/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkIntersections.h" int SkIntersections::closestTo(double rangeStart, double rangeEnd, const SkDPoint& testPt, double* closestDist) const { int closest = -1; *closestDist = SK_ScalarMax; for (int index = 0; index < fUsed; ++index) { if (!between(rangeStart, fT[0][index], rangeEnd)) { continue; } const SkDPoint& iPt = fPt[index]; double dist = testPt.distanceSquared(iPt); if (*closestDist > dist) { *closestDist = dist; closest = index; } } return closest; } void SkIntersections::flip() { for (int index = 0; index < fUsed; ++index) { fT[1][index] = 1 - fT[1][index]; } } int SkIntersections::insert(double one, double two, const SkDPoint& pt) { if (fIsCoincident[0] == 3 && between(fT[0][0], one, fT[0][1])) { // For now, don't allow a mix of coincident and non-coincident intersections return -1; } SkASSERT(fUsed <= 1 || fT[0][0] <= fT[0][1]); int index; for (index = 0; index < fUsed; ++index) { double oldOne = fT[0][index]; double oldTwo = fT[1][index]; if (one == oldOne && two == oldTwo) { return -1; } if (more_roughly_equal(oldOne, one) && more_roughly_equal(oldTwo, two)) { if ((!precisely_zero(one) || precisely_zero(oldOne)) && (!precisely_equal(one, 1) || precisely_equal(oldOne, 1)) && (!precisely_zero(two) || precisely_zero(oldTwo)) && (!precisely_equal(two, 1) || precisely_equal(oldTwo, 1))) { return -1; } SkASSERT(one >= 0 && one <= 1); SkASSERT(two >= 0 && two <= 1); // remove this and reinsert below in case replacing would make list unsorted int remaining = fUsed - index - 1; memmove(&fPt[index], &fPt[index + 1], sizeof(fPt[0]) * remaining); memmove(&fT[0][index], &fT[0][index + 1], sizeof(fT[0][0]) * remaining); memmove(&fT[1][index], &fT[1][index + 1], sizeof(fT[1][0]) * remaining); int clearMask = ~((1 << index) - 1); fIsCoincident[0] -= (fIsCoincident[0] >> 1) & clearMask; fIsCoincident[1] -= (fIsCoincident[1] >> 1) & clearMask; --fUsed; break; } #if ONE_OFF_DEBUG if (pt.roughlyEqual(fPt[index])) { SkDebugf("%s t=%1.9g pts roughly equal\n", __FUNCTION__, one); } #endif } for (index = 0; index < fUsed; ++index) { if (fT[0][index] > one) { break; } } if (fUsed >= fMax) { SkOPASSERT(0); // FIXME : this error, if it is to be handled at runtime in release, must // be propagated all the way back down to the caller, and return failure. fUsed = 0; return 0; } int remaining = fUsed - index; if (remaining > 0) { memmove(&fPt[index + 1], &fPt[index], sizeof(fPt[0]) * remaining); memmove(&fT[0][index + 1], &fT[0][index], sizeof(fT[0][0]) * remaining); memmove(&fT[1][index + 1], &fT[1][index], sizeof(fT[1][0]) * remaining); int clearMask = ~((1 << index) - 1); fIsCoincident[0] += fIsCoincident[0] & clearMask; fIsCoincident[1] += fIsCoincident[1] & clearMask; } fPt[index] = pt; if (one < 0 || one > 1) { return -1; } if (two < 0 || two > 1) { return -1; } fT[0][index] = one; fT[1][index] = two; ++fUsed; SkASSERT(fUsed <= SK_ARRAY_COUNT(fPt)); return index; } void SkIntersections::insertNear(double one, double two, const SkDPoint& pt1, const SkDPoint& pt2) { SkASSERT(one == 0 || one == 1); SkASSERT(two == 0 || two == 1); SkASSERT(pt1 != pt2); fNearlySame[one ? 1 : 0] = true; (void) insert(one, two, pt1); fPt2[one ? 1 : 0] = pt2; } int SkIntersections::insertCoincident(double one, double two, const SkDPoint& pt) { int index = insertSwap(one, two, pt); if (index >= 0) { setCoincident(index); } return index; } void SkIntersections::setCoincident(int index) { SkASSERT(index >= 0); int bit = 1 << index; fIsCoincident[0] |= bit; fIsCoincident[1] |= bit; } void SkIntersections::merge(const SkIntersections& a, int aIndex, const SkIntersections& b, int bIndex) { this->reset(); fT[0][0] = a.fT[0][aIndex]; fT[1][0] = b.fT[0][bIndex]; fPt[0] = a.fPt[aIndex]; fPt2[0] = b.fPt[bIndex]; fUsed = 1; } int SkIntersections::mostOutside(double rangeStart, double rangeEnd, const SkDPoint& origin) const { int result = -1; for (int index = 0; index < fUsed; ++index) { if (!between(rangeStart, fT[0][index], rangeEnd)) { continue; } if (result < 0) { result = index; continue; } SkDVector best = fPt[result] - origin; SkDVector test = fPt[index] - origin; if (test.crossCheck(best) < 0) { result = index; } } return result; } void SkIntersections::removeOne(int index) { int remaining = --fUsed - index; if (remaining <= 0) { return; } memmove(&fPt[index], &fPt[index + 1], sizeof(fPt[0]) * remaining); memmove(&fT[0][index], &fT[0][index + 1], sizeof(fT[0][0]) * remaining); memmove(&fT[1][index], &fT[1][index + 1], sizeof(fT[1][0]) * remaining); // SkASSERT(fIsCoincident[0] == 0); int coBit = fIsCoincident[0] & (1 << index); fIsCoincident[0] -= ((fIsCoincident[0] >> 1) & ~((1 << index) - 1)) + coBit; SkASSERT(!(coBit ^ (fIsCoincident[1] & (1 << index)))); fIsCoincident[1] -= ((fIsCoincident[1] >> 1) & ~((1 << index) - 1)) + coBit; }