/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkOpCoincidence.h" #include "SkOpSegment.h" #include "SkPathOpsTSect.h" bool SkOpCoincidence::extend(SkOpPtT* coinPtTStart, SkOpPtT* coinPtTEnd, SkOpPtT* oppPtTStart, SkOpPtT* oppPtTEnd) { // if there is an existing pair that overlaps the addition, extend it SkCoincidentSpans* coinRec = fHead; if (coinRec) { do { if (coinRec->fCoinPtTStart->segment() != coinPtTStart->segment()) { continue; } if (coinRec->fOppPtTStart->segment() != oppPtTStart->segment()) { continue; } if (coinRec->fCoinPtTStart->fT > coinPtTEnd->fT) { continue; } if (coinRec->fCoinPtTEnd->fT < coinPtTStart->fT) { continue; } if (coinRec->fCoinPtTStart->fT > coinPtTStart->fT) { coinRec->fCoinPtTStart = coinPtTStart; coinRec->fOppPtTStart = oppPtTStart; } if (coinRec->fCoinPtTEnd->fT < coinPtTEnd->fT) { coinRec->fCoinPtTEnd = coinPtTEnd; coinRec->fOppPtTEnd = oppPtTEnd; } return true; } while ((coinRec = coinRec->fNext)); } return false; } void SkOpCoincidence::add(SkOpPtT* coinPtTStart, SkOpPtT* coinPtTEnd, SkOpPtT* oppPtTStart, SkOpPtT* oppPtTEnd, SkChunkAlloc* allocator) { SkASSERT(coinPtTStart->fT < coinPtTEnd->fT); bool flipped = oppPtTStart->fT > oppPtTEnd->fT; SkCoincidentSpans* coinRec = SkOpTAllocator::Allocate(allocator); coinRec->fNext = this->fHead; coinRec->fCoinPtTStart = coinPtTStart; coinRec->fCoinPtTEnd = coinPtTEnd; coinRec->fOppPtTStart = oppPtTStart; coinRec->fOppPtTEnd = oppPtTEnd; coinRec->fFlipped = flipped; this->fHead = coinRec; } static void t_range(const SkOpPtT* overS, const SkOpPtT* overE, double tStart, double tEnd, const SkOpPtT* coinPtTStart, const SkOpPtT* coinPtTEnd, double* coinTs, double* coinTe) { double denom = overE->fT - overS->fT; double start = 0 < denom ? tStart : tEnd; double end = 0 < denom ? tEnd : tStart; double sRatio = (start - overS->fT) / denom; double eRatio = (end - overS->fT) / denom; *coinTs = coinPtTStart->fT + (coinPtTEnd->fT - coinPtTStart->fT) * sRatio; *coinTe = coinPtTStart->fT + (coinPtTEnd->fT - coinPtTStart->fT) * eRatio; } void SkOpCoincidence::addExpanded(SkChunkAlloc* allocator PATH_OPS_DEBUG_VALIDATE_PARAMS(SkOpGlobalState* globalState)) { #if DEBUG_VALIDATE globalState->setPhase(SkOpGlobalState::kIntersecting); #endif // for each coincident pair, match the spans // if the spans don't match, add the mssing pt to the segment and loop it in the opposite span SkCoincidentSpans* coin = this->fHead; SkASSERT(coin); do { SkOpPtT* startPtT = coin->fCoinPtTStart; SkOpPtT* oStartPtT = coin->fOppPtTStart; SkASSERT(startPtT->contains(oStartPtT)); SkASSERT(coin->fCoinPtTEnd->contains(coin->fOppPtTEnd)); SkOpSpanBase* start = startPtT->span(); SkOpSpanBase* oStart = oStartPtT->span(); const SkOpSpanBase* end = coin->fCoinPtTEnd->span(); const SkOpSpanBase* oEnd = coin->fOppPtTEnd->span(); SkOpSpanBase* test = start->upCast()->next(); SkOpSpanBase* oTest = coin->fFlipped ? oStart->prev() : oStart->upCast()->next(); while (test != end || oTest != oEnd) { if (!test->ptT()->contains(oTest->ptT())) { // use t ranges to guess which one is missing double startRange = coin->fCoinPtTEnd->fT - startPtT->fT; double startPart = (test->t() - startPtT->fT) / startRange; double oStartRange = coin->fOppPtTEnd->fT - oStartPtT->fT; double oStartPart = (oTest->t() - oStartPtT->fT) / oStartRange; SkASSERT(startPart != oStartPart); SkOpPtT* newPt; if (startPart < oStartPart) { double newT = oStartPtT->fT + oStartRange * startPart; newPt = oStart->segment()->addT(newT, SkOpSegment::kAllowAlias, allocator); newPt->fPt = test->pt(); test->ptT()->addOpp(newPt); } else { double newT = startPtT->fT + startRange * oStartPart; newPt = start->segment()->addT(newT, SkOpSegment::kAllowAlias, allocator); newPt->fPt = oTest->pt(); oTest->ptT()->addOpp(newPt); } // start over test = start; oTest = oStart; } if (test != end) { test = test->upCast()->next(); } if (oStart != oEnd) { oTest = coin->fFlipped ? oTest->prev() : oTest->upCast()->next(); } } } while ((coin = coin->fNext)); #if DEBUG_VALIDATE globalState->setPhase(SkOpGlobalState::kWalking); #endif } void SkOpCoincidence::addIfMissing(const SkCoincidentSpans* outer, SkOpPtT* over1s, SkOpPtT* over1e, SkChunkAlloc* allocator) { SkCoincidentSpans* check = this->fTop; do { if (check->fCoinPtTStart->span() == over1s->span() && check->fOppPtTStart->span() == outer->fOppPtTStart->span()) { SkASSERT(check->fCoinPtTEnd->span() == over1e->span() || !fDebugState->debugRunFail()); SkASSERT(check->fOppPtTEnd->span() == outer->fOppPtTEnd->span() || !fDebugState->debugRunFail()); return; } if (check->fCoinPtTStart->span() == outer->fCoinPtTStart->span() && check->fOppPtTStart->span() == over1s->span()) { SkASSERT(check->fCoinPtTEnd->span() == outer->fCoinPtTEnd->span() || !fDebugState->debugRunFail()); SkASSERT(check->fOppPtTEnd->span() == over1e->span() || !fDebugState->debugRunFail()); return; } } while ((check = check->fNext)); this->add(outer->fCoinPtTStart, outer->fCoinPtTEnd, over1s, over1e, allocator); #if 0 // FIXME: up to four flavors could be added -- do we need only one? #endif } bool SkOpCoincidence::addIfMissing(const SkOpPtT* over1s, const SkOpPtT* over1e, const SkOpPtT* over2s, const SkOpPtT* over2e, double tStart, double tEnd, SkOpPtT* coinPtTStart, const SkOpPtT* coinPtTEnd, SkOpPtT* oppPtTStart, const SkOpPtT* oppPtTEnd, SkChunkAlloc* allocator) { double coinTs, coinTe, oppTs, oppTe; t_range(over1s, over1e, tStart, tEnd, coinPtTStart, coinPtTEnd, &coinTs, &coinTe); t_range(over2s, over2e, tStart, tEnd, oppPtTStart, oppPtTEnd, &oppTs, &oppTe); SkOpSegment* coinSeg = coinPtTStart->segment(); SkOpSegment* oppSeg = oppPtTStart->segment(); SkASSERT(coinSeg != oppSeg); SkCoincidentSpans* check = this->fTop; do { const SkOpSegment* checkCoinSeg = check->fCoinPtTStart->segment(); if (checkCoinSeg != coinSeg && checkCoinSeg != oppSeg) { continue; } const SkOpSegment* checkOppSeg = check->fOppPtTStart->segment(); if (checkOppSeg != coinSeg && checkOppSeg != oppSeg) { continue; } int cTs = coinTs; int cTe = coinTe; int oTs = oppTs; int oTe = oppTe; if (checkCoinSeg != coinSeg) { SkASSERT(checkOppSeg != oppSeg); SkTSwap(cTs, oTs); SkTSwap(cTe, oTe); } int tweenCount = (int) between(check->fCoinPtTStart->fT, cTs, check->fCoinPtTEnd->fT) + (int) between(check->fCoinPtTStart->fT, cTe, check->fCoinPtTEnd->fT) + (int) between(check->fOppPtTStart->fT, oTs, check->fOppPtTEnd->fT) + (int) between(check->fOppPtTStart->fT, oTe, check->fOppPtTEnd->fT); // SkASSERT(tweenCount == 0 || tweenCount == 4); if (tweenCount) { return true; } } while ((check = check->fNext)); if ((over1s->fT < over1e->fT) != (over2s->fT < over2e->fT)) { SkTSwap(oppTs, oppTe); } if (coinTs > coinTe) { SkTSwap(coinTs, coinTe); SkTSwap(oppTs, oppTe); } SkOpPtT* cs = coinSeg->addMissing(coinTs, oppSeg, allocator); SkOpPtT* ce = coinSeg->addMissing(coinTe, oppSeg, allocator); if (cs == ce) { return false; } SkOpPtT* os = oppSeg->addMissing(oppTs, coinSeg, allocator); SkOpPtT* oe = oppSeg->addMissing(oppTe, coinSeg, allocator); SkASSERT(os != oe); cs->addOpp(os); ce->addOpp(oe); this->add(cs, ce, os, oe, allocator); return true; } /* detects overlaps of different coincident runs on same segment */ /* does not detect overlaps for pairs without any segments in common */ bool SkOpCoincidence::addMissing(SkChunkAlloc* allocator) { SkCoincidentSpans* outer = fHead; if (!outer) { return true; } bool result; fTop = outer; fHead = nullptr; do { // addifmissing can modify the list that this is walking // maybe save head so that walker can iterate over old data unperturbed // and addifmissing can add to head freely then add saved head in the end const SkOpSegment* outerCoin = outer->fCoinPtTStart->segment(); SkASSERT(outerCoin == outer->fCoinPtTEnd->segment()); const SkOpSegment* outerOpp = outer->fOppPtTStart->segment(); SkASSERT(outerOpp == outer->fOppPtTEnd->segment()); SkCoincidentSpans* inner = outer; while ((inner = inner->fNext)) { double overS, overE; const SkOpSegment* innerCoin = inner->fCoinPtTStart->segment(); SkASSERT(innerCoin == inner->fCoinPtTEnd->segment()); const SkOpSegment* innerOpp = inner->fOppPtTStart->segment(); SkASSERT(innerOpp == inner->fOppPtTEnd->segment()); if (outerCoin == innerCoin && this->overlap(outer->fCoinPtTStart, outer->fCoinPtTEnd, inner->fCoinPtTStart, inner->fCoinPtTEnd, &overS, &overE)) { if (!this->addIfMissing(outer->fCoinPtTStart, outer->fCoinPtTEnd, inner->fCoinPtTStart, inner->fCoinPtTEnd, overS, overE, outer->fOppPtTStart, outer->fOppPtTEnd, inner->fOppPtTStart, inner->fOppPtTEnd, allocator)) { result = false; goto returnResult; } } else if (outerCoin == innerOpp && this->overlap(outer->fCoinPtTStart, outer->fCoinPtTEnd, inner->fOppPtTStart, inner->fOppPtTEnd, &overS, &overE)) { if (!this->addIfMissing(outer->fCoinPtTStart, outer->fCoinPtTEnd, inner->fOppPtTStart, inner->fOppPtTEnd, overS, overE, outer->fOppPtTStart, outer->fOppPtTEnd, inner->fCoinPtTStart, inner->fCoinPtTEnd, allocator)) { result = false; goto returnResult; } } else if (outerOpp == innerCoin && this->overlap(outer->fOppPtTStart, outer->fOppPtTEnd, inner->fCoinPtTStart, inner->fCoinPtTEnd, &overS, &overE)) { if (!this->addIfMissing(outer->fOppPtTStart, outer->fOppPtTEnd, inner->fCoinPtTStart, inner->fCoinPtTEnd, overS, overE, outer->fCoinPtTStart, outer->fCoinPtTEnd, inner->fOppPtTStart, inner->fOppPtTEnd, allocator)) { result = false; goto returnResult; } } else if (outerOpp == innerOpp && this->overlap(outer->fOppPtTStart, outer->fOppPtTEnd, inner->fOppPtTStart, inner->fOppPtTEnd, &overS, &overE)) { if (!this->addIfMissing(outer->fOppPtTStart, outer->fOppPtTEnd, inner->fOppPtTStart, inner->fOppPtTEnd, overS, overE, outer->fCoinPtTStart, outer->fCoinPtTEnd, inner->fCoinPtTStart, inner->fCoinPtTEnd, allocator)) { result = false; goto returnResult; } } else if (outerCoin != innerCoin) { // check to see if outer span overlaps the inner span // look for inner segment in pt-t list // if present, and if t values are in coincident range // add two pairs of new coincidence SkOpPtT* testS = outer->fCoinPtTStart->contains(innerCoin); SkOpPtT* testE = outer->fCoinPtTEnd->contains(innerCoin); if (testS && testS->fT >= inner->fCoinPtTStart->fT && testE && testE->fT <= inner->fCoinPtTEnd->fT && this->testForCoincidence(outer, testS, testE)) { this->addIfMissing(outer, testS, testE, allocator); } else { testS = inner->fCoinPtTStart->contains(outerCoin); testE = inner->fCoinPtTEnd->contains(outerCoin); if (testS && testS->fT >= outer->fCoinPtTStart->fT && testE && testE->fT <= outer->fCoinPtTEnd->fT && this->testForCoincidence(inner, testS, testE)) { this->addIfMissing(inner, testS, testE, allocator); } } } } } while ((outer = outer->fNext)); result = true; returnResult: SkCoincidentSpans** headPtr = &fHead; while (*headPtr) { SkCoincidentSpans** headNext = &(*headPtr)->fNext; if (*headNext) { break; } headPtr = headNext; } *headPtr = fTop; return result; } void SkOpCoincidence::addOverlap(SkOpSegment* seg1, SkOpSegment* seg1o, SkOpSegment* seg2, SkOpSegment* seg2o, SkOpPtT* overS, SkOpPtT* overE, SkChunkAlloc* allocator) { SkOpPtT* s1 = overS->find(seg1); SkOpPtT* e1 = overE->find(seg1); if (!s1->starter(e1)->span()->upCast()->windValue()) { s1 = overS->find(seg1o); e1 = overE->find(seg1o); if (!s1->starter(e1)->span()->upCast()->windValue()) { return; } } SkOpPtT* s2 = overS->find(seg2); SkOpPtT* e2 = overE->find(seg2); if (!s2->starter(e2)->span()->upCast()->windValue()) { s2 = overS->find(seg2o); e2 = overE->find(seg2o); if (!s2->starter(e2)->span()->upCast()->windValue()) { return; } } if (s1->segment() == s2->segment()) { return; } if (s1->fT > e1->fT) { SkTSwap(s1, e1); SkTSwap(s2, e2); } this->add(s1, e1, s2, e2, allocator); } bool SkOpCoincidence::contains(SkOpPtT* coinPtTStart, SkOpPtT* coinPtTEnd, SkOpPtT* oppPtTStart, SkOpPtT* oppPtTEnd, bool flipped) { SkCoincidentSpans* coin = fHead; if (!coin) { return false; } do { if (coin->fCoinPtTStart == coinPtTStart && coin->fCoinPtTEnd == coinPtTEnd && coin->fOppPtTStart == oppPtTStart && coin->fOppPtTEnd == oppPtTEnd && coin->fFlipped == flipped) { return true; } } while ((coin = coin->fNext)); return false; } // walk span sets in parallel, moving winding from one to the other bool SkOpCoincidence::apply() { SkCoincidentSpans* coin = fHead; if (!coin) { return true; } do { SkOpSpan* start = coin->fCoinPtTStart->span()->upCast(); if (start->deleted()) { continue; } SkOpSpanBase* end = coin->fCoinPtTEnd->span(); SkASSERT(start == start->starter(end)); bool flipped = coin->fFlipped; SkOpSpan* oStart = (flipped ? coin->fOppPtTEnd : coin->fOppPtTStart)->span()->upCast(); if (oStart->deleted()) { continue; } SkOpSpanBase* oEnd = (flipped ? coin->fOppPtTStart : coin->fOppPtTEnd)->span(); SkASSERT(oStart == oStart->starter(oEnd)); SkOpSegment* segment = start->segment(); SkOpSegment* oSegment = oStart->segment(); bool operandSwap = segment->operand() != oSegment->operand(); if (flipped) { do { SkOpSpanBase* oNext = oStart->next(); if (oNext == oEnd) { break; } oStart = oNext->upCast(); } while (true); } do { int windValue = start->windValue(); int oppValue = start->oppValue(); int oWindValue = oStart->windValue(); int oOppValue = oStart->oppValue(); // winding values are added or subtracted depending on direction and wind type // same or opposite values are summed depending on the operand value int windDiff = operandSwap ? oOppValue : oWindValue; int oWindDiff = operandSwap ? oppValue : windValue; if (!flipped) { windDiff = -windDiff; oWindDiff = -oWindDiff; } if (windValue && (windValue > windDiff || (windValue == windDiff && oWindValue <= oWindDiff))) { if (operandSwap) { SkTSwap(oWindValue, oOppValue); } if (flipped) { windValue -= oWindValue; oppValue -= oOppValue; } else { windValue += oWindValue; oppValue += oOppValue; } if (segment->isXor()) { windValue &= 1; } if (segment->oppXor()) { oppValue &= 1; } oWindValue = oOppValue = 0; } else { if (operandSwap) { SkTSwap(windValue, oppValue); } if (flipped) { oWindValue -= windValue; oOppValue -= oppValue; } else { oWindValue += windValue; oOppValue += oppValue; } if (oSegment->isXor()) { oWindValue &= 1; } if (oSegment->oppXor()) { oOppValue &= 1; } windValue = oppValue = 0; } start->setWindValue(windValue); start->setOppValue(oppValue); oStart->setWindValue(oWindValue); oStart->setOppValue(oOppValue); if (!windValue && !oppValue) { segment->markDone(start); } if (!oWindValue && !oOppValue) { oSegment->markDone(oStart); } SkOpSpanBase* next = start->next(); SkOpSpanBase* oNext = flipped ? oStart->prev() : oStart->next(); if (next == end) { break; } start = next->upCast(); // if the opposite ran out too soon, just reuse the last span if (!oNext || !oNext->upCastable()) { oNext = oStart; } oStart = oNext->upCast(); } while (true); } while ((coin = coin->fNext)); return true; } void SkOpCoincidence::detach(SkCoincidentSpans* remove) { SkCoincidentSpans* coin = fHead; SkCoincidentSpans* prev = nullptr; SkCoincidentSpans* next; do { next = coin->fNext; if (coin == remove) { if (prev) { prev->fNext = next; } else { fHead = next; } break; } prev = coin; } while ((coin = next)); SkASSERT(coin); } bool SkOpCoincidence::expand() { SkCoincidentSpans* coin = fHead; if (!coin) { return false; } bool expanded = false; do { SkOpSpan* start = coin->fCoinPtTStart->span()->upCast(); SkOpSpanBase* end = coin->fCoinPtTEnd->span(); SkOpSegment* segment = coin->fCoinPtTStart->segment(); SkOpSegment* oppSegment = coin->fOppPtTStart->segment(); SkOpSpan* prev = start->prev(); SkOpPtT* oppPtT; if (prev && (oppPtT = prev->contains(oppSegment))) { double midT = (prev->t() + start->t()) / 2; if (segment->isClose(midT, oppSegment)) { coin->fCoinPtTStart = prev->ptT(); coin->fOppPtTStart = oppPtT; expanded = true; } } SkOpSpanBase* next = end->final() ? nullptr : end->upCast()->next(); if (next && (oppPtT = next->contains(oppSegment))) { double midT = (end->t() + next->t()) / 2; if (segment->isClose(midT, oppSegment)) { coin->fCoinPtTEnd = next->ptT(); coin->fOppPtTEnd = oppPtT; expanded = true; } } } while ((coin = coin->fNext)); return expanded; } void SkOpCoincidence::findOverlaps(SkOpCoincidence* overlaps, SkChunkAlloc* allocator) const { overlaps->fHead = overlaps->fTop = nullptr; SkDEBUGCODE_(overlaps->debugSetGlobalState(fDebugState)); SkCoincidentSpans* outer = fHead; while (outer) { SkOpSegment* outerCoin = outer->fCoinPtTStart->segment(); SkOpSegment* outerOpp = outer->fOppPtTStart->segment(); SkCoincidentSpans* inner = outer; while ((inner = inner->fNext)) { SkOpSegment* innerCoin = inner->fCoinPtTStart->segment(); if (outerCoin == innerCoin) { continue; // both winners are the same segment, so there's no additional overlap } SkOpSegment* innerOpp = inner->fOppPtTStart->segment(); SkOpPtT* overlapS, * overlapE; if ((outerOpp == innerCoin && SkOpPtT::Overlaps(outer->fOppPtTStart, outer->fOppPtTEnd, inner->fCoinPtTStart, inner->fCoinPtTEnd, &overlapS, &overlapE)) || (outerCoin == innerOpp && SkOpPtT::Overlaps(outer->fCoinPtTStart, outer->fCoinPtTEnd, inner->fOppPtTStart, inner->fOppPtTEnd, &overlapS, &overlapE)) || (outerOpp == innerOpp && SkOpPtT::Overlaps(outer->fOppPtTStart, outer->fOppPtTEnd, inner->fOppPtTStart, inner->fOppPtTEnd, &overlapS, &overlapE))) { overlaps->addOverlap(outerCoin, outerOpp, innerCoin, innerOpp, overlapS, overlapE, allocator); } } outer = outer->fNext; } } void SkOpCoincidence::fixAligned() { SkCoincidentSpans* coin = fHead; if (!coin) { return; } do { if (coin->fCoinPtTStart->deleted()) { coin->fCoinPtTStart = coin->fCoinPtTStart->doppelganger(); } if (coin->fCoinPtTEnd->deleted()) { coin->fCoinPtTEnd = coin->fCoinPtTEnd->doppelganger(); } if (coin->fOppPtTStart->deleted()) { coin->fOppPtTStart = coin->fOppPtTStart->doppelganger(); } if (coin->fOppPtTEnd->deleted()) { coin->fOppPtTEnd = coin->fOppPtTEnd->doppelganger(); } } while ((coin = coin->fNext)); coin = fHead; SkCoincidentSpans** priorPtr = &fHead; do { if (coin->fCoinPtTStart->collapsed(coin->fCoinPtTEnd) || coin->fOppPtTStart->collapsed(coin->fOppPtTEnd)) { *priorPtr = coin->fNext; continue; } priorPtr = &coin->fNext; } while ((coin = coin->fNext)); } void SkOpCoincidence::fixUp(SkOpPtT* deleted, SkOpPtT* kept) { SkCoincidentSpans* coin = fHead; if (!coin) { return; } do { if (coin->fCoinPtTStart == deleted) { if (coin->fCoinPtTEnd->span() == kept->span()) { this->detach(coin); continue; } coin->fCoinPtTStart = kept; } if (coin->fCoinPtTEnd == deleted) { if (coin->fCoinPtTStart->span() == kept->span()) { this->detach(coin); continue; } coin->fCoinPtTEnd = kept; } if (coin->fOppPtTStart == deleted) { if (coin->fOppPtTEnd->span() == kept->span()) { this->detach(coin); continue; } coin->fOppPtTStart = kept; } if (coin->fOppPtTEnd == deleted) { if (coin->fOppPtTStart->span() == kept->span()) { this->detach(coin); continue; } coin->fOppPtTEnd = kept; } } while ((coin = coin->fNext)); } /* this sets up the coincidence links in the segments when the coincidence crosses multiple spans */ void SkOpCoincidence::mark() { SkCoincidentSpans* coin = fHead; if (!coin) { return; } do { SkOpSpanBase* end = coin->fCoinPtTEnd->span(); SkOpSpanBase* oldEnd = end; SkOpSpan* start = coin->fCoinPtTStart->span()->starter(&end); SkOpSpanBase* oEnd = coin->fOppPtTEnd->span(); SkOpSpanBase* oOldEnd = oEnd; SkOpSpanBase* oStart = coin->fOppPtTStart->span()->starter(&oEnd); bool flipped = (end == oldEnd) != (oEnd == oOldEnd); if (flipped) { SkTSwap(oStart, oEnd); } SkOpSpanBase* next = start; SkOpSpanBase* oNext = oStart; do { next = next->upCast()->next(); oNext = flipped ? oNext->prev() : oNext->upCast()->next(); if (next == end || oNext == oEnd) { break; } if (!next->containsCoinEnd(oNext)) { next->insertCoinEnd(oNext); } SkOpSpan* nextSpan = next->upCast(); SkOpSpan* oNextSpan = oNext->upCast(); if (!nextSpan->containsCoincidence(oNextSpan)) { nextSpan->insertCoincidence(oNextSpan); } } while (true); } while ((coin = coin->fNext)); } bool SkOpCoincidence::overlap(const SkOpPtT* coin1s, const SkOpPtT* coin1e, const SkOpPtT* coin2s, const SkOpPtT* coin2e, double* overS, double* overE) const { SkASSERT(coin1s->segment() == coin2s->segment()); *overS = SkTMax(SkTMin(coin1s->fT, coin1e->fT), SkTMin(coin2s->fT, coin2e->fT)); *overE = SkTMin(SkTMax(coin1s->fT, coin1e->fT), SkTMax(coin2s->fT, coin2e->fT)); return *overS < *overE; } bool SkOpCoincidence::testForCoincidence(const SkCoincidentSpans* outer, SkOpPtT* testS, SkOpPtT* testE) const { return testS->segment()->testForCoincidence(testS, testE, testS->span(), testE->span(), outer->fCoinPtTStart->segment(), 120000); // FIXME: replace with tuned }