/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkIntersections.h" #include "SkOpContour.h" #include "SkPathWriter.h" #include "SkTSort.h" bool SkOpContour::addCoincident(int index, SkOpContour* other, int otherIndex, const SkIntersections& ts, bool swap) { SkPoint pt0 = ts.pt(0).asSkPoint(); SkPoint pt1 = ts.pt(1).asSkPoint(); if (pt0 == pt1) { // FIXME: one could imagine a case where it would be incorrect to ignore this // suppose two self-intersecting cubics overlap to be coincident -- // this needs to check that by some measure the t values are far enough apart // or needs to check to see if the self-intersection bit was set on the cubic segment return false; } SkCoincidence& coincidence = fCoincidences.push_back(); coincidence.fOther = other; coincidence.fSegments[0] = index; coincidence.fSegments[1] = otherIndex; coincidence.fTs[swap][0] = ts[0][0]; coincidence.fTs[swap][1] = ts[0][1]; coincidence.fTs[!swap][0] = ts[1][0]; coincidence.fTs[!swap][1] = ts[1][1]; coincidence.fPts[0] = pt0; coincidence.fPts[1] = pt1; return true; } SkOpSegment* SkOpContour::nonVerticalSegment(int* start, int* end) { int segmentCount = fSortedSegments.count(); SkASSERT(segmentCount > 0); for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) { SkOpSegment* testSegment = fSortedSegments[sortedIndex]; if (testSegment->done()) { continue; } *start = *end = 0; while (testSegment->nextCandidate(start, end)) { if (!testSegment->isVertical(*start, *end)) { return testSegment; } } } return NULL; } // first pass, add missing T values // second pass, determine winding values of overlaps void SkOpContour::addCoincidentPoints() { int count = fCoincidences.count(); for (int index = 0; index < count; ++index) { SkCoincidence& coincidence = fCoincidences[index]; int thisIndex = coincidence.fSegments[0]; SkOpSegment& thisOne = fSegments[thisIndex]; SkOpContour* otherContour = coincidence.fOther; int otherIndex = coincidence.fSegments[1]; SkOpSegment& other = otherContour->fSegments[otherIndex]; if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { // OPTIMIZATION: remove from array continue; } #if DEBUG_CONCIDENT thisOne.debugShowTs("-"); other.debugShowTs("o"); #endif double startT = coincidence.fTs[0][0]; double endT = coincidence.fTs[0][1]; bool startSwapped, oStartSwapped, cancelers; if ((cancelers = startSwapped = startT > endT)) { SkTSwap(startT, endT); } if (startT == endT) { // if one is very large the smaller may have collapsed to nothing if (endT <= 1 - FLT_EPSILON) { endT += FLT_EPSILON; SkASSERT(endT <= 1); } else { startT -= FLT_EPSILON; SkASSERT(startT >= 0); } } SkASSERT(!approximately_negative(endT - startT)); double oStartT = coincidence.fTs[1][0]; double oEndT = coincidence.fTs[1][1]; if ((oStartSwapped = oStartT > oEndT)) { SkTSwap(oStartT, oEndT); cancelers ^= true; } SkASSERT(!approximately_negative(oEndT - oStartT)); if (cancelers) { // make sure startT and endT have t entries const SkPoint& startPt = coincidence.fPts[startSwapped]; if (startT > 0 || oEndT < 1 || thisOne.isMissing(startT, startPt) || other.isMissing(oEndT, startPt)) { thisOne.addTPair(startT, &other, oEndT, true, startPt); } const SkPoint& oStartPt = coincidence.fPts[oStartSwapped]; if (oStartT > 0 || endT < 1 || thisOne.isMissing(endT, oStartPt) || other.isMissing(oStartT, oStartPt)) { other.addTPair(oStartT, &thisOne, endT, true, oStartPt); } } else { const SkPoint& startPt = coincidence.fPts[startSwapped]; if (startT > 0 || oStartT > 0 || thisOne.isMissing(startT, startPt) || other.isMissing(oStartT, startPt)) { thisOne.addTPair(startT, &other, oStartT, true, startPt); } const SkPoint& oEndPt = coincidence.fPts[!oStartSwapped]; if (endT < 1 || oEndT < 1 || thisOne.isMissing(endT, oEndPt) || other.isMissing(oEndT, oEndPt)) { other.addTPair(oEndT, &thisOne, endT, true, oEndPt); } } #if DEBUG_CONCIDENT thisOne.debugShowTs("+"); other.debugShowTs("o"); #endif } } bool SkOpContour::addPartialCoincident(int index, SkOpContour* other, int otherIndex, const SkIntersections& ts, int ptIndex, bool swap) { SkPoint pt0 = ts.pt(ptIndex).asSkPoint(); SkPoint pt1 = ts.pt(ptIndex + 1).asSkPoint(); if (SkDPoint::ApproximatelyEqual(pt0, pt1)) { // FIXME: one could imagine a case where it would be incorrect to ignore this // suppose two self-intersecting cubics overlap to form a partial coincidence -- // although it isn't clear why the regular coincidence could wouldn't pick this up // this is exceptional enough to ignore for now return false; } SkCoincidence& coincidence = fPartialCoincidences.push_back(); coincidence.fOther = other; coincidence.fSegments[0] = index; coincidence.fSegments[1] = otherIndex; coincidence.fTs[swap][0] = ts[0][ptIndex]; coincidence.fTs[swap][1] = ts[0][ptIndex + 1]; coincidence.fTs[!swap][0] = ts[1][ptIndex]; coincidence.fTs[!swap][1] = ts[1][ptIndex + 1]; coincidence.fPts[0] = pt0; coincidence.fPts[1] = pt1; return true; } void SkOpContour::calcCoincidentWinding() { int count = fCoincidences.count(); #if DEBUG_CONCIDENT if (count > 0) { SkDebugf("%s count=%d\n", __FUNCTION__, count); } #endif for (int index = 0; index < count; ++index) { SkCoincidence& coincidence = fCoincidences[index]; calcCommonCoincidentWinding(coincidence); } } void SkOpContour::calcPartialCoincidentWinding() { int count = fPartialCoincidences.count(); #if DEBUG_CONCIDENT if (count > 0) { SkDebugf("%s count=%d\n", __FUNCTION__, count); } #endif for (int index = 0; index < count; ++index) { SkCoincidence& coincidence = fPartialCoincidences[index]; calcCommonCoincidentWinding(coincidence); } } void SkOpContour::calcCommonCoincidentWinding(const SkCoincidence& coincidence) { int thisIndex = coincidence.fSegments[0]; SkOpSegment& thisOne = fSegments[thisIndex]; if (thisOne.done()) { return; } SkOpContour* otherContour = coincidence.fOther; int otherIndex = coincidence.fSegments[1]; SkOpSegment& other = otherContour->fSegments[otherIndex]; if (other.done()) { return; } double startT = coincidence.fTs[0][0]; double endT = coincidence.fTs[0][1]; const SkPoint* startPt = &coincidence.fPts[0]; const SkPoint* endPt = &coincidence.fPts[1]; bool cancelers; if ((cancelers = startT > endT)) { SkTSwap(startT, endT); SkTSwap(startPt, endPt); } if (startT == endT) { // if span is very large, the smaller may have collapsed to nothing if (endT <= 1 - FLT_EPSILON) { endT += FLT_EPSILON; SkASSERT(endT <= 1); } else { startT -= FLT_EPSILON; SkASSERT(startT >= 0); } } SkASSERT(!approximately_negative(endT - startT)); double oStartT = coincidence.fTs[1][0]; double oEndT = coincidence.fTs[1][1]; if (oStartT > oEndT) { SkTSwap(oStartT, oEndT); cancelers ^= true; } SkASSERT(!approximately_negative(oEndT - oStartT)); if (cancelers) { thisOne.addTCancel(*startPt, *endPt, &other); } else { thisOne.addTCoincident(*startPt, *endPt, endT, &other); } #if DEBUG_CONCIDENT thisOne.debugShowTs("p"); other.debugShowTs("o"); #endif } void SkOpContour::sortSegments() { int segmentCount = fSegments.count(); fSortedSegments.push_back_n(segmentCount); for (int test = 0; test < segmentCount; ++test) { fSortedSegments[test] = &fSegments[test]; } SkTQSort(fSortedSegments.begin(), fSortedSegments.end() - 1); fFirstSorted = 0; } void SkOpContour::toPath(SkPathWriter* path) const { int segmentCount = fSegments.count(); const SkPoint& pt = fSegments.front().pts()[0]; path->deferredMove(pt); for (int test = 0; test < segmentCount; ++test) { fSegments[test].addCurveTo(0, 1, path, true); } path->close(); } void SkOpContour::topSortableSegment(const SkPoint& topLeft, SkPoint* bestXY, SkOpSegment** topStart) { int segmentCount = fSortedSegments.count(); SkASSERT(segmentCount > 0); int sortedIndex = fFirstSorted; fDone = true; // may be cleared below for ( ; sortedIndex < segmentCount; ++sortedIndex) { SkOpSegment* testSegment = fSortedSegments[sortedIndex]; if (testSegment->done()) { if (sortedIndex == fFirstSorted) { ++fFirstSorted; } continue; } fDone = false; SkPoint testXY = testSegment->activeLeftTop(true, NULL); if (*topStart) { if (testXY.fY < topLeft.fY) { continue; } if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) { continue; } if (bestXY->fY < testXY.fY) { continue; } if (bestXY->fY == testXY.fY && bestXY->fX < testXY.fX) { continue; } } *topStart = testSegment; *bestXY = testXY; } } SkOpSegment* SkOpContour::undoneSegment(int* start, int* end) { int segmentCount = fSegments.count(); for (int test = 0; test < segmentCount; ++test) { SkOpSegment* testSegment = &fSegments[test]; if (testSegment->done()) { continue; } testSegment->undoneSpan(start, end); return testSegment; } return NULL; } #if DEBUG_SHOW_WINDING int SkOpContour::debugShowWindingValues(int totalSegments, int ofInterest) { int count = fSegments.count(); int sum = 0; for (int index = 0; index < count; ++index) { sum += fSegments[index].debugShowWindingValues(totalSegments, ofInterest); } // SkDebugf("%s sum=%d\n", __FUNCTION__, sum); return sum; } void SkOpContour::debugShowWindingValues(const SkTArray& contourList) { // int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13; // int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16; int ofInterest = 1 << 5 | 1 << 8; int total = 0; int index; for (index = 0; index < contourList.count(); ++index) { total += contourList[index]->segments().count(); } int sum = 0; for (index = 0; index < contourList.count(); ++index) { sum += contourList[index]->debugShowWindingValues(total, ofInterest); } // SkDebugf("%s total=%d\n", __FUNCTION__, sum); } #endif void SkOpContour::setBounds() { int count = fSegments.count(); if (count == 0) { SkDebugf("%s empty contour\n", __FUNCTION__); SkASSERT(0); // FIXME: delete empty contour? return; } fBounds = fSegments.front().bounds(); for (int index = 1; index < count; ++index) { fBounds.add(fSegments[index].bounds()); } }