/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkIntersections_DEFINE #define SkIntersections_DEFINE #include "SkPathOpsConic.h" #include "SkPathOpsCubic.h" #include "SkPathOpsLine.h" #include "SkPathOpsPoint.h" #include "SkPathOpsQuad.h" class SkIntersections { public: SkIntersections(SkDEBUGCODE(SkOpGlobalState* globalState = nullptr)) : fSwap(0) #ifdef SK_DEBUG SkDEBUGPARAMS(fDebugGlobalState(globalState)) , fDepth(0) #endif { sk_bzero(fPt, sizeof(fPt)); sk_bzero(fPt2, sizeof(fPt2)); sk_bzero(fT, sizeof(fT)); sk_bzero(fNearlySame, sizeof(fNearlySame)); #if DEBUG_T_SECT_LOOP_COUNT sk_bzero(fDebugLoopCount, sizeof(fDebugLoopCount)); #endif reset(); fMax = 0; // require that the caller set the max } class TArray { public: explicit TArray(const double ts[10]) : fTArray(ts) {} double operator[](int n) const { return fTArray[n]; } const double* fTArray; }; TArray operator[](int n) const { return TArray(fT[n]); } void allowNear(bool nearAllowed) { fAllowNear = nearAllowed; } void clearCoincidence(int index) { SkASSERT(index >= 0); int bit = 1 << index; fIsCoincident[0] &= ~bit; fIsCoincident[1] &= ~bit; } int conicHorizontal(const SkPoint a[3], SkScalar weight, SkScalar left, SkScalar right, SkScalar y, bool flipped) { SkDConic conic; conic.set(a, weight); fMax = 2; return horizontal(conic, left, right, y, flipped); } int conicVertical(const SkPoint a[3], SkScalar weight, SkScalar top, SkScalar bottom, SkScalar x, bool flipped) { SkDConic conic; conic.set(a, weight); fMax = 2; return vertical(conic, top, bottom, x, flipped); } int conicLine(const SkPoint a[3], SkScalar weight, const SkPoint b[2]) { SkDConic conic; conic.set(a, weight); SkDLine line; line.set(b); fMax = 3; // 2; permit small coincident segment + non-coincident intersection return intersect(conic, line); } int cubicHorizontal(const SkPoint a[4], SkScalar left, SkScalar right, SkScalar y, bool flipped) { SkDCubic cubic; cubic.set(a); fMax = 3; return horizontal(cubic, left, right, y, flipped); } int cubicVertical(const SkPoint a[4], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) { SkDCubic cubic; cubic.set(a); fMax = 3; return vertical(cubic, top, bottom, x, flipped); } int cubicLine(const SkPoint a[4], const SkPoint b[2]) { SkDCubic cubic; cubic.set(a); SkDLine line; line.set(b); fMax = 3; return intersect(cubic, line); } #ifdef SK_DEBUG SkOpGlobalState* globalState() const { return fDebugGlobalState; } #endif bool hasT(double t) const { SkASSERT(t == 0 || t == 1); return fUsed > 0 && (t == 0 ? fT[0][0] == 0 : fT[0][fUsed - 1] == 1); } bool hasOppT(double t) const { SkASSERT(t == 0 || t == 1); return fUsed > 0 && (fT[1][0] == t || fT[1][fUsed - 1] == t); } int insertSwap(double one, double two, const SkDPoint& pt) { if (fSwap) { return insert(two, one, pt); } else { return insert(one, two, pt); } } bool isCoincident(int index) { return (fIsCoincident[0] & 1 << index) != 0; } int lineHorizontal(const SkPoint a[2], SkScalar left, SkScalar right, SkScalar y, bool flipped) { SkDLine line; line.set(a); fMax = 2; return horizontal(line, left, right, y, flipped); } int lineVertical(const SkPoint a[2], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) { SkDLine line; line.set(a); fMax = 2; return vertical(line, top, bottom, x, flipped); } int lineLine(const SkPoint a[2], const SkPoint b[2]) { SkDLine aLine, bLine; aLine.set(a); bLine.set(b); fMax = 2; return intersect(aLine, bLine); } bool nearlySame(int index) const { SkASSERT(index == 0 || index == 1); return fNearlySame[index]; } const SkDPoint& pt(int index) const { return fPt[index]; } const SkDPoint& pt2(int index) const { return fPt2[index]; } int quadHorizontal(const SkPoint a[3], SkScalar left, SkScalar right, SkScalar y, bool flipped) { SkDQuad quad; quad.set(a); fMax = 2; return horizontal(quad, left, right, y, flipped); } int quadVertical(const SkPoint a[3], SkScalar top, SkScalar bottom, SkScalar x, bool flipped) { SkDQuad quad; quad.set(a); fMax = 2; return vertical(quad, top, bottom, x, flipped); } int quadLine(const SkPoint a[3], const SkPoint b[2]) { SkDQuad quad; quad.set(a); SkDLine line; line.set(b); return intersect(quad, line); } // leaves swap, max alone void reset() { fAllowNear = true; fUsed = 0; sk_bzero(fIsCoincident, sizeof(fIsCoincident)); } void set(bool swap, int tIndex, double t) { fT[(int) swap][tIndex] = t; } void setMax(int max) { SkASSERT(max <= (int) SK_ARRAY_COUNT(fPt)); fMax = max; } void swap() { fSwap ^= true; } bool swapped() const { return fSwap; } int used() const { return fUsed; } void downDepth() { SkASSERT(--fDepth >= 0); } bool unBumpT(int index) { SkASSERT(fUsed == 1); fT[0][index] = fT[0][index] * (1 + BUMP_EPSILON * 2) - BUMP_EPSILON; if (!between(0, fT[0][index], 1)) { fUsed = 0; return false; } return true; } void upDepth() { SkASSERT(++fDepth < 16); } void alignQuadPts(const SkPoint a[3], const SkPoint b[3]); int cleanUpCoincidence(); int closestTo(double rangeStart, double rangeEnd, const SkDPoint& testPt, double* dist) const; void cubicInsert(double one, double two, const SkDPoint& pt, const SkDCubic& c1, const SkDCubic& c2); void flip(); int horizontal(const SkDLine&, double left, double right, double y, bool flipped); int horizontal(const SkDQuad&, double left, double right, double y, bool flipped); int horizontal(const SkDQuad&, double left, double right, double y, double tRange[2]); int horizontal(const SkDCubic&, double y, double tRange[3]); int horizontal(const SkDConic&, double left, double right, double y, bool flipped); int horizontal(const SkDCubic&, double left, double right, double y, bool flipped); int horizontal(const SkDCubic&, double left, double right, double y, double tRange[3]); static double HorizontalIntercept(const SkDLine& line, double y); static int HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots); static int HorizontalIntercept(const SkDConic& conic, SkScalar y, double* roots); // FIXME : does not respect swap int insert(double one, double two, const SkDPoint& pt); void insertNear(double one, double two, const SkDPoint& pt1, const SkDPoint& pt2); // start if index == 0 : end if index == 1 int insertCoincident(double one, double two, const SkDPoint& pt); int intersect(const SkDLine&, const SkDLine&); int intersect(const SkDQuad&, const SkDLine&); int intersect(const SkDQuad&, const SkDQuad&); int intersect(const SkDConic&, const SkDLine&); int intersect(const SkDConic&, const SkDQuad&); int intersect(const SkDConic&, const SkDConic&); int intersect(const SkDCubic&, const SkDLine&); int intersect(const SkDCubic&, const SkDQuad&); int intersect(const SkDCubic&, const SkDConic&); int intersect(const SkDCubic&, const SkDCubic&); int intersectRay(const SkDLine&, const SkDLine&); int intersectRay(const SkDQuad&, const SkDLine&); int intersectRay(const SkDConic&, const SkDLine&); int intersectRay(const SkDCubic&, const SkDLine&); void merge(const SkIntersections& , int , const SkIntersections& , int ); int mostOutside(double rangeStart, double rangeEnd, const SkDPoint& origin) const; void removeOne(int index); void setCoincident(int index); int vertical(const SkDLine&, double top, double bottom, double x, bool flipped); int vertical(const SkDQuad&, double top, double bottom, double x, bool flipped); int vertical(const SkDConic&, double top, double bottom, double x, bool flipped); int vertical(const SkDCubic&, double top, double bottom, double x, bool flipped); static double VerticalIntercept(const SkDLine& line, double x); static int VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots); static int VerticalIntercept(const SkDConic& conic, SkScalar x, double* roots); int depth() const { #ifdef SK_DEBUG return fDepth; #else return 0; #endif } enum DebugLoop { kIterations_DebugLoop, kCoinCheck_DebugLoop, kComputePerp_DebugLoop, }; void debugBumpLoopCount(DebugLoop ); int debugCoincidentUsed() const; int debugLoopCount(DebugLoop ) const; void debugResetLoopCount(); void dump() const; // implemented for testing only private: bool cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2); bool cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2); void cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, const SkDRect& ); void cleanUpParallelLines(bool parallel); void computePoints(const SkDLine& line, int used); SkDPoint fPt[13]; // FIXME: since scans store points as SkPoint, this should also SkDPoint fPt2[2]; // used by nearly same to store alternate intersection point double fT[2][13]; uint16_t fIsCoincident[2]; // bit set for each curve's coincident T bool fNearlySame[2]; // true if end points nearly match unsigned char fUsed; unsigned char fMax; bool fAllowNear; bool fSwap; #ifdef SK_DEBUG SkOpGlobalState* fDebugGlobalState; int fDepth; #endif #if DEBUG_T_SECT_LOOP_COUNT int fDebugLoopCount[3]; #endif }; #endif