, false }}, // xor {{ false, true }, { false, false }}, // rev diff }; #define DEBUGGING_PATHOPS_FROM_HOST 0 // enable to debug svg in chrome -- note path hardcoded below #if DEBUGGING_PATHOPS_FROM_HOST #include "SkData.h" #include "SkStream.h" static void dump_path(FILE* file, const SkPath& path, bool force, bool dumpAsHex) { SkDynamicMemoryWStream wStream; path.dump(&wStream, force, dumpAsHex); SkAutoDataUnref data(wStream.copyToData()); fprintf(file, "%.*s\n", (int) data->size(), data->data()); } static int dumpID = 0; static void dump_op(const SkPath& one, const SkPath& two, SkPathOp op) { #if SK_BUILD_FOR_MAC FILE* file = fopen("/Users/caryclark/Documents/svgop.txt", "w"); #else FILE* file = fopen("/usr/local/google/home/caryclark/Documents/svgop.txt", "w"); #endif fprintf(file, "\nstatic void fuzz763_%d(skiatest::Reporter* reporter, const char* filename) {\n", ++dumpID); fprintf(file, " SkPath path;\n"); fprintf(file, " path.setFillType((SkPath::FillType) %d);\n", one.getFillType()); dump_path(file, one, false, true); fprintf(file, " SkPath path1(path);\n"); fprintf(file, " path.reset();\n"); fprintf(file, " path.setFillType((SkPath::FillType) %d);\n", two.getFillType()); dump_path(file, two, false, true); fprintf(file, " SkPath path2(path);\n"); fprintf(file, " testPathOp(reporter, path1, path2, (SkPathOp) %d, filename);\n", op); fprintf(file, "}\n"); fclose(file); } #endif #if DEBUG_T_SECT_LOOP_COUNT #include "SkMutex.h" SK_DECLARE_STATIC_MUTEX(debugWorstLoop); SkOpGlobalState debugWorstState(nullptr, nullptr SkDEBUGPARAMS(nullptr)); void ReportPathOpsDebugging() { debugWorstState.debugLoopReport(); } extern void (*gVerboseFinalize)(); #endif bool OpDebug(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result SkDEBUGPARAMS(bool skipAssert) SkDEBUGPARAMS(const char* testName)) { SkChunkAlloc allocator(4096); // FIXME: add a constant expression here, tune SkOpContour contour; SkOpContourHead* contourList = static_cast(&contour); SkOpGlobalState globalState(contourList, &allocator SkDEBUGPARAMS(skipAssert) SkDEBUGPARAMS(testName)); SkOpCoincidence coincidence(&globalState); #if DEBUGGING_PATHOPS_FROM_HOST dump_op(one, two, op); #endif op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()]; SkPath::FillType fillType = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()] ? SkPath::kInverseEvenOdd_FillType : SkPath::kEvenOdd_FillType; SkScalar scaleFactor = SkTMax(ScaleFactor(one), ScaleFactor(two)); SkPath scaledOne, scaledTwo; const SkPath* minuend, * subtrahend; if (scaleFactor > SK_Scalar1) { ScalePath(one, 1.f / scaleFactor, &scaledOne); minuend = &scaledOne; ScalePath(two, 1.f / scaleFactor, &scaledTwo); subtrahend = &scaledTwo; } else { minuend = &one; subtrahend = &two; } if (op == kReverseDifference_SkPathOp) { SkTSwap(minuend, subtrahend); op = kDifference_SkPathOp; } #if DEBUG_SORT SkPathOpsDebug::gSortCount = SkPathOpsDebug::gSortCountDefault; #endif // turn path into list of segments SkOpEdgeBuilder builder(*minuend, &contour, &globalState); if (builder.unparseable()) { return false; } const int xorMask = builder.xorMask(); builder.addOperand(*subtrahend); if (!builder.finish()) { return false; } #if DEBUG_DUMP_SEGMENTS contourList->dumpSegments("seg", op); #endif const int xorOpMask = builder.xorMask(); if (!SortContourList(&contourList, xorMask == kEvenOdd_PathOpsMask, xorOpMask == kEvenOdd_PathOpsMask)) { result->reset(); result->setFillType(fillType); return true; } // find all intersections between segments SkOpContour* current = contourList; do { SkOpContour* next = current; while (AddIntersectTs(current, next, &coincidence) && (next = next->next())) ; } while ((current = current->next())); #if DEBUG_VALIDATE globalState.setPhase(SkOpGlobalState::kWalking); #endif if (!HandleCoincidence(contourList, &coincidence)) { return false; } #if DEBUG_ALIGNMENT contourList->dumpSegments("aligned"); #endif // construct closed contours result->reset(); result->setFillType(fillType); SkPathWriter wrapper(*result); bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper); { // if some edges could not be resolved, assemble remaining fragments SkPath temp; temp.setFillType(fillType); SkPathWriter assembled(temp); Assemble(wrapper, &assembled); *result = *assembled.nativePath(); result->setFillType(fillType); } #if DEBUG_T_SECT_LOOP_COUNT { SkAutoMutexAcquire autoM(debugWorstLoop); if (!gVerboseFinalize) { gVerboseFinalize = &ReportPathOpsDebugging; } debugWorstState.debugDoYourWorst(&globalState); } #endif if (scaleFactor > 1) { ScalePath(*result, scaleFactor, result); } return true; } #define DEBUG_VERIFY 0 #if DEBUG_VERIFY #include "SkBitmap.h" #include "SkCanvas.h" #include "SkPaint.h" const int bitWidth = 64; const int bitHeight = 64; static void debug_scale_matrix(const SkPath& one, const SkPath& two, SkMatrix& scale) { SkRect larger = one.getBounds(); larger.join(two.getBounds()); SkScalar largerWidth = larger.width(); if (largerWidth < 4) { largerWidth = 4; } SkScalar largerHeight = larger.height(); if (largerHeight < 4) { largerHeight = 4; } SkScalar hScale = (bitWidth - 2) / largerWidth; SkScalar vScale = (bitHeight - 2) / largerHeight; scale.reset(); scale.preScale(hScale, vScale); larger.fLeft *= hScale; larger.fRight *= hScale; larger.fTop *= vScale; larger.fBottom *= vScale; SkScalar dx = -16000 > larger.fLeft ? -16000 - larger.fLeft : 16000 < larger.fRight ? 16000 - larger.fRight : 0; SkScalar dy = -16000 > larger.fTop ? -16000 - larger.fTop : 16000 < larger.fBottom ? 16000 - larger.fBottom : 0; scale.preTranslate(dx, dy); } static int debug_paths_draw_the_same(const SkPath& one, const SkPath& two, SkBitmap& bits) { if (bits.width() == 0) { bits.allocN32Pixels(bitWidth * 2, bitHeight); } SkCanvas canvas(bits); canvas.drawColor(SK_ColorWHITE); SkPaint paint; canvas.save(); const SkRect& bounds1 = one.getBounds(); canvas.translate(-bounds1.fLeft + 1, -bounds1.fTop + 1); canvas.drawPath(one, paint); canvas.restore(); canvas.save(); canvas.translate(-bounds1.fLeft + 1 + bitWidth, -bounds1.fTop + 1); canvas.drawPath(two, paint); canvas.restore(); int errors = 0; for (int y = 0; y < bitHeight - 1; ++y) { uint32_t* addr1 = bits.getAddr32(0, y); uint32_t* addr2 = bits.getAddr32(0, y + 1); uint32_t* addr3 = bits.getAddr32(bitWidth, y); uint32_t* addr4 = bits.getAddr32(bitWidth, y + 1); for (int x = 0; x < bitWidth - 1; ++x) { // count 2x2 blocks bool err = addr1[x] != addr3[x]; if (err) { errors += addr1[x + 1] != addr3[x + 1] && addr2[x] != addr4[x] && addr2[x + 1] != addr4[x + 1]; } } } return errors; } #endif bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) { #if DEBUG_VERIFY if (!OpDebug(one, two, op, result SkDEBUGPARAMS(nullptr))) { SkDebugf("%s did not expect failure\none: fill=%d\n", __FUNCTION__, one.getFillType()); one.dumpHex(); SkDebugf("two: fill=%d\n", two.getFillType()); two.dumpHex(); SkASSERT(0); return false; } SkPath pathOut, scaledPathOut; SkRegion rgnA, rgnB, openClip, rgnOut; openClip.setRect(-16000, -16000, 16000, 16000); rgnA.setPath(one, openClip); rgnB.setPath(two, openClip); rgnOut.op(rgnA, rgnB, (SkRegion::Op) op); rgnOut.getBoundaryPath(&pathOut); SkMatrix scale; debug_scale_matrix(one, two, scale); SkRegion scaledRgnA, scaledRgnB, scaledRgnOut; SkPath scaledA, scaledB; scaledA.addPath(one, scale); scaledA.setFillType(one.getFillType()); scaledB.addPath(two, scale); scaledB.setFillType(two.getFillType()); scaledRgnA.setPath(scaledA, openClip); scaledRgnB.setPath(scaledB, openClip); scaledRgnOut.op(scaledRgnA, scaledRgnB, (SkRegion::Op) op); scaledRgnOut.getBoundaryPath(&scaledPathOut); SkBitmap bitmap; SkPath scaledOut; scaledOut.addPath(*result, scale); scaledOut.setFillType(result->getFillType()); int errors = debug_paths_draw_the_same(scaledPathOut, scaledOut, bitmap); const int MAX_ERRORS = 9; if (errors > MAX_ERRORS) { SkDebugf("%s did not expect failure\none: fill=%d\n", __FUNCTION__, one.getFillType()); one.dumpHex(); SkDebugf("two: fill=%d\n", two.getFillType()); two.dumpHex(); SkASSERT(0); } return true; #else return OpDebug(one, two, op, result SkDEBUGPARAMS(true) SkDEBUGPARAMS(nullptr)); #endif }