/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkOpContour_DEFINED #define SkOpContour_DEFINED #include "SkOpSegment.h" #include "SkTArray.h" class SkIntersections; class SkOpContour; class SkPathWriter; struct SkCoincidence { SkOpContour* fOther; int fSegments[2]; double fTs[2][2]; SkPoint fPts[2]; }; class SkOpContour { public: SkOpContour() { reset(); #ifdef SK_DEBUG fID = ++SkPathOpsDebug::gContourID; #endif } bool operator<(const SkOpContour& rh) const { return fBounds.fTop == rh.fBounds.fTop ? fBounds.fLeft < rh.fBounds.fLeft : fBounds.fTop < rh.fBounds.fTop; } bool addCoincident(int index, SkOpContour* other, int otherIndex, const SkIntersections& ts, bool swap); void addCoincidentPoints(); void addCross(const SkOpContour* crosser) { #ifdef DEBUG_CROSS for (int index = 0; index < fCrosses.count(); ++index) { SkASSERT(fCrosses[index] != crosser); } #endif fCrosses.push_back(crosser); } void addCubic(const SkPoint pts[4]) { fSegments.push_back().addCubic(pts, fOperand, fXor); fContainsCurves = fContainsCubics = true; } int addLine(const SkPoint pts[2]) { fSegments.push_back().addLine(pts, fOperand, fXor); return fSegments.count(); } void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) { fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex); } bool addPartialCoincident(int index, SkOpContour* other, int otherIndex, const SkIntersections& ts, int ptIndex, bool swap); int addQuad(const SkPoint pts[3]) { fSegments.push_back().addQuad(pts, fOperand, fXor); fContainsCurves = true; return fSegments.count(); } int addT(int segIndex, SkOpContour* other, int otherIndex, const SkPoint& pt, double newT, bool isNear) { setContainsIntercepts(); return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT, isNear); } int addSelfT(int segIndex, SkOpContour* other, int otherIndex, const SkPoint& pt, double newT) { setContainsIntercepts(); return fSegments[segIndex].addSelfT(&other->fSegments[otherIndex], pt, newT); } const SkPathOpsBounds& bounds() const { return fBounds; } void calcCoincidentWinding(); void calcPartialCoincidentWinding(); void checkEnds() { if (!fContainsCurves) { return; } int segmentCount = fSegments.count(); for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { SkOpSegment* segment = &fSegments[sIndex]; if (segment->verb() == SkPath::kLine_Verb) { continue; } if (segment->done()) { continue; // likely coincident, nothing to do } segment->checkEnds(); } } // if same point has different T values, choose a common T void checkTiny() { int segmentCount = fSegments.count(); if (segmentCount <= 2) { return; } for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { fSegments[sIndex].checkTiny(); } } void complete() { setBounds(); fContainsIntercepts = false; } bool containsCubics() const { return fContainsCubics; } bool crosses(const SkOpContour* crosser) const { for (int index = 0; index < fCrosses.count(); ++index) { if (fCrosses[index] == crosser) { return true; } } return false; } bool done() const { return fDone; } const SkPoint& end() const { const SkOpSegment& segment = fSegments.back(); return segment.pts()[SkPathOpsVerbToPoints(segment.verb())]; } void fixOtherTIndex() { int segmentCount = fSegments.count(); for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { fSegments[sIndex].fixOtherTIndex(); } } SkOpSegment* nonVerticalSegment(int* start, int* end); bool operand() const { return fOperand; } void reset() { fSegments.reset(); fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = false; } SkTArray& segments() { return fSegments; } void setContainsIntercepts() { fContainsIntercepts = true; } void setOperand(bool isOp) { fOperand = isOp; } void setOppXor(bool isOppXor) { fOppXor = isOppXor; int segmentCount = fSegments.count(); for (int test = 0; test < segmentCount; ++test) { fSegments[test].setOppXor(isOppXor); } } void setXor(bool isXor) { fXor = isXor; } void sortSegments(); const SkPoint& start() const { return fSegments.front().pts()[0]; } void toPath(SkPathWriter* path) const; void toPartialBackward(SkPathWriter* path) const { int segmentCount = fSegments.count(); for (int test = segmentCount - 1; test >= 0; --test) { fSegments[test].addCurveTo(1, 0, path, true); } } void toPartialForward(SkPathWriter* path) const { int segmentCount = fSegments.count(); for (int test = 0; test < segmentCount; ++test) { fSegments[test].addCurveTo(0, 1, path, true); } } void topSortableSegment(const SkPoint& topLeft, SkPoint* bestXY, SkOpSegment** topStart); SkOpSegment* undoneSegment(int* start, int* end); int updateSegment(int index, const SkPoint* pts) { SkOpSegment& segment = fSegments[index]; segment.updatePts(pts); return SkPathOpsVerbToPoints(segment.verb()) + 1; } #if DEBUG_TEST SkTArray& debugSegments() { return fSegments; } #endif #if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY void debugShowActiveSpans() { for (int index = 0; index < fSegments.count(); ++index) { fSegments[index].debugShowActiveSpans(); } } #endif #if DEBUG_SHOW_WINDING int debugShowWindingValues(int totalSegments, int ofInterest); static void debugShowWindingValues(const SkTArray& contourList); #endif private: void calcCommonCoincidentWinding(const SkCoincidence& coincidence); void setBounds(); SkTArray fSegments; SkTArray fSortedSegments; int fFirstSorted; SkTArray fCoincidences; SkTArray fPartialCoincidences; SkTArray fCrosses; SkPathOpsBounds fBounds; bool fContainsIntercepts; // FIXME: is this used by anybody? bool fContainsCubics; bool fContainsCurves; bool fDone; bool fOperand; // true for the second argument to a binary operator bool fXor; bool fOppXor; #ifdef SK_DEBUG int fID; #endif }; #endif